首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tetraheme cytochrome c3 is a small metalloprotein with ca. 13,000 Da found in sulfate-reducing bacteria, which is believed to act as a partner of hydrogenase. The three-dimensional structure of the oxidized and reduced forms of cytochrome c3 from Desulfovibrio desulfuricans ATCC 27774 at pH 7.6 were determined using high-resolution X-ray crystallography and were compared with the previously determined oxidized form at pH 4.0. Theoretical calculations were performed with both structures, using continuum electrostatic calculations and Monte Carlo sampling of protonation and redox states, in order to understand the molecular basis of the redox-Bohr and cooperativity effects related to the coupled transfer of electrons and protons. We were able to identify groups that showed redox-linked conformational changes. In particular, Glu61, His76, and propionate D of heme II showed important contributions to the redox-cooperativity, whereas His76, propionate A of heme I, and propionate D of heme IV were the key residues for the redox-Bohr effect. Upon reduction, an important movement of the backbone region surrounding hemes I and II was also identified, that, together with a few redox-linked conformational changes in side-chain residues, results in a significant decrease in the solvent accessibility of hemes I and II.  相似文献   

2.
Using the earlier suggested method the calculation of the backbone conformations of horse heart cytochrome c in oxidized (ferricytochrome c) and reduced (ferrocytochrome c) states has been performed by the two-dimensional nuclear Overhauser effect spectroscopy data. For both protein forms the secondary structure elements have been revealed and the conformations of the irregular polypeptide chain segments have been analysed. The similarity of the secondary structures of ferri- and ferrocytochrome c in solution was established from the comparison of their conformations. Small differences between the conformations of two molecule forms are shown to be localized within the polypeptide chain fragments situated in the spatial structure near the heme crevice. The comparison of the dihedral phi and psi angles in the calculated conformations of horse cytochrome C with the corresponding characteristics of X-ray structures of tuna ferri- and ferrocytochrome c made for the oxidized and reduced protein forms using the quantitative criteria testifies the similarity of their conformations in solution and crystal. In is shown that the conformational changes of the separate amino acid residues which take place as the result of the "solution-to-crystal" transition occur on the surface fragments of protein globule and do not lead to essential alterations of the secondary molecule structure.  相似文献   

3.
The crystal structure of oxidized cytochrome c from tuna hearts has been solved by x-ray diffraction to a resolution of 2.0 A, using four isomorphous heavy atom derivatives. The crystals, space group P43, have 2 independent cytochrome molecules in the asymmetric repeating unit. No significant difference is seen between these 2 molecules, aside from conformations of a few surface side chains. The molecular folding observed is essentially that reported for tuna ferrocytochrome c. In particular, the ring of phenylalanine 83 lies against the heme group and closes the heme crevice, and is not swung out into the surroundings as had been believed from the 2.8 A horse ferricytochrome c structure.  相似文献   

4.
The molecular structures of ferri- and ferrocytochrome c551 from Pseudomonas aeruginosa have been refined at a resolution of 1.6 Å, to an R factor of 19.5% for the oxidized molecule and 18.7% for the reduced. Reduction of oxidized crystals with ascorbate produced little change in cell dimensions, a 10% mean change in Fobs, and no damage to the crystals. The heme iron is not significantly displaced from the porphyrin plane. Bond lengths from axial ligands to the heme iron are as expected in a low-spin iron compound. A total of 67 solvent molecules were incorporated in the oxidized structure, and 73 in the reduced, of which four are found inside the protein molecule. The oxidized and reduced forms have virtually identical tertiary structures with 2 ° root-mean-square differences in main-chain torsion angles φ and ψ, but with larger differences along the two edges of the heme crevice. The difference map and pyrrole ring tilt suggest that a partially buried water molecule (no. 23) in the heme crevice moves upon change of oxidation state.Pseudomonas cytochrome c551 differs from tuna cytochrome c in having: (1) a water molecule (no. 23) at the upper left of the heme crevice; that is, between Pro62 and the heme pyrrol 3 ring on the sixth ligand Met61 side, where tuna cytochrome c has an evolutionary invariant Phe82 ring; (2) a string of hydrophobic side-chains along the left side of the heme crevice, and fewer positively charged lysines in the vicinity; and (3) a more exposed and presumably more easily ionizable heme propionate group at the bottom of the molecule. A network of hydrogen bonds in the heme crevice is reminiscent of that inside the heme crevice of tuna cytochrome c. As in tuna, a slight motion of the water molecule toward the heme is observed in the oxidized state, helping to give the heme a more polar microenvironment. The continuity of solvent environment between the heme crevice and the outer medium could explain the greater dependence of redox potential on pH in cytochrome c551 than in cytochrome c.  相似文献   

