首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evidence of direct interaction between actin and membrane lipids   总被引:3,自引:0,他引:3  
Actin is a protein component of the cystoskeleton and is involved in cell motility. It is believed generally that actin filaments are attached to the cell membrane through an interaction with membranous actin-binding proteins. By using an in vitro system composed of liposomes and actin, we have shown that actin may also interact directly with the phospholipids of the membrane. Actin deposited at the surface of the liposome is organized in two regular patterns: a paracrystalline sheet of parallel filaments in register, or a netlike organization. These interactions of actin with membrane lipids occur only in the presence of millimolar concentrations of Mg2+. These results suggest that the interaction of the cytoskeleton with the membrane involves, at least in part, a direct association of actin with phospholipids.  相似文献   

2.
Ubiquitylation of receptor tyrosine kinases plays a critical role in regulating the trafficking and lysosomal degradation of these important signaling molecules. We identified the multidomain scaffolding protein intersectin 1 (ITSN1) as an important regulator of this process (N. P. Martin et al., Mol. Pharmacol. 70:1463-1653, 2006) ITSN1 stimulates ubiquitylation of the epidermal growth factor receptor (EGFR) through enhancing the activity of the Cbl E3 ubiquitin ligase. However, the precise mechanism through which ITSN1 enhances Cbl activity was unclear. In this study, we found that ITSN1 enhances Cbl activity through disrupting the interaction of Cbl with the Sprouty2 (Spry2) inhibitory protein. We demonstrate that ITSN1 binds Pro-rich regions in both Cbl and Spry2 and that interaction of ITSN1 with Spry2 disrupts Spry2-Cbl interaction, resulting in enhanced ubiquitylation of the EGFR. Disruption of ITSN1 binding to Spry2 through point mutation of the Pro-rich ITSN1 binding site in Spry2 results in enhanced Cbl-Spry2 interaction and inhibition of receptor ubiquitylation. This study demonstrates that ITSN1 enhances Cbl activity by modulating the interaction of Cbl with Spry2. In addition, our results reveal a new level of complexity in the regulation of Cbl through the interaction with ITSN1 and Spry2.  相似文献   

3.
《The Journal of cell biology》1989,109(6):2833-2840
We have investigated the association of actin with membranes isolated from rat liver. A plasma membrane-enriched fraction prepared by homogenization in a low salt/CaCl2 buffer was found to contain a substantial amount of residual actin which could be removed by treatment with 1 M Na2CO3/NaHCO3, pH 10.5. Using a sedimentation binding assay that uses gelsolin to shorten actin filaments and render membrane binding saturable (Schwartz, M. A., and E. J. Luna. 1986. J. Cell Biol. 102:2067-2075), we found that membranes stripped of endogenous actin bound 125I-actin in a specific and saturable manner. Scatchard plots of binding data were linear, indicating a single class of binding sites with a Kd of 1.6 microns; 66 micrograms actin bound/mg membrane protein at saturation. Binding of actin to liver cell membranes was negligible with unstripped membranes, was competed by excess unlabeled actin, and was greatly reduced by preheating or proteolytic digestion of the membranes. Kinetic measurements showed that binding had an initial lag phase and was strongly temperature dependent. The binding of actin to liver cell membranes was also found to be competitively inhibited by ATP and other nucleotides, including the nonhydrolyzable analogue AMP-PNP. We conclude that we have reconstituted an interaction between actin and integral membrane proteins from the rat liver. This interaction exhibits a number of distinctive features which have not been observed in other actin- membrane systems.  相似文献   

4.
Previous studies have demonstrated that actin filament organization controls the cystic fibrosis transmembrane conductance regulator (CFTR) ion channel function. The precise molecular nature of the interaction between actin and CFTR, however, remains largely unknown. In this report, interactions between actin and purified human epithelial CFTR were directly assessed by reconstitution of the channel protein in a lipid bilayer system and by atomic force microscopy (AFM). CFTR-containing liposomes in solution were deposited on freshly cleaved mica and imaging was performed in tapping-mode AFM. CFTR function was also determined in identical preparations. Images of single CFTR molecules were obtained, and addition of monomeric actin below its critical concentration showed the formation of actin filaments associated with CFTR. The data indicate a direct interaction between actin and CFTR exists, which may explain the regulatory role of the cytoskeleton in ion channel function. This was confirmed by functional studies of CFTR single-channel currents, which were regulated by addition of various conformations of actin. The present study indicates that CFTR may directly bind actin and that this interaction helps affect the functional properties of this channel protein.  相似文献   

