首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Exercise is well-known in improving vascular functions, but the underlying mechanism has not been totally understood. The aim of this study was to examine whether single exercise session acutely enhances insulin-induced and insulin-like growth factor-1 (IGF-1)-induced vasorelaxation. Twenty-four male Wistar rats at age of 12 weeks were randomly divided into two groups, control (n = 12) and exercise (n = 12) group. The exercise group ran on a treadmill at a speed of 18 m/min for 60 min. Immediately after exercise, insulin-induced and IGF-1-induced vasorelaxant responses were evaluated by the isometric tension of aortic rings in the organ baths. The roles of phosphatidylinositol 3-kinase (PI3K) and nitric oxide synthase (NOS) in vasorelaxant responses were examined by treating selective inhibitors, such as wortmannin (an inhibitor of PI3K) and N(omega)-nitro-L-arginine methyl ester (L-NAME, a NOS inhibitor). In addition, the vascular responses to sodium nitroprusside (SNP), a NO donor, were examined. We found that single exercise session significantly enhanced vasorelaxation mediated by insulin and IGF-1 in rat aortas (P < 0.01). Also, the exercise-enhanced vasorelaxation was abolished by wortmannin or L-NAME. There was no significant difference of SNP-induced vasorelaxation between control and exercise groups. These results indicate that single exercise session acutely enhances insulin-induced and IGF-1-induced vasorelaxation through the PI3K-NOS-dependent pathway.  相似文献   

2.
Exercise can ameliorate vascular dysfunction in hypertension, but its underlying mechanism has not been explored thoroughly. We aimed to investigate whether the high-intensity exercise could enhance vasorelaxation mediated by insulin and insulin-like growth factor-1 (IGF-1) in hypertension. Sixteen-week-old spontaneously hypertensive rats were randomly divided into non-exercise sedentary (SHR) and high-intensity exercise (SHR+Ex) groups conducted by treadmill running at a speed of 30 m/ min until exhaustion. Age-matched Wistar-Kyoto rats (WKY) were used as the normotensive control group. Immediately after exercise, the agonist-induced vasorelaxation of aortas was evaluated in organ baths with or without endothelial denudation. Selective inhibitors were used to examine the roles of nitric oxide synthase (NOS) and phosphatidylinositol-3 kinase (PI3K) in the vasorelaxation. By adding superoxide dismutase (SOD), a superoxide scavenger, the role of superoxide production in the vasorelaxation was also clarified. We found that, the high-intensity exercise significantly (P < 0.05) induced higher vasorelaxant responses to insulin and IGF-1 in the SHR+Ex group than that in the SHR group; after endothelial denudation and pre-treatment of the PI3K inhibitor, NOS inhibitor, or SOD, vasorelaxant responses to insulin and IGF-1 became similar among three groups; the protein expression of insulin receptor, IGF-1 receptor, and endothelial NOS (eNOS) was significantly (P < 0.05) increased in the SHR+Ex group compared with the SHR group;] the relaxation to sodium nitroprusside, a NO donor, was not different among three groups. Our findings suggested that the high-intensity exercise ameliorated the insulin- and IGF-1-mediated vasorelaxation through the endothelium-dependent pathway, which was associated with the reduced level of superoxide production.  相似文献   

3.
The mechanism of action of lithium, an effective treatment for bipolar disease, is still unknown. In this study, the mesenteric vascular beds of control rats and rats that were chronically treated with lithium were prepared by the McGregor method, and the mesenteric vascular bed vasorelaxation responses were examined. NADPH-diaphorase histochemistry was used to determine the activity of NOS (nitric oxide synthase) in mesenteric vascular beds. We demonstrated that ACh-induced vasorelaxation increased in the mesenteric vascular bed of rats treated with lithium. Acute No-nitro-L-arginine methyl ester (L-NAME) administration in the medium blocked ACh-induced vasorelaxation in the control group more effectively than in lithium-treated rats, while the vasorelaxant response to sodium nitroprusside, a NO donor, was not different between lithium-treated and control groups. Acute aminoguanidine administration blocked ACh-induced vasorelaxation of lithium-treated rats, but had no effect in the control rats. Furthermore, NOS activity, determined by NADPH-diaphorase staining, was significantly greater in the mesenteric vascular beds from chronic lithium-treated rats than in those from control rats. These data suggest that the enhanced ACh-induced endothelium-derived vasorelaxation in rat mesenteric bed from chronic lithium-treated rats might be associated with increased NOS activity, likely via iNOS. Simultaneous acute L-NAME and indomethacin administration suggests the possible upregulation of EDHF (endothelium-derived hyperpolarizing factor) in lithium-treated rats.  相似文献   

