首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A protease was purified from a strain of Vibrio vulnificus isolated from the blood of a septicemic human. The vibrio was cultured in bacto peptone-yeast extract medium, and the protease was purified by a purification procedure including ultrafiltration of the culture supernatant with an Amicon YM 5 membrane, diethylaminoethyl-Sephacel column chromatography, Sephacryl S-200 column chromatography and fast protein liquid chromatography on Mono Q column. The protease preparation revealed homogeneity on polyacrylamide gel electrophoresis and about 30,000-fold purification was achieved, with a yield of about 30%. The isoelectric point of the purified V. vulnificus protease was about 5.80 and its molecular weight was ca. 45,000 by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The optimum pH of the protease activity was 8.0. The V. vulnificus protease was inhibited by a metalloprotease inhibitor and zinc ion and/or ferrous ion were essential for its enzyme activity. No cysteine residue was detected in the V. vulnificus protease. The protease had caseinolytic, elastolytic and collagenolytic activities.  相似文献   

2.
When the thermophilic mold Thermoascus aurantiacus var. levisporus was grown in a modified Czapek Dox medium containing casein the filtrate was found to contain proteolytic activity. The maximum production of activity occurred at 50 ° C in a medium containing 8% casein. The filtrate was subjected to ammonium sulfate fractionation and chromatography on DEAE-cellulose. Two proteases were separated. No further work was done on protease II. Protease I was further purified by gel filtration on Sephadex G 100–200. It showed a 40-fold purification with a final recovery of approximately 25%. It is a neutral protease with a pH optimum at 7.0. The optimal activity of the enzyme occurred in 0.02 M phosphate buffer but was completely inhibited at a concentration of 0.1 M. The optimum temperature for casein hydrolysis was found to be 55 ° C. The enzyme was inhibited by Hg++ but was greatly stimulated by Cu++ and mercaptoethanol. Metallo and sulfhydryl agents had no significant effect on enzyme activity.  相似文献   

3.
The alkaline protease gene from Aspergillus oryzae was cloned, and then it was successfully expressed in the heterologous Pichia pastoris GS115 with native signal peptide or α-factor secretion signal peptide. The yield of the recombinant alkaline protease with native signal peptide was about 1.5-fold higher than that with α-factor secretion signal peptide, and the maximum yield of the recombinant alkaline protease was 513 mg/L, which was higher than other researches. The recombinant alkaline protease was purified by ammonium sulfate precipitation, ion exchange chromatography and gel filtration chromatography. The purified recombinant alkaline protease showed on SDS–PAGE as a single band with an apparent molecular weight of 34 kDa. The recombinant alkaline protease was identical to native alkaline protease from A. oryzae with regard to molecular weight, optimum temperature for activity, optimum pH for activity, stability to pH, and similar sensitivity to various metal ions and protease inhibitors. The native enzyme retained 61.18% of its original activity after being incubated at 50 °C for 10 min, however, the recombinant enzyme retained 56.22% of its original activity with same disposal. The work demonstrates that alkaline protease gene from A. oryzae can be expressed largely in P. pastoris without affecting its enzyme properties and the recombinant alkaline protease could be widely used in various industrial applications.  相似文献   

