首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have used multiple solution state techniques and crystallographic analysis to investigate the importance of a putative transient interaction formed between Arg-alpha237 in electron transferring flavoprotein (ETF) and Tyr-442 in trimethylamine dehydrogenase (TMADH) in complex assembly, electron transfer, and structural imprinting of ETF by TMADH. We have isolated four mutant forms of ETF altered in the identity of the residue at position 237 (alphaR237A, alphaR237K, alphaR237C, and alphaR237E) and with each form studied electron transfer from TMADH to ETF, investigated the reduction potentials of the bound ETF cofactor, and analyzed complex formation. We show that mutation of Arg-alpha237 substantially destabilizes the semiquinone couple of the bound FAD and impedes electron transfer from TMADH to ETF. Crystallographic structures of the mutant ETF proteins indicate that mutation does not perturb the overall structure of ETF, but leads to disruption of an electrostatic network at an ETF domain boundary that likely affects the dynamic properties of ETF in the crystal and in solution. We show that Arg-alpha237 is required for TMADH to structurally imprint the as-purified semiquinone form of wild-type ETF and that the ability of TMADH to facilitate this structural reorganization is lost following (i) redox cycling of ETF, or simple conversion to the oxidized form, and (ii) mutagenesis of Arg-alpha237. We discuss this result in light of recent apparent conflict in the literature relating to the structural imprinting of wild-type ETF. Our studies support a mechanism of electron transfer by conformational sampling as advanced from our previous analysis of the crystal structure of the TMADH-2ETF complex [Leys, D. , Basran, J. , Sutcliffe, M. J., and Scrutton, N. S. (2003) Nature Struct. Biol. 10, 219-225] and point to a key role for the Tyr-442 (TMADH) and Arg-alpha237 (ETF) residue pair in transiently stabilizing productive electron transfer configurations. Our work also points to the importance of Arg-alpha237 in controlling the thermodynamics of electron transfer, the dynamics of ETF, and the protection of reducing equivalents following disassembly of the TMADH-2ETF complex.  相似文献   

2.
The interaction between the physiological electron transfer partners trimethylamine dehydrogenase (TMADH) and electron-transferring flavoprotein (ETF) from Methylophilus methylotrophus has been examined with particular regard to the proposal that the former protein "imprints" a conformational change on the latter. The results indicate that the absorbance change previously attributed to changes in the environment of the FAD of ETF upon binding to TMADH is instead caused by electron transfer from partially reduced, as-isolated TMADH to ETF. Prior treatment of the as-isolated enzyme with the oxidant ferricenium essentially abolishes the observed spectral change. Further, when the semiquinone form of ETF is used instead of the oxidized form, the mirror image of the spectral change seen with as-isolated TMADH and oxidized ETF is observed. This is attributable to a small amount of electron transfer in the reverse of the physiological direction. Kinetic determination of the dissociation constant and limiting rate constant for electron transfer within the complex of (reduced) TMADH with (oxidized) ETF is reconfirmed and discussed in the context of a recently proposed model for the interaction between the two proteins that involves "structural imprinting" of ETF.  相似文献   

3.
TMADH (trimethylamine dehydrogenase) is a complex iron-sulphur flavoprotein that forms a soluble electron-transfer complex with ETF (electron-transferring flavoprotein). The mechanism of electron transfer between TMADH and ETF has been studied using stopped-flow kinetic and mutagenesis methods, and more recently by X-ray crystallography. Potentiometric methods have also been used to identify key residues involved in the stabilization of the flavin radical semiquinone species in ETF. These studies have demonstrated a key role for 'conformational sampling' in the electron-transfer complex, facilitated by two-site contact of ETF with TMADH. Exploration of three-dimensional space in the complex allows the FAD of ETF to find conformations compatible with enhanced electronic coupling with the 4Fe-4S centre of TMADH. This mechanism of electron transfer provides for a more robust and accessible design principle for interprotein electron transfer compared with simpler models that invoke the collision of redox partners followed by electron transfer. The structure of the TMADH-ETF complex confirms the role of key residues in electron transfer and molecular assembly, originally suggested from detailed kinetic studies in wild-type and mutant complexes, and from molecular modelling.  相似文献   

