首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hou J  Liu X  Zheng Y  Liu J 《Oligonucleotides》2007,17(4):433-443
Single nucleotide polymorphisms (SNPs) provide a great opportunity for the study of human disease and bacterial drug resistance. However, many SNP typing techniques require dedicated instruments and high cost. Here, we develop a novel method for SNP genotyping based on specific cleavage properties of RNase HII from Chlamydia pneumoniae (CpRNase HII), termed the "CpRNase HII-based method." CpRNase HII cleaves the DNA-rN(1)-DNA/DNA duplex at the 5'-side of the ribonucleotide (rN(1) = one ribonucleotide). Moreover, the cleavage efficiencies of the perfectly matched DNA-rN(1)-DNA/DNA duplexes are higher than those carrying a mismatched ribonucleotide. DNA-rN(1)-DNA fragments are modified with a fluorophore at the 5'-end and a quencher at the 3'-end to generate molecular beacons (MBs), which hybridize with single-stranded DNA (analyte) to be cleaved by CpRNase HII. As perfectly matched duplexes can be cleaved efficiently and mismatched duplexes cannot, CpRNase HII-catalyzed reactions can differentiate between one-nucleotide variations on the DNA-rN(1)-DNA/DNA duplexes. We have validated this method with nine SNPs of the HLA gene, which were successfully determined by endpoint measurements of fluorescence intensity. The new method is simple and effective, because the design of MBs is easy, and all steps of the genotyping consist of simple additions of solutions and incubation. This method will be suitable for large-scale genotyping.  相似文献   

2.
Hou J  Liu X  Wang J  Liu J  Duan T 《Analytical biochemistry》2007,371(2):162-166
This article describes a new assay for isothermal enhancement of fluorescence intensity. The assay is based on the cleavage of duplexes formed by the chimeric DNA-rN(1)-DNA molecular beacon (cMB) and target DNA with Chlamydia pneumoniae RNase HII (CpRNase HII). The loop sequence of the cMB, which was designed according to the target sequence, contains a single ribonucleotide. The combination of CpRNase HII cleavage and cMB (RHMB) permitted a 90-fold increase in fluorescence intensity change compared with the hybridization reaction in the presence of the same amount of target DNA. These results indicate that the RHMB assay can enhance the fluorescence signal in real-time monitoring of the target DNA.  相似文献   

3.
Lu Z  Liang R  Liu X  Hou J  Liu J 《Molecular microbiology》2012,83(5):1080-1093
Two ribonuclease Hs (RNase Hs) have been found in Chlamydophila pneumoniae, CpRNase HII and CpRNase HIII. This work is the first report that CpRNase HIII can efficiently cleave DNA-rN(1) -DNA/DNA (rN(1) , monoribonucleotide) in vitro in the presence of Mn(2+) , whereas the enzymatic activity of CpRNase HII on the same substrate was inhibited by Mn(2+) and dependent on Mg(2+) . However, the ability of both CpRNase Hs to cleave other alternative substrates (RNA/DNA hybrids and Okazaki-like substrates), was insensitive to the divalent ions changes, suggesting that high concentrations of Mn(2+) specifically repressed the ability of CpRNase HII to cleave DNA-rN(1) -DNA/DNA but activated this function in CpRNase HIII. Further in vivo experiments showed that the CpRNase HII complementation of Escherichia coli rnh(-) mutations in an Mg(2+) environment was suppressed by Mn(2+) . In contrast, Mn(2+) was indispensable for CpRNase HIII to complement the same mutations. Further, the cell growth inhibition and the genomic DNA sensitivity to alkali in the bacterial strain lacking RNase HII activity could be relieved by functional CpRNase HII or HIII with its compatible ion. Therefore, CpRNase HIII can execute cleavage activity on DNA-rN(1) -DNA/DNA under a Mn(2+) -rich environment and may function as a substitute for CpRNase HII under special physiological states.  相似文献   