4.
A serine protease secreted by the haloalkaliphilic archaeon Natrialba magadii at the end of the exponential growth phase was isolated. This enzyme was purified 83 fold with a total yield of 25% by ethanol precipitation, affinity chromatography, and gel filtration. The native molecular mass of the enzyme determined by gel filtration was 45 kDa. Na. magadii extracellular protease was dependent on high salt concentrations for activity and stability, and it had an optimum temperature of 60°C in the presence of 1.5 M NaCl. The enzyme was stable and had a broad pH profile (6–12) with an optimum pH of 8–10 for azocasein hydrolysis. The protease was strongly inhibited by diisopropyl fluorophosphate (DFP), phenylmethyl sulfonylfluoride (PMSF), and chymostatin, indicating that it is a serine protease. It was sensitive to denaturing agents such as SDS, urea, and guanidine HCl and activated by thiol-containing reducing agents such as dithiotreitol (DTT) and 2-mercaptoethanol. This protease degraded casein and gelatin and showed substrate specificity for synthetic peptides containing Phe, Tyr, and Leu at the carboxyl terminus, showing that it has chymotrypsin-like activity. Na. magadii protease presented no cross-reactivity with polyclonal antibodies raised against the extracellular protease of Natronococcus occultus, suggesting that although these proteases share several biochemical traits, they might be antigenically unrelated. Received: October 1, 1999 / Accepted: February 1, 2000  相似文献   

5.
A leaf protease of tobacco whose activity was enhanced during curing was purified about 60 times with ammonium sulfate fractionation, ethanol precipitation, calcium phosphate gel treatment and Sephadex G-200 column chromatography, and some properties of the protease were examined. The purified enzyme showed the optimum pH at 5.5 and the optimum temperature at 60°C. The protease activity was stable between pH 4.5 and 5.5 at 50°G or at pH 5.5 below 40°C for 1 hr, but completely destroyed at 70°C during 1 hr. The protease activity was greatly activated by reducing agents such as cysteine, glutathione or mercaptoethanol and inhibited by p-chloromercuribenzoate, phenyl- mercuric acetate or silver ions. Metal ions except for silver ion and ethylenediamine tetraacetic acid did not affect the protease activity so far examined.  相似文献   

6.
An extracellular thermostable alkaline protease isolated from Bacillus laterosporus-AK1 was purified by sephadex G-200 gel filtration and DEAE cellulose ion-exchange chromatography techniques. The purified protease showed a maximum relative activity of 100% on casein substrate and appeared as a single band on SDS-PAGE with the molecular mass of 86.29 kDa. The protease was purified to 11.1-folds with a yield of 34.3%. Gelatin zymogram also revealed a clear hydrolytic zone due to proteolytic activity, which corresponded to the band obtained with SDS-PAGE. The protease enzyme had on optimum pH of 9.0 and exhibited highest activity at 75°C. The enzyme activity was highly susceptible to the specific serine protease inhibitor PMSF, suggesting the presence of serine residues at the active sites. Enzyme activity strongly enhanced by the metal ions Ca2+ and Mg2+ and this enzyme compatible with aril detergent stability retained 75% even 1-h incubation. The purified protease remove bloodstain completely when used with Wheel detergent.  相似文献   

7.
8.
Summary The proteolytic activity produced by a new species of Bacillus isolated in our laboratory was investigated. This enzyme was purified to homogeneity from cell-free culture liquids of B. thermoruber. The purification procedure included ion-exchange chromatography on DEAE-Sephadex A-50 and -casein agarose affinity chromatography. The protease consists of one polypeptide chain with a molecular weight of 39000±800. the isoelectric point was 5.3; the optimum pH and temperature for proteolytic activity (on casein) was found to be pH 9 and 45°C respectively. Enzyme activity was inhibited by PMSF and EDTA. The stability was considerably increased by addition of Ca2+, and the protease exhibited a relatively high thermal stability. The alkaline protease shows a preference for leucine in the carboxylic side of the peptide bond of the substrate. The K m value for benzyloxycarbonyl-Ala-Ala-Leu-p-nitroanilide was 2.5 mM.  相似文献   

