首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The DNA adduct 8-amino-2'-deoxyguanosine (8-amino-dG) is found in liver DNA of rats treated with the hepatocarcinogen 2-nitropropane. Site-specifically modified oligodeoxynucleotides were used to explore the mutagenic potential of 8-amino-dG in simian kidney (COS-7) cells. Oligodeoxynucleotides (5'-TCCTCCTX1G2CCTCTC and 5'-TCCTCCTG1X2CCTCTC, X = dG or 8-amino-dG) with the lesion positioned at codon 60 or 61 of the non-coding strand of the human c-Ha- ras1 gene were inserted into single-stranded phagemid vectors and transfected into COS-7 cells. The progeny plasmid obtained was used to transform Escherichia coli DH10B. Transformants were analyzed by oligodeoxynucleotide hybridization and DNA sequencing to establish the mutation frequency and spectrum produced by the modified base. The correct base, dCMP, was incorporated preferentially opposite 8-amino-dG at X1and X2. When 8-amino-dG was at X1, targeted GNH2-->T transversions were detected, along with smaller numbers of GNH2-->A transitions and GNH2-->C transversions. When the adduct was at X2, only GNH2-->T transversions were observed. The frequencies of targeted mutation at X1and X2were 2.7 and 1.7%, respectively. Mutation frequency and mutagenic spectrum were sequence context dependent. In addition, non-targeted G-->T transversions, accompanied by some G-->A transitions, were detected 5' to 8-amino-dG when the lesion was at X2. We conclude that 8-amino-dG is a mutagenic lesion, generating G-->T and G-->C transversions and G-->A transitions in mammalian cells.  相似文献   

2.
Two-dimensional proton NMR studies are reported on the complementary d(C-A-T-G-T-G-T-A-C).d(G-T-A-C-epsilon A-C-A-T-G) nonanucleotide duplex (designated epsilon dA.dT 9-mer duplex) containing 1,N6-ethenodeoxyadenosine (epsilon dA), a carcinogen-DNA adduct, positioned opposite thymidine in the center of the helix. Our NMR studies have focused on the conformation of the epsilon dA.dT 9-mer duplex at neutral pH with emphasis on defining the alignment at the dT5.epsilon dA14 lesion site. The through-space NOE distance connectivities establish that both dT5 and epsilon dA14 adopt anti glycosidic torsion angles, are directed into the interior of the helix, and stack with flanking Watson-Crick dG4.dC15 and dG6.dC13 pairs. Furthermore, the d(G4-T5-G6).d(C13-epsilon A14-C15) trinucleotide segment centered about the dT5.epsilon dA14 lesion site adopts a right-handed helical conformation in solution. Energy minimization computations were undertaken starting from six different alignments of dT5(anti) and epsilon dA14(anti) at the lesion site and were guided by distance constraints defined by lower and upper bounds estimated from NOESY data sets on the epsilon dA.dT 9-mer duplex. Two families of energy-minimized structures were identified with the dT5 displaced toward either the flanking dG4.dC15 or the dG6.dC13 base pair. These structures can be differentiated on the basis of the observed NOEs from the imino proton of dT5 to the imino proton of dG4 but not dG6 and to the amino protons of dC15 but not dC13 that were not included in the constraints data set used in energy minimization. Our NMR data are consistent with a nonplanar alignment of epsilon dA14(anti) and dT5(anti) with dT5 displaced toward the flanking dG4.dC15 base pair within the d(G4-T5-G6).d(C13-epsilon A14-C15) segment of the epsilon dA.dT 9-mer duplex.  相似文献   