5.
The fully oxidized complex of cytochrome c and cytochrome oxidase formed at low ionic strength was studied by resonance Raman spectroscopy. The spectra of the complex and of the individual components were compared over a wide frequency range using Soret band excitation. In both partners of the complex, structural changes occur in the heme groups and in their immediate protein environment. The spectra of the complex in the 1600-1700 cm-1 frequency range were dominated by bands from the cytochrome oxidase component, whereas those in the 300-500 cm-1 range were dominated by bands from the cytochrome c component, hence allowing separation of the contributions from the two individual species. For cytochrome c, spectral changes were observed which correspond to the induction of the conformational state I and the six-coordinated low-spin configuration of state II on binding to cytochrome oxidase. While in state I the structure of cytochrome c is essentially the same as in solution, state II is characterized by a structural rearrangement of the heme pocket, leading to a weakening of the axial iron-methionine bond and an opening of the heme crevice which is situated in the center of the binding domain for cytochrome oxidase. The relative contributions of the two cytochrome c states were estimated to be approximately in the ratio 1:1 in the complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
WEFT-NOESY and transfer WEFT-NOESY NMR spectra were used to determine the heme proton assignments for Rhodobacter capsulatus ferricytochrome c2. The Fermi contact and pseudo-contact contributions to the paramagnetic effect of the unpaired electron in the oxidized state were evaluated for the heme and ligand protons. The chemical shift assignments for the 1H and 15N NMR spectra were obtained by a combination of 1H-1H and 1H-15N two-dimensional NMR spectroscopy. The short-range nuclear Overhauser effect (NOE) data are consistent with the view that the secondary structure for the oxidized state of this protein closely approximates that of the reduced form, but with redox-related conformational changes between the two redox states. To understand the decrease in stability of the oxidized state of this cytochrome c2 compared to the reduced form, the structural difference between the two redox states were analyzed by the differences in the NOE intensities, pseudo-contact shifts and the hydrogen-deuterium exchange rates of the amide protons. We find that the major difference between redox states, although subtle, involve heme protein interactions, orientation of the heme ligands, differences in hydrogen bond networks and, possible alterations in the position of some internal water molecules. Thus, it appears that the general destabilization of cytochrome c2, which occurs on oxidation, is consistent with the alteration of hydrogen bonds that result in changes in the internal dynamics of the protein.  相似文献   

7.
High-resolution three-dimensional structure of horse heart cytochrome c   总被引:19,自引:0,他引:19  
The 1.94 A resolution three-dimensional structure of oxidized horse heart cytochrome c has been elucidated and refined to a final R-factor of 0.17. This has allowed for a detailed assessment of the structural features of this protein, including the presence of secondary structure, hydrogen-bonding patterns and heme geometry. A comprehensive analysis of the structural differences between horse heart cytochrome c and those other eukaryotic cytochromes c for which high-resolution structures are available (yeast iso-1, tuna, rice) has also been completed. Significant conformational differences between these proteins occur in three regions and primarily involve residues 22 to 27, 41 to 43 and 56 to 57. The first of these variable regions is part of a surface beta-loop, whilst the latter two are located together adjacent to the heme group. This study also demonstrates that, in horse cytochrome c, the side-chain of Phe82 is positioned in a co-planar fashion next to the heme in a conformation comparable to that found in other cytochromes c. The positioning of this residue does not therefore appear to be oxidation-state-dependent. In total, five water molecules occupy conserved positions in the structures of horse heart, yeast iso-1, tuna and rice cytochromes c. Three of these are on the surface of the protein, serving to stabilize local polypeptide chain conformations. The remaining two are internally located. One of these mediates a charged interaction between the invariant residue Arg38 and a nearby heme propionate. The other is more centrally buried near the heme iron atom and is hydrogen bonded to the conserved residues Asn52, Tyr67 and Thr78. It is shown that this latter water molecule shifts in a consistent manner upon change in oxidation state if cytochrome c structures from various sources are compared. The conservation of this structural feature and its close proximity to the heme iron atom strongly implicate this internal water molecule as having a functional role in the mechanism of action of cytochrome c.  相似文献   

