首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
Of all tropospheric species, ozone (O3) comes closest to being naturally present at toxic levels. In addition, O3 controls the ultraviolet flux reaching the Earth's surface and affects the temperature of the surface and atmosphere. For these reasons, O3 was an important species of the paleoatmosphere. Surface and atmospheric levels of paleoatmospheric O3 were calculated using a detailed photochemical model, including the chemistry of the oxygen, nitrogen, and hydrogen species and the effects of vertical transport. Surface and tropospheric O3, as well as the total O3 column, were found to maximize for an atmospheric oxygen level of 10–1 present atmospheric level (PAL). Coupled photochemical/radiative-convective calculations indicate that the radiative effects of O3 corresponding to an oxygen level of 10–1 PAL resulted in a globally-averaged surface temperature increase of 4.5 K.Proceedings of the Fourth College Park Colloquium on Chemical Evolution:Limits of Life, University of Maryland, College Park, 18–20 October 1978.  相似文献   

2.
In the past, it was generally assumed that the early atmosphere of the Earth contained appreciable quantities of methane (CH4) and ammonia (NH3). This was the type of atmosphere believed to be the most suitable environment for chemical evolution, the nonbiological formation of complex organic molecules, the precursors of living systems. Photochemical considerations suggest that a CH4–NH3 dominated early atmosphere was probably very short-lived, if it ever existed at all. Instead, an early atmosphere of carbon dioxide (CO2) and nitrogen (N2) is favored by photochemical as well as geological and geochemical considerations. Photochemical calculations also indicate that the total oxygen column density of the prebiological paleoatmosphere did not exceed 10–7 of the present atmospheric level.Paper presented at the 6th College Park Colloquium, October 1981  相似文献   

3.
The advent of oxygenic photosynthesis represents the most prominent biological innovation in the evolutionary history of the Earth. The exact timing of the evolution of oxygenic photoautotrophic bacteria remains elusive, yet these bacteria profoundly altered the redox state of the ocean–atmosphere–biosphere system, ultimately causing the first major rise in atmospheric oxygen (O2)—the so-called Great Oxidation Event (GOE)—during the Paleoproterozoic (~2.5–2.2 Ga). However, it remains unclear how the coupled atmosphere–marine biosphere system behaved after the emergence of oxygenic photoautotrophs (OP), affected global biogeochemical cycles, and led to the GOE. Here, we employ a coupled atmospheric photochemistry and marine microbial ecosystem model to comprehensively explore the intimate links between the atmosphere and marine biosphere driven by the expansion of OP, and the biogeochemical conditions of the GOE. When the primary productivity of OP sufficiently increases in the ocean, OP suppresses the activity of the anaerobic microbial ecosystem by reducing the availability of electron donors (H2 and CO) in the biosphere and causes climate cooling by reducing the level of atmospheric methane (CH4). This can be attributed to the supply of OH radicals from biogenic O2, which is a primary sink of biogenic CH4 and electron donors in the atmosphere. Our typical result also demonstrates that the GOE is triggered when the net primary production of OP exceeds >~5% of the present oceanic value. A globally frozen snowball Earth event could be triggered if the atmospheric CO2 level was sufficiently small (<~40 present atmospheric level; PAL) because the concentration of CH4 in the atmosphere would decrease faster than the climate mitigation by the carbonate–silicate geochemical cycle. These results support a prolonged anoxic atmosphere after the emergence of OP during the Archean and the occurrence of the GOE and snowball Earth event during the Paleoproterozoic.  相似文献   

4.
Iron (Fe) is an essential element for life, and its geochemical cycle is intimately linked to the coupled history of life and Earth's environment. The accumulated geologic records indicate that ferruginous waters existed in the Precambrian oceans not only before the first major rise of atmospheric O2 levels (Great Oxidation Event; GOE) during the Paleoproterozoic, but also during the rest of the Proterozoic. However, the interactive evolution of the biogeochemical cycles of O2 and Fe during the Archean–Proterozoic remains ambiguous. Here, we develop a biogeochemical model to investigate the coupled biogeochemical evolution of Fe–O2–P–C cycles across the GOE. Our model demonstrates that the marine Fe cycle was less sensitive to changes in the production rate of O2 before the GOE (atmospheric pO2 < 10−6 PAL; present atmospheric level). When the P supply rate to the ocean exceeds a certain threshold, the GOE occurs and atmospheric pO2 rises to ~10−3–10−1 PAL. After the GOE, the marine Fe(II) concentration is highly sensitive to atmospheric pO2, suggesting that the marine redox landscape during the Proterozoic may have fluctuated between ferruginous conditions and anoxic non-ferruginous conditions with sulfidic water masses around continental margins. At a certain threshold value of atmospheric pO2 of ~0.3% PAL, the primary oxidation pathway of Fe(II) shifts from the activity of Fe(II)-utilizing anoxygenic photoautotrophs in sunlit surface waters to abiotic process in the deep ocean. This is accompanied by a shift in the primary deposition site of Fe(III) hydroxides from the surface ocean to the deep sea, providing a plausible mechanistic explanation for the observed cessation of iron formations during the Proterozoic.  相似文献   