4.
The electron-transferring flavoprotein (ETF) from Methylophilus methylotrophus (sp. W(3)A(1)) exhibits unusual oxidation-reduction properties and can only be reduced to the level of the semiquinone under most circumstances (including turnover with its physiological reductant, trimethylamine dehydrogenase (TMADH), or reaction with strong reducing reagents such as sodium dithionite). In the present study, we demonstrate that ETF can be reduced fully to its hydroquinone form both enzymatically and chemically when it is in complex with TMADH. Quantitative titration of the TMADH x ETF protein complex with sodium dithionite shows that a total of five electrons are taken up by the system, indicating that full reduction of ETF occurs within the complex. The results indicate that the oxidation-reduction properties of ETF are perturbed upon binding to TMADH, a conclusion further supported by the observation of a spectral change upon formation of the TMADH x ETF complex that is due to a change in the environment of the FAD of ETF. The results are discussed in the context of ETF undergoing a conformational change during formation of the TMADH x ETF electron transfer complex, which modulates the spectral and oxidation-reduction properties of ETF such that full reduction of the protein can take place.  相似文献   

5.
Modeling studies of the trimethylamine dehydrogenase-electron transferring flavoprotein (TMADH-ETF) electron transfer complex have suggested potential roles for Val-344 and Tyr-442, found on the surface of TMADH, in electronic coupling between the 4Fe-4S center of TMADH and the FAD of ETF. The importance of these residues in electron transfer, both to ETF and to the artificial electron acceptor, ferricenium (Fc(+)), has been studied by site-directed mutagenesis and stopped-flow spectroscopy. Reduction of the 6-(S)-cysteinyl FMN in TMADH is not affected by mutation of either Tyr-442 or Val-344 to a variety of alternate side chains, although there are modest changes in the rate of internal electron transfer from the 6-(S)-cysteinyl FMN to the 4Fe-4S center. The kinetics of electron transfer from the 4Fe-4S center to Fc(+) are sensitive to mutations at position 344. The introduction of smaller side chains (Ala-344, Cys-344, and Gly-344) leads to enhanced rates of electron transfer, and likely reflects shortened electron transfer "pathways" from the 4Fe-4S center to Fc(+). The introduction of larger side chains (Ile-344 and Tyr-344) reduces substantially the rate of electron transfer to Fc(+). Electron transfer to ETF is not affected, to any large extent, by mutation of Val-344. In contrast, mutation of Tyr-442 to Phe, Leu, Cys, and Gly leads to major reductions in the rate of electron transfer to ETF, but not to Fc(+). The data indicate that electron transfer to Fc(+) is via the shortest pathway from the 4Fe-4S center of TMADH to the surface of the enzyme. Val-344 is located at the end of this pathway at the bottom of a small groove on the surface of TMADH, and Fc(+) can penetrate this groove to facilitate good electronic coupling with the 4Fe-4S center. With ETF as an electron acceptor, the observed rate of electron transfer is substantially reduced on mutation of Tyr-442, but not Val-344. We conclude that the flavin of ETF does not penetrate fully the groove on the surface of TMADH, and that electron transfer from the 4Fe-4S center to ETF may involve a longer pathway involving Tyr-442. Mutation of Tyr-442 likely disrupts electron transfer by perturbing the interaction geometry of TMADH and ETF in the productive electron transfer complex, leading to less efficient coupling between the redox centers.  相似文献   

6.
Toogood HS  Leys D  Scrutton NS 《The FEBS journal》2007,274(21):5481-5504
Electron transferring flavoproteins (ETFs) are soluble heterodimeric FAD-containing proteins that function primarily as soluble electron carriers between various flavoprotein dehydrogenases. ETF is positioned at a key metabolic branch point, responsible for transferring electrons from up to 10 primary dehydrogenases to the membrane-bound respiratory chain. Clinical mutations of ETF result in the often fatal disease glutaric aciduria type II. Structural and biophysical studies of ETF in complex with partner proteins have shown that ETF partitions the functions of partner binding and electron transfer between (a) a 'recognition loop', which acts as a static anchor at the ETF-partner interface, and (b) a highly mobile redox-active FAD domain. Together, this enables the FAD domain of ETF to sample a range of conformations, some compatible with fast interprotein electron transfer. This 'conformational sampling' enables ETF to recognize structurally distinct partners, whilst also maintaining a degree of specificity. Complex formation triggers mobility of the FAD domain, an 'induced disorder' mechanism contrasting with the more generally accepted models of protein-protein interaction by induced fit mechanisms. We discuss the implications of the highly dynamic nature of ETFs in biological interprotein electron transfer. ETF complexes point to mechanisms of electron transfer in which 'dynamics drive function', a feature that is probably widespread in biology given the modular assembly and flexible nature of biological electron transfer systems.  相似文献   