4.
5.
Activation of protein kinase C (PKC) plays an important role in the negative regulation of receptor signaling, but its effect on insulin-like growth factor-1 (IGF-1) receptor signaling remains unclear. In this study, we characterized the intracellular pathways involved in IGF-1-induced activation of Akt and evaluated the effects of the PKC activator phorbol 12-myristate 13-acetate (PMA) on the Akt activation by IGF-1. IGF-1 induced a time- and concentration-dependent activation of Akt. The effect of IGF-1 was blocked by the phosphatidylinositide 3-kinase (PI3K) inhibitors LY294002 (50 micrometer) and wortmannin (0.5 micrometer), but not by the MEK inhibitor PD98059 (50 micrometer) or the p70 S6 kinase pathway inhibitor rapamycin (50 nm), suggesting that the stimulation of Akt by IGF-1 is mediated by the PI3K pathway. Interestingly, cotreatment with PMA (400 nm) attenuated IGF-1-induced activation of Akt. The attenuation was blocked completely by the PKC inhibitor GO6983 (0.5 micrometer), but only partially by the MEK inhibitor PD98059 (50 micrometer), indicating that MAPK-dependent and -independent pathways are involved. PMA induced the activation of PKC in PC12 cells, and this induction was blocked by GO6983. These data further support the role of PKC in the effect of PMA. Moreover, PKCdelta is likely involved in the action of PMA on the basis of data obtained using isoform-specific inhibitors such as rottlerin. PMA also decreased IGF-1-induced tyrosine phosphorylation of insulin receptor substrate-1 and its association with PI3K. Taken together, these results suggest, for the first time, that stimulation of PKC modulates IGF-1-induced activation of Akt.  相似文献   

6.
Role of PI3-kinase in isoproterenol and IGF-1 induced ecNOS activity   总被引:4,自引:0,他引:4  
Phosphatidylinositol 3-kinase (PI3-K) has been shown to mediate insulin and insulin-like growth factor-1 (IGF-1)-induced nitric oxide (NO) generation and, thus, vascular tone. A role for PI3-K in G-protein-coupled receptor signal transduction has been reported. As beta (beta2)-adrenergic vascular actions are partly dependent on NO, we have investigated the role of PI3-K in isoproterenol (Iso) and IGF-1 induced endothelial NO synthase (ecNOS) activity in rat aortic endothelial cells (RAEC). Cell lysates of RAEC, exposed to Iso (10 micromol/L) for 5 min and 6 h, and to IGF-1 (100 nM) for 10 min and 6 h, or pretreated with PI3-K inhibitor Wortmannin (WT), were used for measuring PI3-K activity, p85kDa regulatory protein, and citrulline production. Results show that Iso and IGF-1 increased a p85 subunit and citrulline production, and also enhanced 32P incorporation into PIP3. Pretreatment with WT inhibited Iso-stimulated ecNOS, as well as, PI3-K activity. Iso enhanced association of ecNOS with the triton X-100-insoluble fraction of RAEC. These data indicate that the endothelial cell PI3-K pathway mediates, in part, the release of NO and subsequent vasorelaxation in response to this beta-agonist, as well as, IGF-1.  相似文献   

7.
The study was designed to investigate the effect of retinol binding protein (RBP)-4 on the phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways, which mediate the effects of insulin in vascular endothelial cells. The effects of RBP4 on nitric oxide (NO) and insulin-stimulated endothelin-1 (ET-1) secretion and on phosphorylation (p) of Akt, endothelial NO synthetase (eNOS), and extracellular signal-regulated kinase (ERK)1/2 were investigated in bovine vascular aortic endothelial cells (BAECs). RBP4 showed an acute vasodilatatory effect on aortic rings of rats within a few minutes. In BAECs, RBP4-treatment for 5 min significantly increased NO production, but inhibited insulin-stimulated ET-1 secretion. RBP4-induced NO production was not inhibited by tetraacetoxymethylester (BAPTA-AM), an intracellular calcium chelator, but was completely abolished by wortmannin, a PI3K inhibitor. RBP4 significantly increased p-Akt and p-eNOS production, and significantly inhibited p-ERK1/2 production. Triciribine, an Akt inhibitor, and wortmannin significantly inhibited RBP4-induced p-Akt and p-eNOS production. Inhibition of Akt1 by small interfering RNA decreased p-eNOS production enhanced by RBP4 in human umbilical vein endothelial cells. In conclusion, RBP4 has a robust acute effect of enhancement of NO production via stimulation of part of the PI3K/Akt/eNOS pathway and inhibition of ERK1/2 phosphorylation and insulin-induced ET-1 secretion, probably in the MAPK pathway, which results in vasodilatation.  相似文献   