9.
A thermophilic Thermoactinomyces sp. E79 producing a highly thermostable alkaline protease was isolated from soil. The protease, produced extracellularly by Thermoactinomyces sp. E79, was purified by DEAE-Sepharose CL-6B and Butyl-Toyopearl 650M column chromatography. The relative molecular mass was estimated to be 31,000 by SDS–polyacrylamide gel electrophoresis. Enzyme activity was inhibited by phenylmethylsulfonyl fluoride, suggesting the enzyme to be a serine protease. The optimum temperature for the enzyme activity was 85°C, and about 50% of the original activity remained after incubation at 90°C for 10 min in the presence of Ca2 + . The optimum pH for the enzyme activity was 11.0 and the enzyme was fairly stable from pH 5.0 to 12.0. The gene for this thermostable alkaline protease was cloned in Escherichia coli and the expressed intracellular enzyme was activated by heat treatment. Sequence analysis showed an open reading frame of 1,152 base pairs, coding for a poiypeptide of 384 amino acids. The polypeptide was composed of a signal sequence (25 amino acids), a prosequence (81 amino acids), and a mature protein of 278 amino acids. The deduced amino acid sequence of the mature protease had high similarity with thermitase, a serine protease from Thermoactinomyces vulgaris, and the extent of sequence identity was 76%.  相似文献   

10.
Proteolytic activity was found in the culture fluids of numerous psychrophilic bacteria isolated from terrestrial or marine samples. Among these organisms, a marine psychrophilic bacterium, Pseudomonas sp. No. 548, showed the highest proteolytic activity. This organism required salts of sea water for both growth and protease formation. The optimum temperature for the growth of this organism was 20°C. The formation of protease was the greatest at 5°C and decreased with increasing temperature. The extracellular protease system was fractionated into at least two components having proteolytic activities by chromatography with DEAE-cellulose. Increasing culture temperature tended to increase the activity ratio of Fraction I to Fraction II. Some cultural conditions for protease formation were investigated.  相似文献   

11.
Protease which was found in the culture fluid of Pseudomonas sp. No. 548 was fractionated into four components with protease activity by a two step chromatography using DEAE-cellulose. Each protease was further purified by gel filtration on Sephadex G-100 and/or G-75. The protease of Ia was obtained in crystalline form and was shown to be homogeneous by analysis with electrophoresis, while the other three enzymes were also highly purified. The enzymatic properties of the proteases were investigated. All of the four enzymes were inactivated by ethylene diamine tetraacetate. Proteases Ia, Ib, and IIb were inactivated by diisopropylfluorophosphate. The optimum activity of protease Ia was shown to be at pH 10.0, and that of the other enzymes were at pH 7.0 to 8.0. The proteases of Ia, Ib, and IIb were stabilized by calcium ion. The effect of temperature, pH, and metal ions on the activity of the enzyme were also investigated.  相似文献   

12.
A serine alkaline protease from a newly isolated alkaliphilic Bacillus altitudinis GVC11 was purified and characterized. The enzyme was purified to homogeneity by acetone precipitation, DEAE-cellulose anion exchange chromatography with 7.03-fold increase in specific activity and 15.25% recovery. The molecular weight of alkaline protease was estimated to be 28 kDa by SDS PAGE and activity was further assessed by zymogram analysis. The enzyme was highly active over a wide range of pH 8.5 to 12.5 with an optimum pH of 9.5. The optimum temperature of purified enzyme was 45 °C and Ca2+ further increased the thermal stability of the enzyme. The enzyme activity was enhanced by Ca2+ and Mg2+ and inhibited by Hg2+. The present study is the first report to examine and describe production of highly alkaline protease from Bacillus altitudinis and also its remarkable dehairing ability of goat hide in 18 h without disturbing the collagen and hair integrity.  相似文献   

13.
A strain of the yeast-like fungus Aureobasidium pullulans was grown on whey to produce an extracellular protease. The protease was totally inhibited by the serine inhibitor, phenyl methyl sulphonyl fluoride (PMSF), and partially inhibited by the chelating agent EDTA. The enzyme showed maximal activity in the alkaline range with an optimum pH of 9·5–10·5. The optimum temperature for protease activity was 41C. As well as being active against the non-specific proteolytic substrate Azocoll, the protease readily degraded purified α-casein. A molecular weight of 27000 ± 350 was determined for the protease using gel filtration chromatography.  相似文献   