5.
Fractionation by anionic-exchange chromatography of an oxygen-evolving photosystem II complex solubilized with 10 mM dodecyl maltoside shows the existence of a sovra-molecular complex between the internal chlorophyll a antenna CP47 and the chlorophyll a/b minor antenna CP29. The chromatographic result is confirmed by a cross-linking experiment which brings about a binary conjugate formed by CP47 and CP29. The sovra-molecular complex between the two chlorophyll protein-complexes has a low temperature fluorescence emission red shifted with respect to the two isolated antenna components. A possible two arms antenna topology for photosystem II is suggested.  相似文献   

6.
Bradyrhizobium japonicum transports oligopeptides and the heme precursor delta-aminolevulinic acid (ALA) by a common mechanism. Two Tn5-induced mutants disrupted in the lysC and ptsP genes were identified based on the inability to use prolyl-glycyl-glycine as a proline source and were defective in [(14)C]ALA uptake activity. lysC and ptsP were shown to be proximal genes in the B. japonicum genome. However, RNase protection and in trans complementation analysis showed that lysC and ptsP are transcribed separately, and that both genes are involved in oligopeptide transport. Aspartokinase, encoded by lysC, catalyzes the phosphorylation of aspartate for synthesis of three amino acids, but the lysC strain is not an amino acid auxotroph. The ptsP gene encodes Enzyme I(Ntr) (EI(Ntr)), a paralogue of Enzyme I of the phosphoenolpyruvate:sugar phosphotransferase (PTS) system. In vitro pull-down experiments indicated that purified recombinant aspartokinase and EI(Ntr) interact directly with each other. Expression of ptsP in trans from a multicopy plasmid complemented the lysC mutant, suggesting that aspartokinase normally affects Enzyme I(Ntr) in a manner that can be compensated for by increasing the copy number of the ptsP gene. ATP was not a phosphoryl donor to purified EI(Ntr), but it was phosphorylated by ATP in the presence of cell extracts. This phosphorylation was inhibited in the presence of aspartokinase. The findings demonstrate a role for a PTS protein in the transport of a non-sugar solute and suggest an unusual regulatory function for aspartokinase in regulating the phosphorylation state of EI(Ntr).  相似文献   

7.
The effects of internal tetrabutylammonium (TBA) and tetrapentylammonium (TPeA) were studied on human cardiac sodium channels (hH1) expressed in a mammalian tsA201 cell line. Outward currents were measured at positive voltages using a reversed Na gradient. TBA and TPeA cause a concentration-dependent increase in the apparent rate of macroscopic Na current inactivation in response to step depolarizations. At TPeA concentrations < 50 microM the current decay is well fit by a single exponential over a wide voltage range. At higher concentrations a second exponential component is observed, with the fast component being dominant. The blocking and unblocking rate constants of TPeA were estimated from these data, using a three-state kinetic model, and were found to be voltage dependent. The apparent inhibition constant at 0 mV is 9.8 microM, and the blocking site is located 41 +/- 3% of the way into the membrane field from the cytoplasmic side of the channel. Raising the external Na concentration from 10 to 100 mM reduces the TPeA-modified inactivation rates, consistent with a mechanism in which external Na ions displace TPeA from its binding site within the pore. TBA (500 microM) and TPeA (20 microM) induce a use-dependent block of Na channels characterized by a progressive, reversible, decrease in current amplitude in response to trains of depolarizing pulses delivered at 1-s intervals. Tetrapropylammonium (TPrA), a related symmetrical tetra-alkylammonium (TAA), blocks Na currents but does not alter inactivation (O'Leary, M. E., and R. Horn. 1994. Journal of General Physiology. 104:507-522.) or show use dependence. Internal TPrA antagonizes both the TPeA-induced increase in the apparent inactivation rate and the use dependence, suggesting that all TAA compounds share a common binding site in the pore. A channel blocked by TBA or TPeA inactivates at nearly the normal rate, but recovers slowly from inactivation, suggesting that TBA or TPeA in the blocking site can interact directly with a cytoplasmic inactivation gate.  相似文献   