8.
9.
Mesenchymal stem cells (MSCs) are attractive candidates for cell based therapies. However, the mechanisms responsible for stem cell migration and homing after transplantation remain unknown. It has been shown that insulin-like growth factor-1 (IGF-1) induces proliferation and migration of some cell types, but its effects on stem cells have not been investigated. We isolated and cultured MSC from rat bone marrow, and found that IGF-1 increased the expression levels of the chemokine receptor CXCR4 (receptor for stromal cell-derived factor-1, SDF-1). Moreover, IGF-1 markedly increased the migratory response of MSC to SDF-1. The IGF-1-induced increase in MSC migration in response to SDF-1 was attenuated by PI3 kinase inhibitor (LY294002 and wortmannin) but not by mitogen-activated protein/ERK kinase inhibitor PD98059. Our data indicate that IGF-1 increases MSC migratory responses via CXCR4 chemokine receptor signaling which is PI3/Akt dependent. These findings provide a new paradigm for biological effects of IGF-1 on MSC and have implications for the development of novel stem cell therapeutic strategies.  相似文献   

10.
Insulin-like growth factor-1 (IGF-1) both promotes survival and activates protein synthesis in neurons. In the present paper, we investigate the effect of IGF-1 treatment on cap-dependent translation in primary cultured neuronal cells. IGF-1 treatment increased the phosphorylation of eukaryotic initiation factor (eIF)-4E-binding protein 1 (4E-BP1), exclusively at Thr-36 and Thr-45 residues, and eIF-4G phosphorylation at Ser-1108. In contrast, a significant eIF-4E dephosphorylation was found. In parallel, increased eIF-4E/4G assembly and protein synthesis activation in response to IGF-1 treatment were observed. The phosphatidylinositol 3-kinase (PI3-K) inhibitor wortmannin and the mammalian target of rapamycin (mTOR) inhibitor rapamycin, but not the mitogen-activated protein kinase (MAPK)-activating kinase (MEK) inhibitor PD98059, reversed the IGF-1-induced effects observed on eIF-4E/4G assembly and phosphorylation status of 4E-BP1, eIF-4E, and eIF-4G. Therefore, our findings show that the IGF-1-induced regulation of cap-dependent translation is largely dependent on the PI-3K and mTOR pathway in neuronal cells.  相似文献   

11.

Aims

We evaluated the mechanisms involved in insulin-induced vasodilatation after acute resistance exercise in healthy rats.

Main methods

Wistar rats were divided into 3 groups: control (CT), electrically stimulated (ES) and resistance exercise (RE). Immediately after acute RE (15 sets with 10 repetitions at 70% of maximal intensity), the animals were sacrificed and rings of mesenteric artery were mounted in an isometric system. After this, concentration–response curves to insulin were performed in control condition and in the presence of LY294002 (PI3K inhibitor), L-NAME (NOS inhibitor), L-NAME + TEA (K+ channels inhibitor), LY294002 + BQ123 (ET-A antagonist) or ouabain (Na+/K+ ATPase inhibitor).

Key findings

Acute RE increased insulin-induced vasorelaxation as compared to control (CT: Rmax = 7.3 ± 0.4% and RE: Rmax = 15.8 ± 0.8%; p < 0.001). NOS inhibition reduced (p < 0.001) this vasorelaxation from both groups (CT: Rmax = 2.0 ± 0.3%, and RE: Rmax = − 1.2 ± 0.1%), while PI3K inhibition abolished the vasorelaxation in CT (Rmax = − 0.1 ± 0.3%, p < 0.001), and caused vasoconstriction in RE (Rmax = − 6.5 ± 0.6%). That insulin-induced vasoconstriction on PI3K inhibition was abolished (p < 0.001) by the ET-A antagonist (Rmax = 2.9 ± 0.4%). Additionally, acute RE enhanced (p < 0.001) the functional activity of the ouabain-sensitive Na+/K+ ATPase activity (Rmax = 10.7 ± 0.4%) and of the K+ channels (Rmax = − 6.1 ± 0.5%; p < 0.001) in the insulin-induced vasorelaxation as compared to CT.