7.
Here we report the crystal structures of a ternary electron transfer complex showing extensive motion at the protein interface. This physiological complex comprises the iron-sulfur flavoprotein trimethylamine dehydrogenase and electron transferring flavoprotein (ETF) from Methylophilus methylotrophus. In addition, we report the crystal structure of free ETF. In the complex, electron density for the FAD domain of ETF is absent, indicating high mobility. Positions for the FAD domain are revealed by molecular dynamics simulation, consistent with crystal structures and kinetic data. A dual interaction of ETF with trimethylamine dehydrogenase provides for dynamical motion at the protein interface: one site acts as an anchor, thereby allowing the other site to sample a large range of interactions, some compatible with rapid electron transfer. This study establishes the role of conformational sampling in multi-domain redox systems, providing insight into electron transfer between ETFs and structurally distinct redox partners.  相似文献   

8.
The crystal structure of the human electron transferring flavoprotein (ETF).medium chain acyl-CoA dehydrogenase (MCAD) complex reveals a dual mode of protein-protein interaction, imparting both specificity and promiscuity in the interaction of ETF with a range of structurally distinct primary dehydrogenases. ETF partitions the functions of partner binding and electron transfer between (i) the recognition loop, which acts as a static anchor at the ETF.MCAD interface, and (ii) the highly mobile redox active FAD domain. Together, these enable the FAD domain of ETF to sample a range of conformations, some compatible with fast interprotein electron transfer. Disorders in amino acid or fatty acid catabolism can be attributed to mutations at the protein-protein interface. Crucially, complex formation triggers mobility of the FAD domain, an induced disorder that contrasts with general models of protein-protein interaction by induced fit mechanisms. The subsequent interfacial motion in the MCAD.ETF complex is the basis for the interaction of ETF with structurally diverse protein partners. Solution studies using ETF and MCAD with mutations at the protein-protein interface support this dynamic model and indicate ionic interactions between MCAD Glu(212) and ETF Arg alpha(249) are likely to transiently stabilize productive conformations of the FAD domain leading to enhanced electron transfer rates between both partners.  相似文献   

9.
The steady-state reaction of trimethylamine dehydrogenase (TMADH) with the artificial electron acceptor ferricenium hexafluorophosphate (Fc(+)) has been studied by stopped-flow spectroscopy, with particular reference to the mechanism of inhibition by trimethylamine (TMA). Previous studies have suggested that the presence of alternate redox cycles is responsible for the inhibition of activity seen in the high-substrate regime. Here, we demonstrate that partitioning between these redox cycles (termed the 0/2 and 1/3 cycles on the basis of the number of reducing equivalents present in the oxidized/reduced enzyme encountered in each cycle) is dependent on both TMA and electron acceptor concentration. The use of Fc(+) as electron acceptor has enabled a study of the major redox forms of TMADH present during steady-state turnover at different concentrations of substrate. Reduction of Fc(+) is found to occur via the 4Fe-4S center of TMADH and not the 6-S-cysteinyl flavin mononucleotide: the direction of electron flow is thus analogous to the route of electron transfer to the physiological electron acceptor, an electron-transferring flavoprotein (ETF). In steady-state reactions with Fc(+) as electron acceptor, partitioning between the 0/2 and 1/3 redox cycles is dependent on the concentration of the electron acceptor. In the high-concentration regime, inhibition is less pronounced, consistent with the predicted effects on the proposed branching kinetic scheme. Photodiode array analysis of the absorption spectrum of TMADH during steady-state turnover at high TMA concentrations reveals that one-electron reduced TMADH-possessing the anionic flavin semiquinone-is the predominant species. Conversely, at low concentrations of TMA, the enzyme is predominantly in the oxidized form during steady-state turnover. The data, together with evidence derived from enzyme-monitored turnover experiments performed at different concentrations of TMA, establish the operation of the branched kinetic scheme in steady-state reactions. With dimethylbutylamine (DMButA) as substrate, the partitioning between the 0/2 and 1/3 redox cycles is poised more toward the 0/2 cycle at all DMButA concentrations studied-an observation that is consistent with the inability of DMButA to act as an effective inhibitor of TMADH.  相似文献   