8.
Evidence for interaction between smooth muscle tropomyosin and caldesmon   总被引:4,自引:0,他引:4  
P Graceffa 《FEBS letters》1987,218(1):139-142
The viscosity of chicken gizzard smooth muscle tropomyosin is enhanced 4.7-fold in the absence of salt and 1.43-fold in 0.1 M salt by the presence of stoichiometric amounts of gizzard caldesmon, indicating that the two proteins interact under these conditions. Since the thin filament regulation of smooth muscle contraction by caldesmon requires the presence of tropomyosin, these results suggest that the direct interaction between tropomyosin and caldesmon on the thin filament plays a role in this regulation.  相似文献   

9.
The flavoenzyme thioredoxin reductase from Escherichia coli contains an oxidation-reduction active disulfide made up of Cys135 and Cys138. Mutations changing each Cys residue to a Ser residue have been effected (Prongay, A. J., engelke, D. R., and Williams, C. H., Jr. (1989) J. Biol. Chem. 264, 2656-2664). The FAD prosthetic group of each altered thioredoxin reductase has been replaced with 1-deaza-FAD (a flavin analog with carbon substituted for nitrogen at position 1), 4-thio-FAD (a flavin analog with sulfur substituted for oxygen at position 4), and 6-thiocyanato-FAD. 1-Deaza-FAD-TRR(Cys135,Ser138) has absorbance and fluorescence spectral properties similar to the oxidized form of wild type apothioredoxin reductase reconstituted with 1-deaza-FAD. The absorbance spectrum of 1-deaza-FAD-TRR(Ser135,Cys138) is similar to the spectrum of the two-electron reduced form of wild type apothioredoxin reductase reconstituted with 1-deaza-FAD, indicating that it is a mixture of two species (O'Donnell, M. E., and Williams, C. H., Jr. (1984) J. Biol. Chem. 259, 2243-2251). The spectrum of one of these species of 1-deaza-FAD-TRR(Ser135,Cys138) resembles the spectrum of oxidized 1-deaza-FAD bound to wild type apothioredoxin reductase. The other species has an absorbance spectrum with a single peak at 400 nm (epsilon 400 = 11,100 M-1 cm-1) and resembles the spectrum of a thiolate adduct at the C4a position of the 1-deaza-FAD. The equilibrium between these species is pH-dependent, with a maximum of 50% C4a-adduct formation at low pH, and is linked to pK alpha values at 8.2 and 9.3. The absorbance spectrum of 4-thio-FAD-TRR(Cys135,Ser138) resembles the spectrum of the unbound 4-thio-FAD, whereas 4-thio-FAD-TRR(Ser135,Cys138) has a spectrum indicative of a mixture of 4-thio-FAD and FAD, suggesting a reaction between the 4-position of the flavin and Cys138. The binding of 6-thiocyanato-FAD to the apoprotein of the mutated enzymes showed no evidence for a reaction between the thiols and the group at the 6-position of the flavin.  相似文献   

10.
Maspin (mammary serine protease inhibitor) was originally identified as a tumor suppressor protein in human breast epithelial cells and is a member of the serine proteases inhibitor (serpin) superfamily. It inhibits tumor cell motility and angiogenesis, and although predominantly cytoplasmic, it is also localized to the cell surface. In this study we have investigated the use of the yeast two-hybrid interaction trap to identify novel maspin targets. A target human fibroblast cDNA library was screened, and the alpha-2 chain of type I collagen was identified as a potential interactant. Binding studies with isolated proteins showed interaction between recombinant maspin and types I and III collagen but not other collagen subtypes, a profile strikingly similar to mouse pigment epithelium-derived factor (caspin), which is similarly down-regulated in murine adenocarcinoma tumors and is a potent inhibitor of angiogenesis. Kinetic analysis using an IAsys resonant mirror biosensor determined the dissociation constant of maspin for collagen type I to be 0.63 microm. Further two-hybrid interactions with maspin truncation constructs suggest that collagen binding is localized to amino acids 84-112 of maspin, which aligns with the collagen-binding region of colligin. A direct interaction between exogenous or cell surface maspin and extracellular matrix collagen may contribute to a cell adhesion role in the prevention of tumor cell migration and angiogenesis.  相似文献   