8.
Large-angle X-ray diffuse scattering has been used for studying the conformational changes in cytochrome c during its transition from crystal into solution and during a change of the electron state of the heme. It has been found that the structure of cytochrome c in solution differs from its structure in crystal by a shift of the chain fragment in the region of 60-77 amino acid residues. The studies of the oxidized, reduced and cyanoforms of protein in solution have not revealed noticeable changes in the protein structure.  相似文献   

9.
The crystal structure of the soluble domain of the membrane bound cytochrome c(552) (cytochrome c(552)') from Paracoccus denitrificans was determined using the multiwavelength anomalous diffraction technique and refined at 1.5 A resolution for the oxidized and at 1. 4 A for the reduced state. This is the first high-resolution crystal structure of a cytochrome c at low ionic strength in both redox states. The atomic model allowed for a detailed assessment of the structural properties including the secondary structure, the heme geometry and interactions, and the redox-coupled structural changes. In general, the structure has the same features as that of known eukaryotic cytochromes c. However, the surface properties are very different. Cytochrome c(552)' has a large strongly negatively charged surface part and a smaller positively charged area around the solvent-exposed heme atoms. One of the internal water molecules conserved in all structures of eukaryotic cytochromes c is also present in this bacterial cytochrome c. It contributes to the interactions between the side-chain of Arg36 and the heme propionate connected to pyrrole ring A. Reduction of the oxidized crystals does not influence the conformation of cytochrome c(552)' in contrast to eukaryotic cytochromes c. The oxidized cytochrome c(552)', especially the region of amino acid residues 40 to 56, appears to be more flexible than the reduced one.  相似文献   

10.
Sogabe S  Miki K 《FEBS letters》2001,491(3):174-179
The crystal structure of the oxidized cytochrome c(2) from Blastochloris (formerly Rhodopseudomonas) viridis was determined at 1.9 A resolution. Structural comparison with the reduced form revealed significant structural changes according to the oxidation state of the heme iron. Slight perturbation of the polypeptide chain backbone was observed, and the secondary structure and the hydrogen patterns between main-chain atoms were retained. The oxidation state-dependent conformational shifts were localized in the vicinity of the methionine ligand side and the propionate group of the heme. The conserved segment of the polypeptide chain in cytochrome c and cytochrome c(2) exhibited some degree of mobility, interacting with the heme iron atom by the hydrogen bond network. These results indicate that the movement of the internal water molecule conserved in various c-type cytochromes drives the adjustments of side-chain atoms of nearby residue, and the segmental temperature factor changes along the polypeptide chain.  相似文献   

11.
X-ray structures of bovine heart cytochrome c oxidase at 1.8/1.9 A resolution in the oxidized/reduced states exhibit a redox coupled conformational change of an aspartate located near the intermembrane surface of the enzyme. The alteration of the microenvironment of the carboxyl group of this aspartate residue indicates the occurrence of deprotonation upon reduction of the enzyme. The residue is connected with the matrix surface of the enzyme by a hydrogen-bond network that includes heme a via its propionate and formyl groups. These X-ray structures provide evidence that proton pumping occurs through the hydrogen bond network and is driven by the low spin heme. The function of the aspartate is confirmed by mutation of the aspartate to asparagine. Although the amino acid residues of the hydrogen bond network and the structures of the low spin heme peripheral groups are not completely conserved amongst members of the heme-copper terminal oxidase superfamily, the existence of low spin heme and the hydrogen bond network suggests that the low spin heme provides the driving element of the proton-pumping process.  相似文献   