Significance

Such results suggest that acute RE promotes enhanced insulin-induced vasodilatation, which could act as a fine tuning to vascular tone.  相似文献   

12.
We hypothesized that vascular nitric oxide synthase (NOS) function and expression is differentially regulated in adult Dahl salt-sensitive rats maintained on Teklad or American Institutes of Nutrition (AIN)-76A standard chow diets from 3 to 16 wk old. At 16 wk old, acetylcholine (ACh)-mediated vasorelaxation and phenylephrine (PE)-mediated vasoconstriction in the presence and absence of NOS inhibitor, N(ω)-nitro-L-arginine methyl ester (L-NAME), was assessed in small-resistance mesenteric arteries and aortas. Rats maintained on either diet throughout the study had similar responses to ACh and PE in the presence or absence of L-NAME in both vascular preparations. We reasoned that changing from one diet to another as adults may induce vascular NOS dysfunction. In the absence of L-NAME, small arteries from Teklad-fed rats switched to AIN-76 diet and vice versa had similar responses to ACh and PE. Small-arterial NOS function was maintained in rats switched to AIN-76A from Teklad diet, whereas NOS function in response to ACh and PE was lost in the small arteries from rats changed to Teklad from AIN-76A diet. This loss of NOS function was echoed by reduced expression of NOS3, as well as phosphorylated NOS3. The change in NOS phenotype in the small arteries was observed without changes in blood pressure. Aortic responses to ACh or PE in the presence or absence of L-NAME were similar in all diet groups. These data indicate that changing standard chow diets leads to small arterial NOS dysfunction and reduced NOS signaling, predisposing Dahl salt-sensitive rats to vascular disease.  相似文献   

13.
Previously, we showed that insulin growth factor (IGF)-1 binding protein-3 (IGFBP-3), independent of IGF-1, reduces pathological angiogenesis in a mouse model of the oxygen-induced retinopathy (OIR). The current study evaluates novel endothelium-dependent functions of IGFBP-3 including blood retinal barrier (BRB) integrity and vasorelaxation. To evaluate vascular barrier function, either plasmid expressing IGFBP-3 under the regulation of an endothelial-specific promoter or a control plasmid was injected into the vitreous humor of mouse pups (P1) and compared to the non-injected eyes of the same pups undergoing standard OIR protocol. Prior to sacrifice, the mice were given an injection of horseradish peroxidase (HRP). IGFBP-3 plasmid-injected eyes displayed near-normal vessel morphology and enhanced vascular barrier function. Further, in vitro IGFBP-3 protects retinal endothelial cells from VEGF-induced loss of junctional integrity by antagonizing the dissociation of the junctional complexes. To assess the vasodilatory effects of IGFBP-3, rat posterior cerebral arteries were examined in vitro. Intraluminal IGFBP-3 decreased both pressure- and serotonin-induced constrictions by stimulating nitric oxide (NO) release that were blocked by L-NAME or scavenger receptor-B1 neutralizing antibody (SRB1-Ab). Both wild-type and IGF-1-nonbinding mutant IGFBP-3 (IGFBP-3NB) stimulated eNOS activity/NO release to a similar extent in human microvascular endothelial cells (HMVECs). NO release was neither associated with an increase in intracellular calcium nor decreased by Ca(2+)/calmodulin-dependent protein kinase II (CamKII) blockade; however, dephosphorylation of eNOS-Thr(495) was observed. Phosphatidylinositol 3-kinase (PI3K) activity and Akt-Ser(473) phosphorylation were both increased by IGFBP-3 and selectively blocked by the SRB1-Ab or PI3K blocker LY294002. In conclusion, IGFBP-3 mediates protective effects on BRB integrity and mediates robust NO release to stimulate vasorelaxation via activation of SRB1. This response is IGF-1- and calcium-independent, but requires PI3K/Akt activation, suggesting that IGFBP-3 has novel protective effects on retinal and systemic vasculature and may be a therapeutic candidate for ocular complications such as diabetic retinopathy.  相似文献   