11.
12.
The ectoenzyme 5'-nucleotidase purified from chicken gizzard is shown to specifically interact with laminin and fibronectin, components of the extracellular matrix, by a number of different techniques: (i) cosedimentation with laminin by sucrose gradient centrifugation; (ii) affinity adsorption to both laminin- and fibronectin-Sepharose 4-B; (iii) specific binding to both laminin and fibronectin dotted onto cellulose filters; and (iv) monoclonal antibodies against 5'-nucleotidase are shown to interfere with the interaction of 5'-nucleotidase with laminin and fibronectin. For all the techniques employed, the interactions were found to be specific, since 5'-nucleotidase did not bind to unrelated proteins such as bovine serum albumin or to monomeric actin. The interaction of purified chicken gizzard 5'-nucleotidase could be demonstrated for the hydrophobic enzyme solubilized in detergent and after its reconstitution into artificial phospholipid vesicles. The affinity adsorption experiments indicate that reconstituted enzyme binds more strongly to both laminin and fibronectin. The 5'-nucleotidase employed in this study is anchored to the plasma membrane by a glycan-phosphatidylinositol linker. After treatment with phosphatidylinositol-specific phospholipase C, the enzyme is transformed into a hydrophilic form, for which interactions with laminin and fibronectin could also be demonstrated by the dot-blot technique. Thus controlled cleavage of the phosphatidylinositol linker of 5'-nucleotidase could enable cells to rapidly alter their adhesiveness to certain components of the extracellular matrix.  相似文献   

13.
The ubiquitin ligase Cbl mediates ubiquitination of activated receptor tyrosine kinases (RTKs) and interacts with endocytic scaffold complexes, including CIN85/endophilins, to facilitate RTK endocytosis and degradation. Several mechanisms regulate the functions of Cbl to ensure the fine-tuning of RTK signalling and cellular homeostasis. One regulatory mechanism involves the binding of Cbl to Sprouty2, which sequesters Cbl away from activated epidermal growth factor receptors (EGFRs). Here, we show that Sprouty2 associates with CIN85 and acts at the interface between Cbl and CIN85 to inhibit EGFR downregulation. The CIN85 SH3 domains A and C bind specifically to proline-arginine motifs present in Sprouty2. Intact association between Sprouty2, Cbl and CIN85 is required for inhibition of EGFR endocytosis as well as EGF-induced differentiation of PC12 cells. Moreover, Sprouty4, which lacks CIN85-binding sites, does not inhibit EGFR downregulation, providing a molecular explanation for functional differences between Sprouty isoforms. Sprouty2 therefore acts as an inducible inhibitor of EGFR downregulation by targeting both the Cbl and CIN85 pathways.  相似文献   

14.
15.
An 8-thionocephalosporin was shown to be a substrate of the beta-lactamase II of Bacillus cereus, a zinc metalloenzyme. Although it is a poorer substrate, as judged by the Kcat./Km parameter, than the corresponding 8-oxocephalosporin, the discrimination against sulphur decreased when the bivalent metal ion in the enzyme active site was varied in the order Mn2+ (the manganese enzyme catalysed the hydrolysis of the oxo compound but not that of the thiono compound), Zn2+, Co2+ and Cd2+. This result is taken as evidence for kinetically significant direct contact between the active-site metal ion of beta-lactamase II and the beta-lactam carbonyl heteroatom. No evidence was obtained, however, for accumulation of an intermediate with such co-ordination present.  相似文献   

16.
The interaction of the Rev protein from human immunodeficiency virus type 1 (HIV-1) with the nucleocytoplasmic mRNA-transport system was investigated. In gel-shift assay, the recombinant Rev protein used in this study selectively bound to the Rev-responsive element (RRE) region of HIV-1 env-specific RNA. Nitrocellulose-filter-binding studies and Northern/Western-blotting experiments revealed an association constant of approximately 1 x 10(10) M-1. The Rev protein also strongly bound to isolated nuclear envelopes from H9 cells, containing the poly(A)-binding site (= mRNA carrier) and the nucleoside triphosphatase (= NTPase), which are thought to be involved in nuclear export of poly(A)-rich mRNA. Binding of 125I-Rev to a 110-kDa nuclear-envelope protein, the putative mRNA carrier, could be demonstrated in in vitro experiments. Both efflux of cellular poly(A)-rich RNA, such as actin RNA [but not efflux of poly(A)-free RNA] from isolated nuclei and the nuclear-envelope NTPase activity were strongly inhibited by Rev protein. On the other hand, transport of viral env RNA, containing the Rev-responsive element, was increased in the presence of Rev. Studying the release of RNA from closed nuclear-envelope vesicles containing entrapped RNA, the action of Rev was found to occur at the level of translocation of RNA through the nuclear pore. Evidence is presented that Rev down-regulates the NTPase-driven transport of mRNA lacking the RRE, most likely via binding to the mRNA carrier within the envelope. In contrast to the efflux of RRE-free RNA, ATP-dependent efflux of RRE-containing RNA from resealed nuclear-envelope vesicles was found to be increased, if the RNA was entrapped in the vesicles together with Rev protein. In addition, it was found that phosphorylated Rev, which is transported together with RRE-containing RNA out of the vesicles, becomes dephosphorylated during transport. In the vesicle experiments it is demonstrated for the first time that a protein selectively channels a specific mRNA across the nuclear-envelope pore complex.  相似文献   