12.
The heme ligation in the isolated c domain of Paracoccus pantotrophus cytochrome cd(1) nitrite reductase has been characterized in both oxidation states in solution by NMR spectroscopy. In the reduced form, the heme ligands are His69-Met106, and the tertiary structure around the c heme is similar to that found in reduced crystals of intact cytochrome cd1 nitrite reductase. In the oxidized state, however, the structure of the isolated c domain is different from the structure seen in oxidized crystals of intact cytochrome cd1, where the c heme ligands are His69-His17. An equilibrium mixture of heme ligands is present in isolated oxidized c domain. Two-dimensional exchange NMR spectroscopy shows that the dominant species has His69-Met106 ligation, similar to reduced c domains. This form is in equilibrium with a high-spin form in which Met106 has left the heme iron. Melting studies show that the midpoint of unfolding of the isolated c domain is 320.9 +/- 1.2 K in the oxidized and 357.7 +/- 0.6 K in the reduced form. The thermally denatured forms are high-spin in both oxidation states. The results reveal how redox changes modulate conformational plasticity around the c heme and show the first key steps in the mechanism that lead to ligand switching in the holoenzyme. This process is not solely a function of the properties of the c domain. The role of the d1 heme in guiding His17 to the c heme in the oxidized holoenzyme is discussed.  相似文献   

13.
The Ser82 and Phe82 variants of yeast iso-1 cytochrome c were studied by resonance Raman spectroscopy. In both oxidation states, distinct spectral changes were observed for some of those bands in the low-frequency region, which sensitively respond to conformational perturbations of the protein environment of the heme. These bands can be assigned to modes which include strong contributions of vibrations largely localized in the propionate-carrying pyrrole rings A and D. This indicates structural differences in the deeper part of the heme crevice, remote from the mutation site. This conclusion is in line with previous results from X-ray crystallography and NMR spectroscopy. No differences in the resonance-Raman spectra were observed which can be directly correlated with conformational changes of the heme pocket in the vicinity of the mutation site. Temperature-dependent resonance Raman experiments of the oxidized mutants revealed spectral changes which are closely related to those observed for cytochrome c upon adsorption to charged silver surfaces by surface-enhanced resonance Raman spectroscopy. These spectral changes can be attributed to an opening of the heme crevice accompanied by a weakening of the iron-methionine ligand bond. The temperature-dependent conformational transition occurs at approximately 30 degrees C for the Ser82 variant and at about 45 degrees C for the Phe82 variant, implying that the Phe----Ser substitution significantly lowers the thermal stability of the heme pocket. The reduced forms of both mutants are stable up to 65 degrees C.  相似文献   

14.
The 20-kDa di-heme cytochrome c (4) from the psycrophilic bacterium Pseudoalteromonas haloplanktis TAC 125 was cloned and expressed in Escherichia coli and investigated through UV-vis and (1)H NMR spectroscopies and protein voltammetry. The model structure was computed using the X-ray structure of Pseudomonas stutzeri cytochrome c (4) as a template. The protein shows unprecedented properties within the cytochrome c (4) family, including (1) an almost nonpolar surface charge distribution, (2) the absence of high-spin heme Fe(III) states, indicative of a thermodynamically stable and kinetically inert axial heme His,Met coordination, and (3) identical E degrees ' values for the two heme centers (+0.322 V vs the standard hydrogen elecrode). At pH extremes, both heme groups undergo the "acid" and "alkaline" conformational transitions typical of class I cytochromes c, involving ligand-exchange equilibria, whereas at intermediate pH values their electronic properties are sensitive to several residue ionizations.  相似文献   