4.
We recently provided the first report that RNase HIII can cleave a DNA-rN(1)-DNA/DNA substrate (rN(1), one ribonucleotide) in vitro. In the present study, mutagenesis analyses and molecular dynamics (MD) simulations were performed on RNase HIII from Chlamydophila pneumoniae AR39 (CpRNase HIII). Our results elucidate the mechanism of ribonucleotide recognition employed by CpRNase HIII, indicating that the G95/K96/G97 motif of CpRNase HIII represents the main surface interacting with single ribonucleotides, in a manner similar to that of the GR(K)G motif of RNase HIIs. However, CpRNase HIII lacks the specific tyrosine required for RNase HII to recognize single ribonucleotides in double-stranded DNA (dsDNA). Interestingly, MD shows that Ser94 of CpRNase HIII forms a stable hydrogen bond with the deoxyribonucleotide at the (5')RNA-DNA(3') junction, moving this nucleotide away from the chimeric ribonucleotide. This movement appears to deform the nucleic acid backbone at the RNA-DNA junction and allows the ribonucleotide to interact with the GKG motif. Based on the inferences drawn from MD simulations, biochemical results indicated that Ser94 was necessary for catalytic activity on the DNA-rN(1)-DNA/DNA substrate; mutant S94V could bind this substrate but exhibited no cleavage. Mismatches opposite the single ribonucleotide misincorporated in dsDNA inhibited cleavage by CpRNase HIII to varying degrees but did not interfere with CpRNase/substrate binding. Further MD results implied that mismatches impair the interaction between Ser94 and the deoxyribonucleotide at the RNA-DNA junction. Consequently, recognition of the misincorporated ribonucleotide was disturbed. Our results may help elucidate the distinct substrate-recognition properties of different RNase Hs.  相似文献   

5.
We recently provided the first report that RNase HIII can cleave a DNA-rN1-DNA/DNA substrate (rN1, one ribonucleotide) in vitro. In the present study, mutagenesis analyses and molecular dynamics (MD) simulations were performed on RNase HIII from Chlamydophila pneumoniae AR39 (CpRNase HIII). Our results elucidate the mechanism of ribonucleotide recognition employed by CpRNase HIII, indicating that the G95/K96/G97 motif of CpRNase HIII represents the main surface interacting with single ribonucleotides, in a manner similar to that of the GR(K)G motif of RNase HIIs. However, CpRNase HIII lacks the specific tyrosine required for RNase HII to recognize single ribonucleotides in double-stranded DNA (dsDNA). Interestingly, MD shows that Ser94 of CpRNase HIII forms a stable hydrogen bond with the deoxyribonucleotide at the (5')RNA–DNA(3') junction, moving this nucleotide away from the chimeric ribonucleotide. This movement appears to deform the nucleic acid backbone at the RNA–DNA junction and allows the ribonucleotide to interact with the GKG motif. Based on the inferences drawn from MD simulations, biochemical results indicated that Ser94 was necessary for catalytic activity on the DNA-rN1-DNA/DNA substrate; mutant S94V could bind this substrate but exhibited no cleavage. Mismatches opposite the single ribonucleotide misincorporated in dsDNA inhibited cleavage by CpRNase HIII to varying degrees but did not interfere with CpRNase/substrate binding. Further MD results implied that mismatches impair the interaction between Ser94 and the deoxyribonucleotide at the RNA–DNA junction. Consequently, recognition of the misincorporated ribonucleotide was disturbed. Our results may help elucidate the distinct substrate-recognition properties of different RNase Hs.  相似文献   

6.
We have analyzed the cleavage specificities of various prokaryotic Type 2 ribonucleases H (RNases H) on chimeric DNA-RNA-DNA/DNA substrates containing one to four ribonucleotides. RNases HII from Bacillus subtilis and Thermococcus kodakaraensis cleaved all of these substrates to produce a DNA segment with a 5'-monoribonucleotide. Consequently, these enzymes cleaved even the chimeric substrate containing a single ribonucleotide at the DNA-RNA junction (5'-side of the single ribonucleotide). In contrast, Escherichia coli RNase HI and B. subtilis RNase HIII did not cleave the chimeric substrate containing a single ribonucleotide. These results suggest that bacterial and archaeal RNases HII are involved in excision of a single ribonucleotide misincorporated into DNA.  相似文献   