17.
Superantigens are known to activate a large number of T cells. The SAg is presented by MHC class II on the APC and its classical feature is that it recognizes the variable region of the beta-chain of the TCR. In this article, we report, by direct binding studies, that staphylococcal enterotoxin (SE) H (SEH), a bacterial SAg secreted by Staphylococcus aureus, instead recognizes the variable alpha-chain (TRAV27) of TCR. Furthermore, we show that different SAgs (e.g., SEH and SEA) can simultaneously bind to one TCR by binding the alpha-chain and the beta-chain, respectively. Theoretical three-dimensional models of the penta complexes are presented. Hence, these findings open up a new dimension of the biology of the staphylococcal enterotoxins.  相似文献   

18.
Based on solid-phase binding assays with enzyme-linked immunosorbent assay detection, previous investigators suggested that intracellular carbonic anhydrase II (CA II) interacts at high affinity with the C-terminal (Ct) domains of SLC4 bicarbonate-transport proteins, expressed as glutathione S-transferase (GST) fusion proteins, to form functional HCO3- metabolons. Here we re-evaluated this protein-protein interaction using two solid-phase binding assays. We first compared the ability of the Ct domain of three SLC4 transporters, SLC4-A1 (AE1), SLC4-A4 (NBCe1), and SLC4-A8 (NDCBE), to bind immobilized CA II, using enzyme-linked immunosorbent assay detection. We found that when expressed as GST fusion proteins, all three bind to CA II (Kd 300-600 nM) better than does pure GST. However, we detected no binding of pure SLC4-Ct peptides to immobilized CA II. Second, we reversed assay orientation by immobilizing the SLC4-Ct fusion proteins or peptides. We found that more CA II binds to GST than to any of the three GST-SLC4-Ct fusion proteins. Furthermore, we detected no binding of CA II to any of the immobilized pure SLC4-Ct peptides. Finally, we used surface plasmon resonance to detect possible rapid interactions between CA II and the pure peptides. Although we detected acetazolamide binding to immobilized CA II and specific antibodies binding to immobilized SLC4-Ct peptides, we detected no binding of CA II to immobilized SLC4-Ct or vice versa. Thus, although an HCO3 metabolon may exist, CA II cannot bind directly to pure SLC4-Ct peptides and can bind to GST-SLC4-Ct fusion proteins only when the CA II is immobilized and the fusion protein is soluble, and not vice versa.  相似文献   

19.
20.
The targeting of proteolytic substrates is accomplished by a family of ubiquitin-conjugating (E2) enzymes and a diverse set of substrate recognition (E3) factors. The ligation of a multiubiquitin chain to a substrate can promote its degradation by the proteasome. However, the mechanism that facilitates the translocation of a substrate to the proteasome in vivo is poorly understood. We have discovered that E2 proteins, including Ubc1, Ubc2, Ubc4, and Ubc5, can interact with the 26S proteasome. Significantly, the interaction between Ubc4 and the proteasome is strongly induced by heat stress, consistent with the requirement for this E2 for efficient stress tolerance. A catalytically inactive derivative of Ubc4 (Ubc4(C86A)), which causes toxicity in yeast cells, can also bind the proteasome. Purified proteasomes can ligate ubiquitin to a test substrate without the addition of exogenous E2 protein, suggesting that the ubiquitylation of some proteolytic substrates might be directly coupled to degradation by the proteasome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号