3.
DNA damage caused by catechol estrogens has been shown to play an etiologic role in tumor formation. Catechol estrogens are reactive to DNA and form several DNA adducts via their quinone forms. To explore the mutagenic properties of 2-hydroxyestrogen-derived DNA adducts in mammalian cells, N(2)-(2-hydroxyestrogen-6-yl)-2'-deoxyguanosine and N(6)-(2-hydroxyestrogen-6-yl)-2'-deoxyadenosine adducts induced by quinones of 2-hydroxyestrone, 2-hydroxyestradiol, or 2-hydroxyestriol were incorporated site-specifically into the oligodeoxynucleotides ((5)(')TCCTCCTCXCCTCTC, where X is dG, dA, 2-OHE-N(2)-dG, or 2-OHE-N(6)-dA). The modified oligodeoxynucleotides were inserted into single-stranded phagemid vectors followed by transfection into simian kidney (COS-7) cells. Preferential incorporation of dCMP, the correct base, was observed opposite all 2-OHE-N(2)-dG adducts. Only targeted G --> T transversions were detected; the highest mutation frequency (18.2%) was observed opposite the 2-OHE(2)-N(2)-dG adduct, followed by 2-OHE(1)-N(2)-dG (4.4%) and 2-OHE(3)-N(2)-dG (1.3%). When 2-OHE-N(6)-dA adducts were used, preferential incorporation of dTMP, the correct base, was observed. Targeted mutations representing A --> T transversions were detected, accompanied by small numbers of A --> G transitions. The highest mutation frequencies were observed with 2-OHE(1)-N(6)-dA and 2-OHE(3)-N(6)-dA (14.5 and 14.1%, respectively), while 2-OHE(2)-N(6)-dA exhibited a mutation frequency of only 6.0%. No mutations were detected with vectors containing unmodified oligodeoxynucleotides. Thus, 2-OHE quinone-derived DNA adducts are mutagenic, generating primarily G --> T and A --> T mutations in mammalian cells. The mutational frequency varied depending on the nature of the 2-OHE moiety.  相似文献   

4.
Solution structural studies have been undertaken on the aminopyrene-C(8)-dG ([AP]dG) adduct in the d(C5-[AP]G6-C7). d(G16-A17-G18) sequence context in an 11-mer duplex with dA opposite [AP]dG, using proton-proton distance and intensity restraints derived from NMR data in combination with distance-restrained molecular mechanics and intensity-restrained relaxation matrix refinement calculations. The exchangeable and nonexchangeable protons of the aminopyrene and the nucleic acid were assigned following analysis of two-dimensional NMR data sets on the [AP]dG.dA 11-mer duplex in H2O and D2O solution. The broadening of several resonances within the d(G16-A17-G18) segment positioned opposite the [AP]dG6 lesion site resulted in weaker NOEs, involving these protons in the adduct duplex. Both proton and carbon NMR data are consistent with a syn glycosidic torsion angle for the [AP]dG6 residue in the adduct duplex. The aminopyrene ring of [AP]dG6 is intercalated into the DNA helix between intact Watson-Crick dC5.dG18 and dC7.dG16 base pairs and is in contact with dC5, dC7, dG16, dA17, and dG18 residues that form a hydrophobic pocket around it. The intercalated AP ring of [AP]dG6 stacks over the purine ring of dG16 and, to a lesser extent dG18, while the looped out deoxyguanosine ring of [AP]dG6 stacks over dC5 in the solution structure of the adduct duplex. The dA17 base opposite the adduct site is not looped out of the helix but rather participates in an in-plane platform with adjacent dG18 in some of the refined structures of the adduct duplex. The solution structures are quite different for the [AP]dG.dA 11-mer duplex containing the larger aminopyrene ring (reported in this study) relative to the previously published [AF]dG.dA 11-mer duplex containing the smaller aminofluorene ring (Norman et al., Biochemistry 28, 7462-7476, 1989) in the same sequence context. Both the modified syn guanine and the dA positioned opposite it are stacked into the helix with the aminofluorene chromophore displaced into the minor groove in the latter adduct duplex. By contrast, the aminopyrenyl ring participates in an intercalated base-displaced structure in the present study of the [AP]dG.dA 11-mer duplex and in a previously published study of the [AP]dG.dC 11-mer duplex (Mao et al., Biochemistry 35, 12659-12670, 1996). Such intercalated base-displaced structures without hydrogen bonding between the [AP]dG adduct and dC or mismatched dA residues positioned opposite it, if present at a replication fork, may cause polymerase stalling and formation of a slipped intermediate that could produce frameshift mutations, the most dominant mutagenic consequence of the [AP]dG lesion.  相似文献   