14.
It is now well-recognized that the mitogen-activated protein (MAP) kinase cascade facilitates signaling from an activated tyrosine kinase receptor to the nucleus. In fact, an increasing number of extracellular effectors have been reported to activate the MAP kinase cascade, with a significant number of cellular responses attributed to this activation. We set out to explore how two extracellular effectors, basic fibroblast growth factor (bFGF) and insulin-like growth factor 1 (IGF-1), which have both been reported to activate MAP kinase, generate quite distinct cellular responses in C2C12 myoblasts. We demonstrate here that bFGF, which is both a potent mitogen and inhibitor of myogenic differentiation, is a strong MAP kinase agonist. By contrast, IGF-1, which is equally mitogenic for C2C12 cells but ultimately enhances the differentiated phenotype, is a weak activator of the MAP kinase cascade. We further demonstrate that IGF-1 is a potent activator of both insulin receptor substrate IRS-1 tyrosyl phosphorylation and association of IRS-1 with activated phosphatidylinositol 3-kinase (PI 3-kinase). Finally, use of the specific MAP kinase kinase inhibitor, PD098059, and wortmannin, a PI 3-kinase inhibitor, suggests the existence of an IGF-1-induced, MAP kinase-independent signaling event which contributes to the mitogenic response of this factor, whereas bFGF-induced mitogenesis appears to strongly correlate with activation of the MAP kinase cascade.  相似文献   

15.
The Ras/Raf/extracellular signal-regulated kinase 1 and 2 (ERK1/2) signaling pathway is known to cross-talk with other signaling pathways, including phosphatidylinositol 3-kinase (PI3K)/Akt pathway. However, the role of PI3K in ERK-1/2 activation induced by tyrosine kinase receptors was not fully understood. Here, we report that two structurally distinct PI3K inhibitors, wortmannin and LY294002, inhibited insulin-induced activation of ERK1/2 but had no effect on EGF-induced activation of ERK1/2 in hepatocellular carcinoma BEL-7402 and SMMC-7721 cells, breast cancer MCF-7 cells, and prostate cancer LNCaP cells. Although protein kinase C could act as a mediator between PI3K and ERK1/2, protein kinase C inhibitor chelerythrine chloride did not inhibit insulin-induced ERK1/2 activation. Both insulin- and EGF-induced ERK1/2 activation are strictly dependent on Ras activation, however, wortmannin only inhibited insulin-induced, but not EGF-induced Ras activation. These results indicate that PI3K plays different roles in the activation of Ras/ERK1/2 signaling by insulin and EGF, and that insulin-stimulated, but not EGF-stimulated, ERK1/2 and Akt signalings diverge at PI3K.  相似文献   

16.
The uterine vasculature plays an important role during pregnancy by providing adequate perfusion of the maternal-fetal interface. To this end, substantial remodeling of the uterine vasculature occurs with consequent changes in responsiveness to contractile agents. The purpose of our study was to characterize the vasorelaxant effects of estrogens on vascular smooth muscles of the rat uterine artery during pregnancy and to evaluate the involvement of estrogen receptors (ESR) and nitric oxide synthases (NOS). To do so, we measured NOS expression in the whole uterine and mesenteric circulatory bed by Western blotting. Vasorelaxant effects of 17beta-estradiol (17beta-E(2)) were assessed on endothelium-denuded uterine arteries with wire myographs in the absence and presence of pharmacological modulators [nitro-L-arginine methyl ester (L-NAME), ICI-182780, tamoxifen]. All experiments were performed on arteries from nonpregnant (NP) and late pregnant (P) rats. In the uterine vasculature of the latter group, NOS3 (endothelial NOS) expression was increased, while NOS1 (neuronal NOS) was reduced compared with NP rats. Expression of the NOS2 (inducible NOS) isoform was undetectable in the two groups. Both 17beta-E(2) and 17alpha-E(2) induced uterine artery relaxation, but the latter evoked lower responses. Endothelium-denuded arteries from NP rats showed larger relaxation with 17beta-E(2) than P rats. This larger relaxation disappeared in the presence of L-NAME. The ESR antagonist ICI-182780 did not affect acute relaxation with 17beta-E(2) and 17alpha-E(2). Moreover, membrane-nonpermeant 17beta-E(2):BSA (estradiol conjugated to bovine serum albumin) did not induce any vasorelaxation. Our results indicate that estrogens exert direct acute vasorelaxant effects in smooth muscles of the rat uterine artery that are mediated by mechanisms independent of ESR activation, but with some stereospecificity. Part of this effect, in NP rats only, is due to nitric oxide produced from muscle NOS1.  相似文献   