5.
Based upon arguments concerning properties of the environment and the energetics of nitrogen transformation reactions, new hypotheses regarding their evolution are presented. These hypotheses are supported by new calculations and observations germane to understanding the evolution of the nitrogen cycle. From calculations of shock production by meteor impact, we suggest that impact produced fixed nitrogen could have resulted in the entire reservoir of Earth's N2 being converted into fixed nitrogen at the end of accretion. We have significantly improved upon previous calculations of the abiotic fixation rate on the early earth and find a rate of fixation by lightning of 1–3 × 1016 Molecules NO/J, which is 2 to 3 times greater than previous estimates. This strengthens the suggestion, corroborated by the predominance of a single nitrogenase enzyme, that biological nitrogen fixation may have been a late evolutionary development, after the development of an aerobic atmosphere. In addition, we show for the first time that HNO, predicted to be the main product of atmospheric photochemical reactions involving NO on the primitive Earth by photochemical models, would eventually become NO2 and NO3 after reaching the Earth's surface. Based upon microbe-environment interactions on an ecological as well as a biochemical scale we suggest that denitrification arose prior to aerobic respiration and that nitrification arose after the advent of an aerobic atmosphere. We hypothesize the following evolutionary sequence for the biological transformation of nitrogen compounds: Ammonification Denitrification Nitrification Nitrogen fixation.  相似文献   

6.
Long SP  Drake BG 《Plant physiology》1991,96(1):221-226
CO2 concentration was elevated throughout 3 years around stands of the C3 sedge Scirpus olneyi on a tidal marsh of the Chesapeake Bay. The hypothesis that tissues developed in an elevated CO2 atmosphere will show an acclimatory decrease in photosynthetic capacity under light-limiting conditions was examined. The absorbed light quantum yield of CO2 uptake (øabs and the efficiency of photosystem II photochemistry were determined for plants which had developed in open top chambers with CO2 concentrations in air of 680 micromoles per mole, and of 351 micromoles per mole as controls. An Ulbricht sphere cuvette incorporated into an open gas exchange system was used to determine øabs and a portable chlorophyll fluorimeter was used to estimate the photochemical efficiency of photosystem II. When measured in an atmosphere with 10 millimoles per mole O2 to suppress photorespiration, shoots showed a øabs of 0.093 ± 0.003, with no statistically significant difference between shoots grown in elevated or control CO2 concentrations. Efficiency of photosystem II photochemistry was also unchanged by development in an elevated CO2 atmosphere. Shoots grown and measured in 680 micromoles per mole of CO2 in air showed a øabs of 0.078 ± 0.004 compared with 0.065 ± 0.003 for leaves grown and measured in 351 micromoles per mole CO2 in air; a highly significant increase. In accordance with the change in øabs, the light compensation point of photosynthesis decreased from 51 ± 3 to 31 ± 3 micro-moles per square meter per second for stems grown and measured in 351 and 680 micromoles per mole of CO2 in air, respectively. The results suggest that even after 3 years of growth in elevated CO2, there is no evidence of acclimation in capacity for photosynthesis under light-limited conditions which would counteract the stimulation of photosynthetic CO2 uptake otherwise expected through decreased photorespiration.  相似文献   

7.
Gluconacetobacter diazotrophicus is an N2-fixing endophyte isolated from sugarcane. G. diazotrophicus was grown on solid medium at atmospheric partial O2 pressures (pO2) of 10, 20, and 30 kPa for 5 to 6 days. Using a flowthrough gas exchange system, nitrogenase activity and respiration rate were then measured at a range of atmospheric pO2 (5 to 60 kPa). Nitrogenase activity was measured by H2 evolution in N2-O2 and in Ar-O2, and respiration rate was measured by CO2 evolution in N2-O2. To validate the use of H2 production as an assay for nitrogenase activity, a non-N2-fixing (Nif) mutant of G. diazotrophicus was tested and found to have a low rate of uptake hydrogenase (Hup+) activity (0.016± 0.009 μmol of H2 1010 cells−1 h−1) when incubated in an atmosphere enriched in H2. However, Hup+ activity was not detectable under the normal assay conditions used in our experiments. G. diazotrophicus fixed nitrogen at all atmospheric pO2 tested. However, when the assay atmospheric pO2 was below the level at which the colonies had been grown, nitrogenase activity was decreased. Optimal atmospheric pO2 for nitrogenase activity was 0 to 20 kPa above the pO2 at which the bacteria had been grown. As atmospheric pO2 was increased in 10-kPa steps to the highest levels (40 to 60 kPa), nitrogenase activity decreased in a stepwise manner. Despite the decrease in nitrogenase activity as atmospheric pO2 was increased, respiration rate increased marginally. A large single-step increase in atmospheric pO2 from 20 to 60 kPa caused a rapid 84% decrease in nitrogenase activity. However, upon returning to 20 kPa of O2, 80% of nitrogenase activity was recovered within 10 min, indicating a “switch-off/switch-on” O2 protection mechanism of nitrogenase activity. Our study demonstrates that colonies of G. diazotrophicus can fix N2 at a wide range of atmospheric pO2 and can adapt to maintain nitrogenase activity in response to both long-term and short-term changes in atmospheric pO2.  相似文献   