10.
Crystal structures of protein complexes with electron-transferring flavoprotein (ETF) have revealed a dual protein-protein interface with one region serving as anchor while the ETF FAD domain samples available space within the complex. We show that mutation of the conserved Glu-165beta in human ETF leads to drastically modulated rates of interprotein electron transfer with both medium chain acyl-CoA dehydrogenase and dimethylglycine dehydrogenase. The crystal structure of free E165betaA ETF is essentially identical to that of wild-type ETF, but the crystal structure of the E165betaA ETF.medium chain acyl-CoA dehydrogenase complex reveals clear electron density for the FAD domain in a position optimal for fast interprotein electron transfer. Based on our observations, we present a dynamic multistate model for conformational sampling that for the wild-type ETF. medium chain acyl-CoA dehydrogenase complex involves random motion between three distinct positions for the ETF FAD domain. ETF Glu-165beta plays a key role in stabilizing positions incompatible with fast interprotein electron transfer, thus ensuring high rates of complex dissociation.  相似文献   

11.
The most positive redox potential ever recorded for a flavin adenine dinucleotide (FAD) containing protein has been measured for an electron-transfer flavoprotein (ETF) synthesized by Methylophilus methylotrophus. This potential value, 0.196 V versus the standard hydrogen electrode (vs SHE), was measured at pH 7.0 for the one-electron reduction of fully oxidized ETF (ETFox) to the red anionic semiquinone form of ETF (ETF.-). Quantitative formation of ETF.- was observed. The first successful reduction of ETF from M. methylotrophus to its two-electron fully reduced form was also achieved. Although addition of the second electron to ETF.- was extremely slow, the potential value measured for this reduction was -0.197 V vs SHE, suggesting a kinetic rather than thermodynamic barrier to two-electron reduction. These data are believed to be consistent with the postulated catalytic function of ETF to accept one electron from the iron-sulfur cluster of trimethylamine dehydrogenase (TMADH). The second electron reduction appears to have no catalytic function. The very positive potential measured for this ETF and the wide separation of potentials for the two electron reduction steps show that this ETF is a unique and interesting flavoprotein. In addition, this work highlights that while ETFs exhibit similar structural and spectral properties, they display wide variations in redox properties.  相似文献   

12.
Studies on those enzymes and electron-transfer proteins involved in the catabolism of 'C1' substrates in methylotrophic bacteria have provided a wealth of information concerning the transfer of electrons and hydrogen by quantum tunnelling mechanisms. With regard to H-transfer, studies with MADH have provided the first example of ground-state tunnelling of hydrogen driven by the natural, thermally activated, low-frequency motions of the enzyme molecule. Subsequent studies with related enzymes (e.g. TMADH and bacterial sarcosine oxidase) and with thermophilic alcohol dehydrogenase suggest that vibrationally assisted tunnelling of hydrogen may be more widespread than originally assumed. Our studies of electron transfer in TMADH and ETF have established a role for large-scale protein dynamics in interprotein electron transfer, and have made a contribution to the ongoing debate concerning the mechanism of amine oxidation by enzymes. Moreover, our work has identified a hitherto unknown mechanism for the control of electron density in reduced flavin that influences the rate of electron transfer between redox centres within a protein molecule. Despite this progress, however, many questions still remain to be resolved. With the development of more sophisticated experimental techniques (and also continued financial support from the funding agencies!), the mechanistic uncertainties surrounding the quantum mechanical transfer of electrons and hydrogen in biological molecules should be transmogrified into the certainties one more readily acquaints with the classical world.  相似文献   

13.
Small angle x-ray solution scattering has been used to generate a low resolution, model-independent molecular envelope structure for electron-transferring flavoprotein (ETF) from Methylophilus methylotrophus (sp. W(3)A(1)). Analysis of both the oxidized and 1-electron-reduced (anionic flavin semiquinone) forms of the protein revealed that the solution structures of the protein are similar in both oxidation states. Comparison of the molecular envelope of ETF from the x-ray scattering data with previously determined structural models of the protein suggests that ETF samples a range of conformations in solution. These conformations correspond to a rotation of domain II with respect to domains I and III about two flexible "hinge" sequences that are unique to M. methylotrophus ETF. The x-ray scattering data are consistent with previous models concerning the interaction of M. methylotrophus ETF with its physiological redox partner, trimethylamine dehydrogenase. Our data reveal that an "induced fit" mechanism accounts for the assembly of the trimethylamine dehydrogenase-ETF electron transfer complex, consistent with spectroscopic and modeling studies of the assembly process.  相似文献   