14.
A crystalline acid protease produced by a strain of Acrocylindrium in a submerged culture was prepared by treatment with acetone (60%), salting out with ammonium sulfate (saturated) and, after chromatography on Duolite GS-101 column, dialysis against distilled water. This preparation was homogeneous on sedimentation analysis, starch-gel electrophoresis and gel filtration with Sephadex G-75. The optimum pH was 2.0 for milk casein digestion and the pH stability was for 2.0~5.0 at 30°C for one day. The crystalline enzyme was completely stable below 50°C, but lost the activity at 70°G in ten minutes. The acid protease was almost equal to pepsin on specific activity when milk casein solution (pH 2.0) was used as substrate.  相似文献   

15.
A novel extracellular serine protease derived from Thermoanaerobacter tengcongensis, designated tengconlysin, was successfully overexpressed in Escherichia coli as a soluble protein by recombination of an N-terminal Pel B leader sequence instead of the original presequence and C-terminal 6× histidine tags. The purified protein was activated by 0.1% sodium dodecyl sulfate (SDS) treatment but not by thermal treatment. The molecular weight of tengconlysin estimated by SDS-polyacrylamide gel electrophoresis analysis and gel filtration chromatography was 37.9 and 36.2 kDa, respectively, suggesting that the enzyme is monomeric. The N-terminal sequence of mature tengconlysin was LDTAT, suggesting that it is a preproprotein containing a 29 amino acid presequence (predicted from the SigP program) and a 117 amino acid prosequence in the N-terminus. The C-terminal putative propeptide (position 469–540 in the preproprotein) did not inhibit the protease activity. The optimum temperature for tengconlysin activity was 90°C in the presence of 1 mM calcium ions and the optimum pH ranged from 6.5 to 7.0. Activity inhibition studies suggest that the protease is a serine protease. The protease was stable in 0.1% SDS and 1–4 M urea at 70°C in the presence of calcium ions and was activated by the denaturing agents.  相似文献   

16.
Cassia siamea is a nonedible legume belonging to Fabaceae. The seed of C. siamea contains ~16% of protein. The study reports the biochemical characterization of purified novel serine protease inhibitor from seeds of C. siamea, aimed with assessing the anti-inflammatory activity. The seed extract was subjected to ammonium sulfate precipitation followed by fast protein liquid chromatography (FPLC)-anion exchange chromatography and affinity-chromatography to obtain a relative pure protease inhibitor. Thirty-fivefold purification with the specific activity of 250 U/mg of trypsin inhibitory unit was obtained. The characterization of protease inhibitor for optimum temperature, pH, and metal ions were measured using N-α-benzoyl-DL-arginine-p-nitroanilide (BAPNA) assay and casein zymogram. The C. siamea trypsin inhibitor (CsTI) has a relative molecular mass of 25.540 kDa. Purified CsTI and Dolichos biflorus were tested for anti-inflammatory efficacy against A549 and RAW264.7 cell lines. The inhibitory activity of both purified inhibitors are comparable and are potent toward anti-inflammatory activity. The purified inhibitor shows to be a promising candidate as anti-inflammatory agent by targeting the serine proteases.  相似文献   

17.
A protease occurring in the endosperm fraction of germinating corn was purified by means of (NH4)2SO4 fractionation, CM-celluIose chromatography, DEAE-cellulose chromatography, Sephadex G-100 gel filtration and preparative polyacrylamide gel electrophoresis. The purified protease was found to have a molecular weight of about 21,000 and an isoelectric point of pH 2.3 or lower. The optimum pH was found to lie at 3.0 when measured with denatured hemoglobin as substrate. The protease was generally activated by thiol compounds and completely inhibited by p-chloromercuribenzoic acid. Neither diisopropylphosphofluoridate nor diazoacetyl-dl-norleucine methyl ester affected the protease activity. Antipain greatly inhibited the protease action whereas pepstatin had no significant effect. These data indicate, in conclusion, that the protease possesses a unique property to be a sulfhydryl enzyme most active in an acidic region around pH 3.  相似文献   