5.
Fapy.dG and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) are formed in DNA by hydroxyl radical damage. In order to study replication past these lesions in cells, we constructed a single-stranded shuttle vector containing the lesion in 5'-TGT and 5'-TGA sequence contexts. Replication of the modified vector in simian kidney (COS-7) cells showed that Fapy.dG is mutagenic inducing primarily targeted Fapy.G-->T transversions. In the 5'-TGT sequence mutational frequency of Fapy.dG was approximately 30%, whereas in the 5'-TGA sequence it was approximately 8%. In parallel studies 8-oxo-dG was found to be slightly less mutagenic than Fapy.dG, though it also exhibited a similar context effect: 4-fold G-->T transversions (24% versus 6%) occurred in the 5'-TGT sequence relative to 5'-TGA. To investigate a possible structural basis for the higher G-->T mutations induced by both lesions when their 3' neighbor was T, we carried out a molecular modeling investigation in the active site of DNA polymerase beta, which is known to incorporate both dCTP (no mutation) and dATP (G-->T substitution) opposite 8-oxo-G. In pol beta, the syn-8-oxo-G:dATP pair showed greater stacking with the 3'-T:A base pair in the 5'-TGT sequence compared with the 3'-A:T in the 5'-TGA sequence, whereas stacking for the anti-8-oxo-G:dCTP pair was similar in both 5'-TGT and 5'-TGA sequences. Similarly, syn-Fapy.G:dATP pairing showed greater stacking in the 5'-TGT sequence compared with the 5'-TGA sequence, while stacking for anti-Fapy.G:dCTP pairs was similar in the two sequences. Thus, for both lesions less efficient base stacking between the lesion:dATP pair and the 3'-A:T base pair in the 5'-TGA sequence might cause lower G-->T mutational frequencies in the 5'-TGA sequence compared to 5'-TGT. The corresponding lesions derived from 2'-deoxyadenosine, Fapy.dA and 8-oxo-dA, were not detectably mutagenic in the 5'-TAT sequence, and were only weakly mutagenic (<1%) in the 5'-TAA sequence context, where both lesions induced targeted A-->C transversions. To our knowledge this is the first investigation using extrachromosomal probes containing a Fapy.dG or Fapy.dA site-specifically incorporated, which showed unequivocally that in simian kidney cells Fapy.G-->T substitutions occur at a higher frequency than 8-oxo-G-->T and that Fapy.dA is very weakly mutagenic, as is 8-oxo-dA.  相似文献   

6.
The carcinogen 2-acetylaminofluorene is metabolically activated in cells and reacts with DNA to form N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (dG-C8-AAF), N-(deoxyguanosin-8-yl)-2-aminofluorene (dG-C8-AF), and 3-(deoxyguanosin-N(2)()-yl)-2-acetylaminofluorene (dG-N(2)-AAF) DNA adducts. The dG-N(2)-AAF adduct is the least abundant of the three isomers, but it persists in the tissues of animals treated with this carcinogen. The miscoding and mutagenic properties of dG-C8-AAF and dG-C8-AF have been established; these adducts are readily excised by DNA repair enzymes engaged in nucleotide excision repair. In the present study, oligodeoxynucleotides modified site-specifically with dG-N(2)-AAF were used as DNA templates in primer extension reactions catalyzed by mammalian DNA polymerases. Reactions catalyzed by pol alpha were strongly blocked at a position one base before dG-N(2)-AAF and also opposite this lesion. In contrast, during translesion synthesis catalyzed by pol eta or pol kappa nucleotides were incorporated opposite the lesion. Both pol eta and pol kappa incorporated dCMP, the correct base, opposite dG-N(2)-AAF. In reactions catalyzed by pol eta, small amounts of dAMP misincorporation and one-base deletions were detected at the lesion site. With pol kappa, significant dTMP misincorporation was observed opposite the lesion. Steady-state kinetic analysis confirmed the results obtained from primer extension studies. Single-stranded shuttle vectors containing (5)(')TCCTCCTCXCCTCTC (X = dG-N(2)-AAF, dG-C8-AAF, or dG) were used to establish the frequency and specificity of dG-N(2)-AAF-induced mutations in simian kidney (COS-7) cells. Both lesions promote G --> T transversions overall, with dG-N(2)-AAF being less mutagenic than dG-C8-AAF (3.4% vs 12.5%). We conclude from this study that dG-N(2)-AAF, by virtue of its persistence in tissues, contributes significantly to the mutational spectra observed in AAF-induced mutagenesis and that pol eta, but not pol kappa, may play a role in this process.  相似文献   