14.
A pair of proteins involved in electron transfer, trimethylamine dehydrogenase (TMAD) and electron-transferring flavoprotein (ETF) from the bacterium Methylophilius methylotrophus, were studied in vitro. It was demonstrated by fluorescence spectroscopy that flavin adenine dinucleotide (FAD) can slowly and spontaneously be released from ETF. This release is followed by increase in flavin fluorescence. At a rather high ionic strength (0.1 M NaCl or 50 mM phosphate), the FAD release is dramatically activated by TMAD preparations that induce a local conformational transition in ETF. It was shown on the basis of the values of tryptophan polarization and lifetime with the use of the Levshin–Perrin equation that the sizes of protein particles were not changed after mixing of TMAD and ETF; i.e., these proteins by themselves did not form a stable complex with each other. The release of flavin from ETF did not occur in the presence of trimethylamine and formaldehyde in the protein mixture. In this case, a stable complex between the proteins is probably formed with the participation of formaldehyde. FAD is hydrolyzed to flavin mononucleotide (FMN) and AMP after a short-term incubation of ETF with ferricyanide. This fact explains the previous detection of AMP in ETF preparations by other researches. A fluorescence method for distinguishing FAD from FMN in solution with the use ethylene glycol is proposed.  相似文献   

15.
We have carried out an extensive in silico analysis on 18 disease associated missense mutations found in electron transfer flavoprotein (ETF), and found that mutations fall essentially in two groups, one in which mutations affect protein folding and assembly, and another one in which mutations impair catalytic activity and disrupt interactions with partner dehydrogenases. We have further experimentally analyzed three of these mutations, ETFβ-p.Cys42Arg, ETFβ-p.Asp128Asn and ETFβ–p.Arg191Cys, which have been found in homozygous form in patients and which typify different scenarios in respect to the clinical phenotypes. The ETFβ-p.Cys42Arg mutation, related to a severe form of multiple acyl-CoA dehydrogenase deficiency (MADD), affects directly the AMP binding site and intersubunit contacts and impairs correct protein folding. The two other variations, ETFβ-p.Asp128Asn and ETFβ–p.Arg191Cys, are both associated with mild MADD, but these mutations have a different impact on ETF. Although none affects the overall α/β fold topology as shown by far-UV CD, analysis of the purified proteins shows that both have substantially decreased enzymatic activity and conformational stability. Altogether, this study combines in silico analysis of mutations with experimental data and has allowed establishing structural hotspots within the ETF fold that are useful to provide a rationale for the prediction of effects of mutations in ETF.  相似文献   

16.
The midpoint reduction potentials of the FAD cofactor in wild-type Methylophilus methylotrophus (sp. W3A1) electron-transferring flavoprotein (ETF) and the alphaR237A mutant were determined by anaerobic redox titration. The FAD reduction potential of the oxidized-semiquinone couple in wild-type ETF (E'(1)) is +153 +/- 2 mV, indicating exceptional stabilization of the flavin anionic semiquinone species. Conversion to the dihydroquinone is incomplete (E'(2) < -250 mV), because of the presence of both kinetic and thermodynamic blocks on full reduction of the FAD. A structural model of ETF (Chohan, K. K., Scrutton, N. S., and Sutcliffe, M. J. (1998) Protein Pept. Lett. 5, 231-236) suggests that the guanidinium group of Arg-237, which is located over the si face of the flavin isoalloxazine ring, plays a key role in the exceptional stabilization of the anionic semiquinone in wild-type ETF. The major effect of exchanging alphaArg-237 for Ala in M. methylotrophus ETF is to engineer a remarkable approximately 200-mV destabilization of the flavin anionic semiquinone (E'(2) = -31 +/- 2 mV, and E'(1) = -43 +/- 2 mV). In addition, reduction to the FAD dihydroquinone in alphaR237A ETF is relatively facile, indicating that the kinetic block seen in wild-type ETF is substantially removed in the alphaR237A ETF. Thus, kinetic (as well as thermodynamic) considerations are important in populating the redox forms of the protein-bound flavin. Additionally, we show that electron transfer from trimethylamine dehydrogenase to alphaR237A ETF is severely compromised, because of impaired assembly of the electron transfer complex.  相似文献   