18.
A novel salt-tolerant protease produced by Aspergillus sp. FC-10 was purified to homogeneity through anion-exchange chromatography, preparative isoelectric-focusing electrophoresis, and gel filtration chromatography, with an overall recovery of 12.7%. This protease demonstrated an optimum pH range of 7.0-9.0 for activity, with a stable pH range of 5.0-9.0. The optimum process temperature at pH 7.0 was 65 degrees C. The enzyme has a molecular mass of 28 kDa and was deduced as a monomer with an isoelectric point of 3.75. Enzyme activity was strongly inhibited by 5 mM of HgCl(2) and FeCl(3), and significantly inhibited by 5 mM of CuSO(4), FeSO(4), and MnCl(2). The activity of this purified protease was inhibited by Na(2).EDTA; however, leupeptin, pepstatin A, PMSF, and E-64 did not affect the activity. Based on the N-terminal amino acid sequence and amino acid composition, this purified protease should be classified as a member of the deuterolysin family.  相似文献   

19.
Acid proteases represent an important group of enzymes, widely used in food, beverage and pharmaceutical industries. For most of these applications the enzymatic preparation must be at least partially purified and free of substances that could change the characteristics of the product or the process. Fungal proteases have replaced other sources because they are easily obtained mainly from Mucor, Rhizopus, Penicillium and Aspergillus species. A strain of Aspergillus clavatus was selected by producing high level of acid protease activity. An extracellular aspartatic protease from this strain was purified 37.2 times with 37% recovery using (NH4)2SO4 fractionation and ion-exchange chromatography. The enzyme was found to be monomeric having a molecular mass of 30.4 kDa. The purified enzyme is an acid protease with optimum pH of 5.5 and temperature for optimum activity of 50 °C. Its high pH stability was verified in the range of 3.5–6.5. The acid protease was strongly inhibited by Hg+2 and partially inhibited by Cu+2, Zn+2 and Mn+2. The enzyme was sensitive to denaturing agent SDS and activated by thiol-containing reducing agent dithiotreitol (DTT). The protease activity was not influenced by iodoacetic acid, E-64 and PMSF, while it was lightly actived by EDTA and totally inhibited by pepstatin, with a Ki of 7.8 μM, indicating that is an aspartic protease. A. clavatus acid protease presents interesting characteristics for biotechnological process, such as cheese and flavor manufacture and dietary supplements, in which activity and stability in acid pH are required.  相似文献   

20.
An extracellular detergent tolerant protease producing strain VSG-4 was isolated from tropical soil sample and identified as Bacillus subtilis based on morphological, biochemical characteristics as well as 16S-rRNA gene sequencing. The VSG-4 protease was purified to homogeneity using ammonium sulphate precipitation, dialysis and sephadex G-200 gel permeation chromatography with a 17.4 purification fold. The purified enzyme was active and stable over a broad range of pH (8.0–11.0, optimum at 9.0) and temperature (40°C to 60°C, optimum at 50°C). The thermostability of the enzyme was significantly increased by the addition CaCl2. This enzyme was strongly inhibited by PMSF and DFP, suggesting that it belongs to the serine protease superfamily. The purified VSG-4 alkaline protease showed remarkable stability in anionic (5 mM SDS) and ionic (1% Trion X-100 and 1% Tween 80) detergents. It retained 97±2% and 83.6±1.1% of its initial activity after 1 h preincubation in the presence of 1 % H2O2 and 1 % sodium perborate, respectively. Furthermore, the purified enzyme showed excellent stability and compatibility with some commercial laundry detergents besides its stain removal capacity. Considering these promising properties, VSG-4 protease may find tremendous application in laundry detergent formulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号