7.
Ohtani N  Tomita M  Itaya M 《The FEBS journal》2008,275(21):5444-5455
Junction ribonuclease (JRNase) recognizes the transition from RNA to DNA of an RNA-DNA/DNA hybrid, such as an Okazaki fragment, and cleaves it, leaving a mono-ribonucleotide at the 5' terminus of the RNA-DNA junction. Although this JRNase activity was originally reported in calf RNase H2, some other RNases H have recently been suggested to possess it. This paper shows that these enzymes can also cleave an RNA-DNA/RNA heteroduplex in a manner similar to the RNA-DNA/DNA substrate. The cleavage site of the RNA-DNA/RNA substrate corresponds to the RNA/RNA duplex region, indicating that the cleavage activity cannot be categorized as RNase H activity, which specifically cleaves an RNA strand of an RNA/DNA hybrid. Examination of several RNases H with respect to JRNase activity suggested that the activity is only found in RNase HII orthologs. Therefore, RNases HIII, which are RNase HII paralogs, are distinguished from RNases HII by the absence of JRNase activity. Whether a substrate can be targeted by JRNase activity would depend only on whether or not an RNA-DNA junction consisting of one ribonucleotide and one deoxyribonucleotide is included in the duplex. In addition, although the activity has been reported not to occur on completely single-stranded RNA-DNA, it can recognize a single-stranded RNA-DNA junction if a double-stranded region is located adjacent to the junction.  相似文献   

8.
Aeropyrum pernix contains one homolog of ribonuclease H (RNase H), A. pernix RNase HII (Ape-RNase HII). Activity characterization showed that Ape-RNase HII exhibited the highest activity in the presence of 5 mM Mn(2+), 1 mM Co(2+), or 10 mM Mg(2+), respectively; however, its cleavage efficiencies at different cleavage sites for Mn(2+) and Mg(2+) were different. Ape-RNase HII cleaved 12-bp RNA/DNA substrates at multiple sites and the optimum pH value was 11.0. Moreover, 16-bp DNA-r4-DNA/DNA and 13-bp DNA-r1-DNA/DNA chimeric substrates were cleaved at DNA-RNA junction. Ape-RNase HII was thermostable and the stabilization was enhanced with increased salt concentration. This work is believed to be the first in vitro functional study of Ape-RNase HII and the results should contribute to the analysis of RNase H of other archaeal species.  相似文献   

9.
10.
Single nucleotide polymorphisms (SNPs) are the most abundant form of genetic variation. SNPs are important markers that link sequence variations to phenotypic changes. Because of the importance of SNPs in the life and medical sciences, a great deal of effort has been devoted to developing accurate, rapid, and cost-effective technologies for SNP analysis. In this article, we describe a novel method for SNP genotyping based on differential fluorescence emission due to cleavage by Thermus thermophilus RNase HII (TthRNase HII) of DNA heteroduplexes containing an SNP site-specific chimeric DNA-rN1-DNA molecular beacon (cMB). We constructed a loop sequence for a cMB that contains a single SNP-specific ribonucleotide at the central site. When the cMB probe is hybridized to a target double-stranded DNA (dsDNA), a perfect match of the cMB/DNA duplex permits efficient cleavage with TthRNase HII, whereas a mismatch in the duplex due to an SNP greatly reduces efficiency. Cleavage efficiency is measured by the incremental difference of fluorescence emission of the beacon. We show that the genotypes of 10 individuals at 12 SNP sites across a series of human leukocyte antigen (HLA) can be determined correctly with respect to conventional DNA sequencing. This novel TthRNase HII-based method offers a platform for easy and accurate SNP analysis.  相似文献   

11.
12.
Solution structures of DNA/RNA hybrid duplexes, d(GCGCA*AA*ACGCG): r(cgcguuuugcg)d(C) (designated PP57), containing two C8-propynyl 2′-deoxyadenosines (A*) and unmodified hybrid (designated U4A4) are solved. The C8-propynyl groups on 2′-deoxyadenosine perturb the local structure of the hybrid duplex, but overall the structure is similar to that of canonical DNA/RNA hybrid duplex except that Hoogsteen hydrogen bondings between A* and U result in lower thermal stability. RNase H is known to cleave RNA only in DNA/RNA hybrid duplexes. Minor groove widths of hybrid duplexes, sugar puckerings of DNA are reported to be responsible for RNase H mediated cleavage, but structural requirements for RNase H mediated cleavage still remain elusive. Despite the presence of bulky propynyl groups of PP57 in the minor groove and greater flexibility, the PP57 is an RNase H substrate. To provide an insight on the interactions between RNase H and substrates we have modeled Bacillus halodurans RNase H-PP57 complex, our NMR structure and modeling study suggest that the residue Gly(15) and Asn(16) of the loop residues between first β sheet and second β sheet of RNase HI of Escherichia coli might participate in substrate binding.  相似文献   