17.
In steroid hydroxylation system in adrenal cortex mitochondria, NADPH-adrenodoxin reductase (AR) and adrenodoxin (Adx) form a short electron-transport chain that transfers electrons from NADPH to cytochromes P-450 through FAD in AR and [2Fe-2S] cluster in Adx. The formation of [AR/Adx] complex is essential for the electron transfer mechanism in which previous studies suggested that AR tryptophan (Trp) residue(s) might be implicated. In this study, we modified AR Trps by N-bromosuccinimide (NBS) and studied AR binding to Adx by a resonant mirror biosensor. Chemical modification of tryptophans caused inhibition of electron transport. The modified protein (AR*) retained the native secondary structure but showed a lower affinity towards Adx with respect to AR. Activity measurements and fluorescence data indicated that one Trp residue of AR may be involved in the electron transferring activity of the protein. Computational analysis of AR and [AR/Adx] complex structures suggested that Trp193 and Trp420 are the residues with the highest probability to undergo NBS-modification. In particular, the modification of Trp420 hampers the correct reorientation of AR* molecule necessary to form the native [AR/Adx] complex that is catalytically essential for electron transfer from FAD in AR to [2Fe-2S] cluster in Adx. The data support an incorrect assembly of [AR*/Adx] complex as the cause of electron transport inhibition.  相似文献   

18.
The interaction between the "electron transferring flavoprotein" (ETF) and medium chain acyl-CoA dehydrogenase (MCAD) enables successful flavin to flavin electron transfer, crucial for the beta-oxidation of fatty acids. The exact biochemical determinants for ETF binding to MCAD are unknown. Here we show that binding of human ETF, to MCAD, was inhibited by 2,3-butanedione and diethylpyrocarbonate (DEPC) and reversed by incubation with free arginine and hydroxylamine respectively. Spectral analyses of native ETF vs modified ETF suggested that flavin binding was not affected and that the loss of ETF activity with MCAD involved modification of one ETF arginine residue and one ETF histidine residue respectively. MCAD and octanoyl-CoA protected ETF against inactivation by both 2,3-butanedione and DEPC indicating that the arginine and histidine residues are present in or around the MCAD binding site. Comparison of exposed arginine and histidine residues among different ETF species, however, indicates that arginine residues are highly conserved but that histidine residues are not. These results lead us to conclude that this single arginine residue is essential for the binding of ETF to MCAD, but that the single histidine residue, although involved, is not.  相似文献   

19.
Histamine dehydrogenase (HADH) isolated from Nocardioides simplex catalyzes the oxidative deamination of histamine to imidazole acetaldehyde. HADH is highly specific for histamine, and we are interested in understanding the recognition mode of histamine in its active site. We describe the first crystal structure of a recombinant form of HADH (HADH) to 2.7-Å resolution. HADH is a homodimer, where each 76-kDa subunit contains an iron-sulfur cluster ([4Fe-4S]2+) and a 6-S-cysteinyl flavin mononucleotide (6-S-Cys-FMN) as redox cofactors. The overall structure of HADH is very similar to that of trimethylamine dehydrogenase (TMADH) from Methylotrophus methylophilus (bacterium W3A1). However, some distinct differences between the structure of HADH and TMADH have been found. Tyr60, Trp264, and Trp355 provide the framework for the “aromatic bowl” that serves as a trimethylamine-binding site in TMADH is comprised of Gln65, Trp267, and Asp358, respectively, in HADH. The surface Tyr442 that is essential in transferring electrons to electron-transfer flavoprotein (ETF) in TMADH is not conserved in HADH. We use this structure to propose the binding mode for histamine in the active site of HADH through molecular modeling and to compare the interactions to those observed for other histamine-binding proteins whose structures are known.  相似文献   

20.
Molecular imprinting in monolayer surfaces   总被引:1,自引:0,他引:1  
A comprehensive report on molecularly imprinted monolayers (MIMs) is presented, but does not include bulk-polymer thin film coatings on surfaces, inorganic surface imprinting, polymer grafting and layer-by-layer methods. Due to difficulties in imprinting large molecules and obtaining fast binding responses with traditional network polymer materials, MIMs have been developed with the aim of enhancing mass-transfer of analytes in imprinted materials. Three approaches to MIM fabrication have been developed with respect to the formation of the pre-organized template-matrix complex. In the first approach, the molecular binding sites are formed in a monolayer on a glass or gold surface. The second approach uses a template-macromolecule complex to form binding sites in the solution phase that are immobilized onto a surface; and the third approach transfers an imprinted Langmuir film onto a gold surface. Mass transfer in these MIMs in most cases is on the order of minutes, and both small and large molecules (proteins) have been imprinted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号