8.
Hydrogen peroxide and the evolution of oxygenic photosynthesis   总被引:1,自引:0,他引:1  
The early atmosphere of the Earth is considered to have been reducing (H2 rich) or neutral (CO2-N2). The present atmosphere by contrast is highly oxidizing (20% O2). The source of this oxygen is generally agreed to have been oxygenic photosynthesis, whereby organisms use water as the electron donor in the production of organic matter, liberating oxygen into the atmosphere. A major question in the evolution of life is how oxygenic photosynthesis could have evolved under anoxic conditions — and also when this capability evolved. It seems unlikely that water would be employed as the electron donor in anoxic environments that were rich in reducing agents such as ferrous or sulfide ions which could play that role. The abiotic production of atmospheric oxidants could have provided a mechanism by which locally oxidizing conditions were sustained within spatially confined habitats thus removing the available reductants and forcing photosynthetic organisms to utilize water as the electron donor. We suggest that atmospheric H2O2 played the key role in inducing oxygenic photosynthesis because as peroxide increased in a local environment, organisms would not only be faced with a loss of reductant, but they would also be pressed to develop the biochemical apparatus (e.g., catalase) that would ultimately be needed to protect against the products of oxygenic photosynthesis. This scenario allows for the early evolution of oxygenic photosynthesis while global conditions were still anaerobic.  相似文献   

9.
Global emissions of atmospheric CO2 and tropospheric O3 are rising and expected to impact large areas of the Earths forests. While CO2 stimulates net primary production, O3 reduces photosynthesis, altering plant C allocation and reducing ecosystem C storage. The effects of multiple air pollutants can alter belowground C allocation, leading to changes in the partial pressure of CO2 (pCO2) in the soil , chemistry of dissolved inorganic carbonate (DIC) and the rate of mineral weathering. As this system represents a linkage between the long- and short-term C cycles and sequestration of atmospheric CO2, changes in atmospheric chemistry that affect net primary production may alter the fate of C in these ecosystems. To date, little is known about the combined effects of elevated CO2 and O3 on the inorganic C cycle in forest systems. Free air CO2 and O3 enrichment (FACE) technology was used at the Aspen FACE project in Rhinelander, Wisconsin to understand how elevated atmospheric CO2 and O3 interact to alter pCO2 and DIC concentrations in the soil. Ambient and elevated CO2 levels were 360±16 and 542±81 l l–1, respectively; ambient and elevated O3 levels were 33±14 and 49±24 nl l–1, respectively. Measured concentrations of soil CO2 and calculated concentrations of DIC increased over the growing season by 14 and 22%, respectively, under elevated atmospheric CO2 and were unaffected by elevated tropospheric O3. The increased concentration of DIC altered inorganic carbonate chemistry by increasing system total alkalinity by 210%, likely due to enhanced chemical weathering. The study also demonstrated the close coupling between the seasonal 13C of soil pCO2 and DIC, as a mixing model showed that new atmospheric CO2 accounted for approximately 90% of the C leaving the system as DIC. This study illustrates the potential of using stable isotopic techniques and FACE technology to examine long- and short-term ecosystem C sequestration.  相似文献   

10.
Isoprene (2-methyl-1,3 butadiene) is a low-molecular-weight hydrocarbon emitted in large quantities to the atmosphere by vegetation and plays a large role in regulating atmospheric chemistry. Until now, the atmosphere has been considered the only significant sink for isoprene. However, in this study we performed both in situ and in vitro experiments with soil from a temperate forest near Ithaca, N.Y., that indicate that the soil provides a sink for atmospheric isoprene and that the consumption of isoprene is carried out by microorganisms. Consumption occurred rapidly in field chambers (672.60 ± 30.12 to 2,718.36 ± 86.40 pmol gdw−1 day−1) (gdw is grams [dry weight] of soil; values are means ± standard deviations). Subsequent laboratory experiments confirmed that isoprene loss was due to biological processes: consumption was stopped by autoclaving the soil; consumption rates increased with repeated exposure to isoprene; and consumption showed a temperature response consistent with biological activity (with an optimum temperature of 30°C). Isoprene consumption was diminished under low oxygen conditions (120 ± 7.44 versus 528.36 ± 7.68 pmol gdw−1 day−1 under ambient O2 concentrations) and showed a strong relationship with soil moisture. Isoprene-degrading microorganisms were isolated from the site, and abundance was calculated as 5.8 × 105 ± 3.2 × 105 cells gdw−1. Our results indicate that soil may provide a significant biological sink for atmospheric isoprene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号