13.
14.
The genome of an extremely thermophilic bacterium, Thermus thermophilus HB8, contains a single ORF (open reading frame) encoding an RNase-HII-like sequence. Despite the presence of significant amino acid sequence identities with RNase (ribonuclease) HII enzymes, the ORF TTHA0198 could not suppress the temperature-sensitive growth defect of an RNase-H-deficient Escherichia coli mutant and the purified recombinant protein could not cleave an RNA strand of an RNA/DNA heteroduplex, suggesting that the TTHA0198 exhibited no RNase H activity both in vivo and in vitro. When oligomeric RNA-DNA/DNAs were used as a mimic substrate for Okazaki fragments, however, the protein cleaved them only at the 5' side of the last ribonucleotide at the RNA-DNA junction. In fact, the TTHA0198 protein prefers the RNA-DNA junction to the RNA/DNA hybrid. We have referred to this activity as JRNase (junction RNase) activity, which recognizes an RNA-DNA junction of the RNA-DNA/DNA heteroduplex and cleaves it leaving a mono-ribonucleotide at the 5' terminus of the RNA-DNA junction. E. coli and Deinococcus radiodurans RNases HII also cleaved the RNA-DNA/DNA substrates at the same site with a different metal-ion preference from that for RNase H activity, implying that the enzymes have JRNase activity as well as RNase H activity. The specialization in the JRNase activity of the RNase HII orthologue from T. thermophilus HB8 (Tth-JRNase) suggests that the JRNase activity of RNase HII enzymes might be independent of the RNase H activity.  相似文献   

15.
Ribonuclease H2 is the major nuclear enzyme degrading cellular RNA/DNA hybrids in eukaryotes and the sole nuclease known to be able to hydrolyze ribonucleotides misincorporated during genomic replication. Mutation in RNASEH2 causes Aicardi-Goutières syndrome, an auto-inflammatory disorder that may arise from nucleic acid byproducts generated during DNA replication. Here, we report the crystal structures of Archaeoglobus fulgidus RNase HII in complex with PCNA, and human PCNA bound to a C-terminal peptide of RNASEH2B. In the archaeal structure, three binding modes are observed as the enzyme rotates about a flexible hinge while anchored to PCNA by its PIP-box motif. PCNA binding promotes RNase HII activity in a hinge-dependent manner. It enhances both cleavage of ribonucleotides misincorporated in DNA duplexes, and the comprehensive hydrolysis of RNA primers formed during Okazaki fragment maturation. In addition, PCNA imposes strand specificity on enzyme function, and by localizing RNase H2 and not RNase H1 to nuclear replication foci in vivo it ensures that RNase H2 is the dominant RNase H activity during nuclear replication. Our findings provide insights into how type 2 RNase H activity is directed during genome replication and repair, and suggest a mechanism by which RNase H2 may suppress generation of immunostimulatory nucleic acids.  相似文献   

16.
A reconstitution system that recapitulates the processing of Okazaki-primer RNA was established by the heat-stable recombinant enzymes RNase HII and FEN-1 (termed Pf-RNase HII and Pf-FEN-1, respectively) prepared from a hyperthermophilic archaeon, Pyrococcus furiosus. A 35-mer RNA-DNA/DNA hybrid substrate mimicking an Okazaki fragment was used to investigate the properties of the processing reaction in vitro at 50 degrees C. Pf-RNase HII endonucleolytically cleaves the RNA primer region, but does not cut the junction between RNA and DNA. Removal of the RNA of the RNA-DNA junction was brought about by Pf-FEN-1 after Pf-RNase HII digestion. In the presence of 0.25-5mM MnCl(2), Pf-FEN-1 alone weakly cleaved the junction. The addition of Pf-RNase HII to the reaction mixture increased removal efficiency and optimal Pf-FEN-1 activity was achieved at an equal amount of the two enzymes. These results indicate that there are at least two steps in the degradation of primer RNA requiring a step-specific enzyme. It is likely that Pf-RNase HII and Pf-FEN-1 cooperatively process Okazaki fragment during lagging-strand DNA replication.  相似文献   