7.
Hormone replacement therapy (HRT) increases the risk of developing breast, ovarian, and endometrial cancers. Equilin and equilenin are the major components of the widely prescribed drug used for HRT. 4-Hydroxyequilenin (4-OHEN), a major metabolite of equilin and equilenin, promotes 4-OHEN-modified dC, dA, and dG DNA adducts. These DNA adducts were detected in breast tumor and adjacent normal tissues of several patients receiving HRT. We have recently found that the 4-OHEN-dC DNA adduct is a highly miscoding lesion generating C --> T transitions and C --> G transversions. To explore the mutagenic potential of another major 4-OHEN-dA adduct, site-specifically modified oligodeoxynucleotides containing a single diastereoisomer of 4-OHEN-dA (Pk-1, Pk-2, and Pk-3) were prepared by a postsynthetic method and used as DNA templates for primer extension reactions catalyzed by human DNA polymerase (pol) eta and kappa that are highly expressed in the reproductive organs. Primer extension catalyzed by pol eta or pol kappa occurred rapidly on the unmodified template to form fully extended products. With the major 4-OHEN-dA-modified templates (Pk-2 and Pk-3), primer extension was retarded prior to the lesion and opposite the lesion; a fraction of the primers was extended past the lesion. Steady-state kinetic studies with pol eta and pol kappa indicated that dTMP, the correct base, was preferentially incorporated opposite the 4-OHEN-dA lesion. In addition, pol eta and pol kappa bypassed the lesion by incorporating dAMP and dCMP, respectively, opposite the lesion and extended past the lesion. The relative bypass frequency past the 4-OHEN-dA lesion with pol eta was at least 2 orders of magnitude higher than that observed with pol kappa. The bypass frequency past Pk-2 was more efficient than that past Pk-3. Thus, 4-OHEN-dA is a miscoding lesion generating A --> T transversions and A --> G transitions. The miscoding frequency and specificity of 4-OHEN-dA varied depending on the stereoisomer of the 4-OHEN-dA adduct and DNA polymerase used.  相似文献   

8.
Factor D, a protein purified from rabbit liver that selectively enhances traversal of template oligodeoxythymidine tracts by diverse DNA polymerases, was examined for the sequence specificity of its binding to DNA. Terminally [32P]-labeled oligomers with the sequence 5'-d[AATTC(N)16G]-3', N being dT, dA, dG, or dC, were interacted with purified factor D and examined for the formation of protein-DNA complexes that exhibit retarded electrophoretic mobility under nondenaturing conditions. Whereas significant binding of factor D to 5'-d[AATTC(T)16G]-3' is detected, there is no discernable association between this protein and oligomers that contain 16 contiguous moieties of dG, dA, or dC. Furthermore, factor D does not form detectable complexes with the duplexes oligo(dA).oligo(dT) or poly(dA).poly(dT). The preferential interaction of factor D with single-stranded poly(dT) is confirmed by experiments in which the polymerase-enhancing activity of this protein is protected by poly(dT) against heat inactivation two- and four-fold more efficiently than by poly(dA) or poly(dA).poly(dT), respectively.  相似文献   

9.
The effects of purine deoxyribonucleosides on bromodeoxyurdine (BrdU) mutagenesis in Syrian hamster melanoma cells were determined. Both deoxyguanosine (dG) and deoxyadenosine (dA) were found to stimulate mutagenesis without changing the amount of BrdU in DNA. In addition, the stimulation of mutagenesis by dG and dA was suppressed by the addition of deoxycytidine (dC). These results suggest that BrdU mutagenesis involves the perturbation of dC metabolism, which perturbation is enhanced by dGTP and dATP. The mutagenic activity of dG in the absence of BrdU was tested, as was that of thymidine (dT), which we had shown previously to stimulate BrdU mutageneis. With dG alone, no increase above the spontaneous mutation frequency was detected. However, at extremely high concentration, dT in the absence of BrdU was slightly mutagenic, and the mutagenesis by dT was enhanced by dG and suppressed by dC.  相似文献   