17.
The IGF-1 receptor (IGF-1R) and MT1-MMP are synthesized as larger precursor proproteins, which require endoproteolytic activation by the proprotein convertases (PCs) furin/PC5 to gain full biological activity. The aim of this study was to investigate the contribution of PCs to IGF-1R and/or MT1-MMP activation in vascular smooth muscle cells (VSMCs) as well as VSMC proliferation/migration, which are key elements in vascular remodeling. Furin and PC5 mRNAs and proteins were found in VSMCs. Inhibition of furin-like PCs with the specific pharmacological inhibitor dec-CMK inhibited IGF-1R endoproteolytic activation. Inhibition of IGF-1R maturation abrogated IGF-induced IGF-1R autophosphorylation, PI3-kinase and MAPK induction, as well as VSMC proliferation (p<0.05 vs. controls), whereas it had no effect of PDGF-stimulated signaling pathways or cell growth. Both, IGF-1 and PDGF-BB, induced MT1-MMP expression, but only IGF-1-mediated MT1-MMP induction was inhibited by dec-CMK. Induction of MMP-2 by IGF-1 was inhibited by the PI3-kinase inhibitor wortmannin, but not by the MEK-inhibitor PD98059. Dec-CMK inhibited VSMC chemotaxis comparable to the effects of the MMP-inhibitor GM6001 (both p<0.05 vs. controls), supporting that MMPs are involved. In conclusion, this study demonstrates that targeting furin-like PCs and thus inhibiting IGF-1R activation is a novel target to inhibit IGF-1-mediated signaling and cell functions, such as IGF-1-induced MT1-MMP/MMP-2 in VSMCs.  相似文献   

18.
Insulin, IGF-1 or EGF induce membrane ruffling through their respective tyrosine kinase receptors. To elucidate the molecular link between receptor activation and membrane ruffling, we microinjected phosphorylated peptides containing YMXM motifs or a mutant 85 kDa subunit of phosphoinositide (PI) 3-kinase (delta p85) which lacks a binding site for the catalytic 110 kDa subunit of PI 3-kinase into the cytoplasm of human epidermoid carcinoma KB cells. Both inhibited the association of insulin receptor substrate-1 (IRS-1) with PI 3-kinase in a cell-free system and also inhibited insulin- or IGF-1-induced, but not EGF-induced, membrane ruffling in KB cells. Microinjection of nonphosphorylated analogues, phosphorylated peptides containing the EYYE motif or wild-type 85 kDa subunit (Wp85), all of which did not inhibit the association of IRS-1 with PI 3-kinase in a cell-free system, did not inhibit membrane ruffling in KB cells. In addition, wortmannin, an inhibitor of PI 3-kinase activity, inhibited insulin- or IGF-1-induced membrane ruffling. These results suggest that the association of IRS-1 with PI 3-kinase followed by the activation of PI 3-kinase are required for insulin- or IGF-1-induced, but not for EGF-induced, membrane ruffling.  相似文献   

19.
In multiple myeloma, the Akt/PI3K pathway is involved in the proliferation of myeloma cells. In the current study, we have investigated the impact of the CD45 phosphatase in the control of Akt/PI3K activation. We show that Akt activation in response to insulin-like growth factor-1 (IGF-1) is highly variable from one human myeloma cell line to another one. Actually, Akt activation is highly related to whether CD45 is expressed or not. Indeed, both the magnitude and the duration of Akt phosphorylation in response to IGF-1 are more important in CD45- than in CD45+ myeloma cell lines. We next demonstrate a physical association between CD45 and IGF-1 receptor (IGF-1R) suggesting that CD45 could be involved in the dephosphorylation of the IGF-1R. Furthermore, the growth of CD45- myeloma cell lines is mainly or even totally controlled by the PI3K pathway whereas that of CD45+ myeloma cell lines is modestly controlled by it. Indeed, wortmannin, a specific PI3K inhibitor, induced a dramatic growth inhibition in the CD45- myeloma cell lines characterized by a G1 growth arrest, whereas it has almost no effect on CD45+ myeloma cell lines. Altogether, these results suggest that CD45 negatively regulates IGF-1-dependent activation of PI3K. Thus, strategies that block IGF-1R signaling and consequently the Akt/PI3K pathway could be a priority in the treatment of patients with multiple myeloma, especially those lacking CD45 expression that have a very poor clinical outcome.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号