17.
We have characterized cloned His-tag human RNase H1. The activity of the enzyme exhibited a bell-shaped response to divalent cations and pH. The optimum conditions for catalysis consisted of 1 mM Mg(2+) and pH 7-8. In the presence of Mg(2+), Mn(2+) was inhibitory. Human RNase H1 shares many enzymatic properties with Escherichia coli RNase H1. The human enzyme cleaves RNA in a DNA-RNA duplex resulting in products with 5'-phosphate and 3'-hydroxy termini, can cleave overhanging single strand RNA adjacent to a DNA-RNA duplex, and is unable to cleave substrates in which either the RNA or DNA strand has 2' modifications at the cleavage site. Human RNase H1 binds selectively to "A-form"-type duplexes with approximately 10-20-fold greater affinity than that observed for E. coli RNase H1. The human enzyme displays a greater initial rate of cleavage of a heteroduplex-containing RNA-phosphorothioate DNA than an RNA-DNA duplex. Unlike the E. coli enzyme, human RNase H1 displays a strong positional preference for cleavage, i.e. it cleaves between 8 and 12 nucleotides from the 5'-RNA-3'-DNA terminus of the duplex. Within the preferred cleavage site, the enzyme displays modest sequence preference with GU being a preferred dinucleotide. The enzyme is inhibited by single-strand phosphorothioate oligonucleotides and displays no evidence of processivity. The minimum RNA-DNA duplex length that supports cleavage is 6 base pairs, and the minimum RNA-DNA "gap size" that supports cleavage is 5 base pairs.  相似文献   

18.
DNA replication and cellular survival requires efficient removal of RNA primers during lagging strand DNA synthesis. In eukaryotes, RNA primer removal is initiated by type 2 RNase H, which specifically cleaves the RNA portion of an RNA-DNA/DNA hybrid duplex. This conserved type 2 RNase H family of replicative enzymes shares little sequence similarity with the well-characterized prokaryotic type 1 RNase H enzymes, yet both possess similar enzymatic properties. Crystal structures and structure-based mutational analysis of RNase HII from Archaeoglobus fulgidus, both with and without a bound metal ion, identify the active site for type 2 RNase H enzymes that provides the general nuclease activity necessary for catalysis. The two-domain architecture of type 2 RNase H creates a positively charged binding groove and links the unique C-terminal helix-loop-helix cap domain to the active site catalytic domain. This architectural arrangement apparently couples directional A-form duplex binding, by a hydrogen-bonding Arg-Lys phosphate ruler motif, to substrate-discrimination, by a tyrosine finger motif, thereby providing substrate-specific catalytic activity. Combined kinetic and mutational analyses of structurally implicated substrate binding residues validate this binding mode. These structural and mutational results together suggest a molecular mechanism for type 2 RNase H enzymes for the specific recognition and cleavage of RNA in the RNA-DNA junction within hybrid duplexes, which reconciles the broad substrate binding affinity with the catalytic specificity observed in biochemical assays. In combination with a recent independent structural analysis, these results furthermore identify testable molecular hypotheses for the activity and function of the type 2 RNase H family of enzymes, including structural complementarity, substrate-mediated conformational changes and coordination with subsequent FEN-1 activity.  相似文献   

19.
Solution structures of DNA/RNA hybrid duplexes, d(GCGCA*AA*ACGCG): r(cgcguuuugcg)d(C) (designated PP57), containing two C8-propynyl 2'-deoxyadenosines (A*) and unmodified hybrid (designated U4A4) are solved. The C8-propynyl groups on 2'-deoxyadenosine perturb the local structure of the hybrid duplex, but overall the structure is similar to that of canonical DNA/RNA hybrid duplex except that Hoogsteen hydrogen bondings between A* and U result in lower thermal stability. RNase H is known to cleave RNA only in DNA/RNA hybrid duplexes. Minor groove widths of hybrid duplexes, sugar puckerings of DNA are reported to be responsible for RNase H mediated cleavage, but structural requirements for RNase H mediated cleavage still remain elusive. Despite the presence of bulky propynyl groups of PP57 in the minor groove and greater flexibility, the PP57 is an RNase H substrate. To provide an insight on the interactions between RNase H and substrates we have modeled Bacillus halodurans RNase H-PP57 complex, our NMR structure and modeling study suggest that the residue Gly(15) and Asn(16) of the loop residues between first beta sheet and second beta sheet of RNase HI of Escherichia coli might participate in substrate binding.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号