10.
Z Gu  A Gorin  B E Hingerty  S Broyde  D J Patel 《Biochemistry》1999,38(33):10855-10870
A solution structural study has been undertaken on the aminofluorene-C8-dG ([AF]dG) adduct located at a single-strand-double-strand d(A1-A2-C3-[AF]G4-C5-T6-A7-C8-C9-A10-T11-C12-C13). d(G14-G15-A16-T17-G18-G19-T20- A21-G22-N23) 13/10-mer junction (N = C or A) using proton-proton distance restraints derived from NMR data in combination with intensity-based relaxation matrix refinement computations. This single-strand-double-strand junction models one arm of a replication fork composed of a 13-mer template strand which contains the [AF]dG modification site and a 10-mer primer strand which has been elongated up to the modified guanine with either its complementary dC partner or a dA mismatch. The solution structures establish that the duplex segment retains a minimally perturbed B-DNA conformation with Watson-Crick hydrogen-bonding retained up to the dC5.dG22 base pair. The guanine ring of the [AF]dG4 adduct adopts a syn glycosidic torsion angle and is displaced into the major groove when positioned opposite dC or dA residues. This base displacement of the modified guanine is accompanied by stacking of one face of the aminofluorene ring of [AF]dG4 with the dC5.dG22 base pair, while the other face of the aminofluorene ring is stacked with the purine ring of the nonadjacent dA2 residue. By contrast, the dC and dA residues opposite the junctional [AF]dG4 adduct site adopt distinctly different alignments. The dC23 residue positioned opposite the adduct site is looped out into the minor groove by the aminofluorene ring. The syn displaced orientation of the modified dG with stacking of the aminofluorene and the looped out position of the partner dC could be envisioned to cause polymerase stalling associated with subsequent misalignment leading to frameshift mutations in appropriate sequences. The dA23 residue positioned opposite the adduct site is positioned in the major groove with its purine ring aligned face down over the van der Waals surface of the major groove and its amino group directed toward the T6.A21 base pair. The Hoogsteen edge of the modified guanine of [AF]dG4 and the Watson-Crick edge of dA23 positioned opposite it are approximately coplanar and directed toward each other but are separated by twice the hydrogen-bonding distance required for pairing. This structure of [AF]dG opposite dA at a model template-primer junctional site can be compared with a previous structure of [AF]dG opposite dA within a fully paired duplex [Norman, D., Abuaf, P., Hingerty, B. E., Live, D. , Grunberger, D., Broyde, S., and Patel, D. J. (1989) Biochemistry 28, 7462-7476]. The alignment of the Hoogsteen edge of [AF]dG (syn) positioned opposite the Watson-Crick edge of dA (anti) has been observed for both systems with the separation greater in the case of the junctional alignment in the model template-primer system. However, the aminofluorene ring is positioned in the minor groove in the fully paired duplex while it stacks over the junctional base pair in the template-primer system. This suggests that the syn [AF]dG opposite dA junctional alignment can be readily incorporated within a duplex by a translation of this entity toward the minor groove.  相似文献   

11.
Osmium tetroxide, 2,2'-bipyridine (Os,bipy) has been widely applied as a probe of the DNA structure. To obtain information about reactivity of DNA bases toward this probe synthetic homopolynucleotides poly(dT), poly(dC), poly(dG) and poly(dA) were treated with Os,bipy and the content of modified bases measured by stripping voltammetry and absorption spectrophotometry. After 20 hours' treatment strong modification of poly(dT) and poly(dC) and weak modification of poly(dG) were observed, while no modification was detected in poly(dA). At short incubation times under conditions close to those usually used in probing the DNA structure the extent of poly(dT) modification was more than 10 times higher than that of poly(dC). Thus, in single-stranded DNA Os,bipy reacts with T much greater than C and G. Due to the fast reaction of thymines with Os,bipy (and osmium tetroxide, pyridine) these chemicals can be applied in Maxam-Gilbert nucleotide sequencing as agents specific for thymines in single-stranded DNA.  相似文献   

12.
Minor adducts, derived from the covalent binding of anti-benzo[a]pyrene-7,8-dihydroxy-9,10-epoxide to cellular DNA, may play an important role in generating mutations and initiating cancer. We have applied a combined NMR-computational approach including intensity based refinement to determine the solution structure of the minor (+)-cis-anti-[BP]dA adduct positioned opposite dT in the d(C1-T2-C3-T4-C5-[BP]A6-C7-T8-T9-C10-C11). (d(G12-G13-A14-A15-G16-T17-G18-A19-G20+ ++-A21-G22) 11-mer duplex. The BP ring system is intercalated toward the 5'-side of the [BP]dA6 lesion site without disrupting the flanking Watson-Crick dC5.dG18 and [BP]dA6.dT17 base pairs. This structure of the (+)-cis-anti-[BP]dA.dT 11-mer duplex, containing a bay region benzo[a]pyrenyl [BP]dA adduct, is compared with the corresponding structure of the (+)-trans-anti-[BPh]dA.dT 11-mer duplex (Cosman et al., Biochemistry 32, 12488-12497, 1993), which contains a fjord region benzo[c]phenanthrenyl [BPh]dA adduct with the same R stereochemistry at the linkage site. The carcinogen intercalates toward the 5'-direction of the modified strand in both duplexes (the adduct is embedded within the same sequence context) with the buckling of the Watson-Crick [BP]dA6.dT17 base pair more pronounced in the (+)-cis-anti-[BP]dA.dT 11-mer duplex compared to its Watson-Crick [BPh]dA.dT17 base pair in the (+)-trans-anti-[BPh]dA.dT 11-mer duplex. The available structural studies of covalent polycyclic aromatic hydrocarbon (PAH) carcinogen-DNA adducts point toward the emergence of a general theme where distinct alignments are adopted by PAH adducts covalently linked to the N(6) of adenine when compared to the N(2) of guanine in DNA duplexes. The [BPh]dA and [BP]dA N(6)-adenine adducts intercalate their polycyclic aromatic rings into the helix without disruption of their modified base pairs. This may reflect the potential flexibility associated with the positioning of the covalent tether and the benzylic ring of the carcinogen in the sterically spacious major groove. By contrast, such an intercalation without modified base pair disruption option appears not to be available to [BP]dG N(2)-guanine adducts where the covalent tether and the benzylic ring are positioned in the more sterically crowded minor groove. In the case of [BP]dG adducts, the benzopyrenyl ring is either positioned in the minor groove without base pair disruption, or if intercalated into the helix, requires disruption of the modified base pair and displacement of the bases out of the helix.  相似文献   

13.
Site-specifically modified oligodeoxynucleotides were used to explore the influence of neighboring base sequence context on the mutagenic potential of N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (dG-AAF) and N-(deoxyguanosin-8-yl)-2-aminofluorene (dG-AF) in mammalian cells. Oligodeoxynucleotides ((5)(')TCCTCCTNXNCTCTC, where X is dG-AAF, dG-AF, or dG and N is C, A, G, or T) with different bases flanking the lesion were incorporated into a single-strand shuttle plasmid vector and used to establish the mutational frequency and specificity of dG-AAF and dG-AF adducts in simian kidney (COS-7) cells. Vectors containing dG-AAF promote preferential incorporation of dCMP at the site of the lesion; misincorporation of dAMP and dTMP also was observed. Mutational frequencies range from 11 to 23%. High mutational frequencies (18-23%) were observed when G or T was positioned 5' to dG-AAF and a lower frequency (11%) when C was 5' to the lesion. dCMP was predominantly incorporated opposite the dG-AF adduct when C, A, or T was 5' to the lesion; dAMP and dTMP were misincorporated at a frequency of 2-4%. With G 5' to the lesion, the overall mutational frequency for dG-AF ranged between 11 and 70%; the highest value occurred when C was the 3' flanking base, and the predominant mutation event was G --> T transversion (59%). We conclude from these experiments that dG-AAF and dG-AF promote G --> T transversions and G --> A transitions in mammalian cells. The mutational frequency and specificity of dG-AF vary significantly, depending on the nature of the bases flanking the lesion.  相似文献   

14.
Sugimoto N  Nakano M  Nakano S 《Biochemistry》2000,39(37):11270-11281
Thermodynamics of 66 RNA/DNA duplexes containing single mismatches were measured by UV melting methods. Stability enhancements for rG. dT mismatches were the largest of all mismatches examined here, while rU.dG mismatches were not as stable. The methyl group on C5 of thymine enhanced the stability by 0.12 approximately 0.53 kcal mol(-)(1) depending on the identity of adjacent Watson-Crick base pairs, whereas the 2'-hydroxyl group in ribouridine stabilized the duplex by approximately 0.6 kcal mol(-)(1) regardless of the adjacent base pairs. Stabilities induced by the methyl group in thymine, the 2'-hydroxyl group of ribouridine, and an nucleotide exchange at rG.dT and rU.dG mismatches were found to be independent of each other. The order for the mismatch stabilities is rG.dT > rU. dG approximately rG.dG > rA.dG approximately rG.dA approximately rA. dC > rA.dA approximately rU.dT approximately rU.dC > rC.dA approximately rC.dT, although the identity of the adjacent base pairs slightly altered the order. The pH dependence stability and structural changes were suggested for the rA.dG but not for rG.dA mismatches. Comparisons of trinucleotide stabilities for G.T and G.U pairs in RNA, DNA, and RNA/DNA duplexes indicate that stable RNA/DNA mismatches exhibit a stability similar to RNA mismatches while unstable RNA/DNA mismatches show a stability similar to that of DNA mismatches. These results would be useful for the design of antisense oligonucleotides.  相似文献   

15.
Fapy.dG is produced in DNA as a result of oxidative stress from a precursor that also forms OxodG. Bypass of Fapy.dG in a shuttle vector in COS-7 cells produces G --> T transversions slightly more frequently than does OxodG (Kalam, M. A., et al. (2006) Nucleic Acids Res. 34, 2305). The effect of Fapy.dG on replication in Escherichia coli was studied by transfecting M13mp7(L2) bacteriophage DNA containing the lesion within the lacZ gene in 4 local sequence contexts. For comparison, experiments were carried out side-by-side on OxodG. The efficiency of lesion bypass was determined relative to that of a genome containing native nucleotides. Fapy.dG was bypassed less efficiently than OxodG. Bypass efficiency of Fapy.dG and OxodG increased modestly in SOS-induced cells. Mutation frequencies at the site of the lesions in the originally transfected genomes were determined using the REAP assay (Delaney, J. C., Essigmann, J. M. (2006) Methods Enzymol. 408, 1). G --> T transversions were the only mutations observed above background when either Fapy.dG or OxodG was bypassed. OxodG mutation frequencies ranged from 3.1% to 9.8%, whereas the G --> T transversion frequencies observed upon Fapy.dG bypass were T transversions.  相似文献   

16.
The rate of double helix formation by single-stranded poly A plus poly dT, poly dA plus poly U, poly dA plus dT, poly G plus poly dC, poly dG plus poly C, and poly dG plus poly dC have been investigated and compared to rates of ribohomopolymer helix formation rates. After correction for molecular weight, comparisons of rate data at 30°C below the melting temperature of the double helix show that:
  • 1 Rates of helix formation by all combinations of guanine plus cytosine homopolymers are the same.
  • 1 The rate of helix formation for poly dA plus poly dT is three times faster than the rate for poly A plus poly U. Rates of formation of DNA-RNA hybrid molecules are intermediate between these two rates, but closer to the poly dA plus poly dT rate.
The effect of temperature on the rate of helix formation is interpreted in terms of a steady-state model for helix propagation. The results are consistent with a mechanism in which the formation of the second base pair is the rate-determining step.  相似文献   

17.
Peterson LA  Vu C  Hingerty BE  Broyde S  Cosman M 《Biochemistry》2003,42(45):13134-13144
The pyridyloxobutylating agents derived from metabolically activated tobacco-specific nitrosamines can covalently modify guanine bases in DNA at the O(6) position. The adduct formed, O(6)-[4-oxo-4-(3-pyridyl)butyl]guanine ([POB]dG), results in mutations that can lead to tumor formation, posing a significant cancer risk to humans exposed to tobacco smoke. A combined NMR-molecular mechanics computational approach was used to determine the solution structure of the [POB]dG adduct within an 11mer duplex sequence d(CCATAT-[POB]G-GCCC).d(GGGCCATATGG). In agreement with the NMR results, the POB ligand is located in the major groove, centered between the flanking 5'-side dT.dA and the 3'-side dG.dC base pairs and thus in the plane of the modified [POB]dG.dC base pair, which is displaced slightly into the minor groove. The modified base pair in the structure adopts wobble base pairing (hydrogen bonds between [POB]dG(N1) and dC(NH4) amino proton and between [POB]dG(NH2) amino proton and dC(N3)). A hydrogen bond appears to occur between the POB carbonyl oxygen and the partner dC's second amino proton. The modified guanine purine base, partner cytosine pyrimidine base, and POB pyridyl ring form a triplex via this unusual hydrogen-bonding pattern. The phosphodiester backbone twists at the lesion site, accounting for the unusual phosphorus chemical shift differences relative to those for the control DNA duplex. The helical distortions and wobble base pairing induced by the covalent binding of POB to the O(6)-position of dG help explain the significant decrease of 17.6 degrees C in melting temperature of the modified duplex relative to the unmodified control.  相似文献   

18.
2-Acetylaminonaphthalene (2-AAN) has been recognized as a urinary bladder carcinogen in humans. The deacetylated form, 2-aminonaphthalene (2-AN), is metabolized in vivo and reacts primarily with guanine residues in DNA, resulting in the formation of dG-N(2)-aminonaphthalene (dG-N(2)-AN) adduct. Phosphoramidite chemical procedure has recently been established in our laboratory to prepare oligodeoxynucleotides containing a single dG-N(2)-acetylaminonaphthalene (dG-N(2)-AAN) adduct. Oligodeoxynucleotides ((5')TCCTCCTNXCCTCTC, where X is dG or dG-N(2)-AAN and N is C, A, T or G) with different bases 5' flanking to the lesion were prepared and were inserted into a single-strand shuttle vectors and used to establish the mutational frequency and specificity of dG-N(2)-AAN adduct in simian kidney cells. dG-N(2)-AAN adduct promoted preferential incorporation of dCMP, the correct base, opposite the lesion. When the 5' flanking base to the lesion was C, A or T, the mutational frequency was under 2.1%. When G flanked to the lesion, the mutational frequency was slightly increased to 4.2%. Misincorporation of dAMP, dTMP, and/or dGMP varied depending on the 5' flanking base. When dG-N(2)-AAN was positioned at codon 61 of noncoding strand of human c-Ha-ras1 gene ((5')TCCTCCTXGCCTCTC, where X is dG-N(2)-AAN), the mutational frequency was 6.7%; G-->T transversions (4.7%), followed by G-->A transition (2.0%), were observed. These results demonstrated that dG-N(2)-AAN is a weak mutagenic lesion in mammalian cells. The influence of 5' flanking sequence context was observed on the mutational frequency and specificity of this adduct.  相似文献   

19.
Sedimentation velocity analysis has been used to examine the base-specific structural conformations and unusual hydrogen bonding patterns of model oligonucleotides. Homo-oligonucleotides composed of 8-28 residues of dA, dT, or dC nucleotides in 100 mM sodium phosphate, pH 7.4, at 20 degrees C behave as extended monomers. Comparison of experimentally determined sedimentation coefficients with theoretical values calculated for assumed helical structures show that dT and dC oligonucleotides are more compact than dA oligonucleotides. For dA oligonucleotides, the average width (1.7 nm), assuming a cylindrical model, is smaller than for control duplex DNA whereas the average rise per base (0.34 nm) is similar to that of B-DNA. For dC and dT oligonucleotides, there is an increase in the average widths (1.8 nm and 2.1 nm, respectively) whereas the average rise per base is smaller (0.28 nm and 0.23 nm, respectively). A significant shape change is observed for oligo dC(28) at lower temperatures (10 degrees C), corresponding to a fourfold decrease in axial ratio. Optical density, circular dichroism, and differential scanning calorimetry data confirm this shape change, attributable from nuclear magnetic resonance analysis to i-motif formation. Sedimentation equilibrium studies of oligo dG(8) and dG(16) reveal extensive self-association and the formation of G-quadruplexes. Continuous distribution analysis of sedimentation velocity data for oligo dG(16) identifies the presence of discrete dimers, tetramers, and dodecamers. These studies distinguish the conformational and colligative properties of the individual bases in DNA and their inherent capacity to promote specific folding pathways.  相似文献   

20.
It was previously shown that 1,N(6)-ethenoadenine (epsilonA) in DNA rearranges into a pyrimidine ring-opened derivative of 20-fold higher mutagenic potency in Escherichia coli (AB1157 lacDeltaU169) than the parental epsilonA (Basu, A. K., Wood, M. L., Niedernhofer, L. J., Ramos, L. A., and Essigmann, J. M. (1993) Biochemistry 32, 12793-12801). We have found that at pH 7.0, the stability of the N-glycosidic bond in epsilondA is 20-fold lower than in dA. In alkaline conditions, but also at neutrality, epsilondA depurinates or converts into products: epsilondA --> B --> C --> D. Compound B is a product of water molecule addition to the C(2)-N(3) bond, which is in equilibrium with a product of N(1)-C(2) bond rupture in epsilondA. Compound C is a deformylated derivative of ring-opened compound B, which further depurinates yielding compound D. Ethenoadenine degradation products are not recognized by human N-alkylpurine-DNA glycosylase, which repairs epsilonA. Product B is excised from oligodeoxynucleotides by E. coli formamidopyrimidine-DNA glycosylase (Fpg) and endonuclease III (Nth). Repair by the Fpg protein is as efficient as that of 7,8-dihydro-8-oxoguanine when the excised base is paired with dT and dC but is less favorable when paired with dG and dA. Ethenoadenine rearrangement products are formed in oligodeoxynucleotides also at neutral pH at the rate of about 2-3% per week at 37 degrees C, and therefore they may contribute to epsilonA mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号