15.
By constructing a continuity equation of energy flow, one can utilize results from a molecular dynamics simulation to calculate the energy flux or flow in different parts of a biomolecule. Such calculations can yield useful insights into the pathways of energy flow in biomolecules. The method was first tested on a small system of a cluster of 13 argon atoms and then applied to the study of the pathways of energy flow after a tuna ferrocytochrome c molecule was oxidized. Initially, energy propagated faster along the direction perpendicular to the heme plane. This was due to an efficient through-bond mechanism, because the heme iron in cytochrome c was covalently bonded to a cysteine and a histidine. For the oxidation of cytochrome c, electrostatic interactions also facilitated a long-range through-space mechanism of energy flow. As a result, polar or charged groups that were further away from the oxidation site could receive energy earlier than nonpolar groups closer to the site. Another bridging mechanism facilitating efficient long-range responses to cytochrome c oxidation involved the coupling of far-off atoms with atoms that were nearer to, and interacted directly with, the oxidation site. The different characteristics of these energy transfer mechanisms defied a simple correlation between the time that the excess energy of the oxidation site first dissipated to an atom and the distance of the atom from the oxidation site. For tuna cytochrome c, all of the atoms of the protein had sensed the effects of the oxidation within approximately 40 fs. For the length scale of energy transfer considered in this study, the speed of the energy propagation in the protein was on the order of 10(5) m/s.  相似文献   

16.
The synthesis of tri(2-furyl)(8-quinolylmethyl)phosphonium bromide and 2-[2-tri(2-furyl)phosphoniophenyl]benzimidazole perchlorate is described, the latter involving a nickel(II)-catalysed displacement of bromine from 2-(2-bromophenyl)benzimidazole by tri(2-furyl)phosphine. X-ray structural studies of the phosphoniobenzimidazole salt reveals the existence of a significant hypervalent coordinative interaction between heterocyclic nitrogen and the phosphonium centre, which also appears to be retained in solution, the 31P NMR spectrum showing a significantly shielded phosphorus atom, δ31P=ca. 40 ppm in CDCl3. The structure of the phosphoniophenylbenzimidazole cation reveals major distortion of bond angles about phosphorus away from the idealised tetrahedral angles expected for a tetraarylphosphonium salt, in the range 102-116°. Three of the angles are reduced below the tetrahedral angle and three are increased, the structure about phosphorus approaching that of a trigonal bipyramid, in which the heterocyclic imino nitrogen forms part of a five-membered ring spanning apical-equatorial positions. The apical axis of the trigonal bipyramid is formed by this nitrogen atom and one of the 2-furyl groups, the apical axial bond angle (N2-P-C14) being an average of 178°. The remaining 2-furyl groups occupy equatorial positions, along with the phenyl ring. Significantly, the nitrogen-phosphorus distance is an average of 2.67 Å (for two independent molecules in the unit cell), being the shortest observed in structures of this type, a consequence of the electron-withdrawing properties of the 2-furyl substituents at phosphorus. The structure also shows edge to face associations of 2-furyl substituents of one cation with the phenyl ring of the benzimidazole unit of another cation. The perchlorate anion is hydrogen-bonded to the nitrogen bearing the hydrogen atom in the benzimidazole ring system. In contrast, the N-P interaction in the quinolylmethylphosphonium salt is much less developed, with an N-P distance of 3.511 Å, although there is considerable deformation of bond angles at phosphorus. The crystal structure is dominated by the existence of hydrogen-bonded interactions between the cation, anion and a molecule of water, and by face to face interactions between cations. Both salts undergo loss of a 2-furyl group on treatment with hydroxide ion.  相似文献   

17.
Y Feng  H Roder  S W Englander 《Biochemistry》1990,29(14):3494-3504
Proton nuclear magnetic resonance assignments for reduced and oxidized equine cytochrome c show that many individual protons exhibit different chemical shifts in the two protein forms, reflecting diamagnetic shift effects due to structure change, and in addition contact and pseudocontact shifts that occur only in the paramagnetic oxidized form. To evaluate the chemical shift differences (delta delta) for structure change, we removed the pseudocontact shift contribution by a calculation based on knowledge of the electron spin g tensor. The g-tensor parameters were determined from the delta delta values of a large set (64) of C alpha H protons at well-defined spatial positions in the oxidized horse protein. The g-tensor calculation, when repeated using only 12 available C alpha H proton resonances for cytochrome c from tuna, proved to be remarkably stable. The largest principal value of the g tensor (gz) falls precisely along the ligand bond between the heme iron and methionine-80 sulfur, while gx and gy closely match the natural heme axes defined by the pyrrole nitrogens. The derived g tensor was then used together with spatial coordinates for the oxidized form to calculate the pseudocontact shift contribution (delta pc) to proton resonances at 400 identifiable sites throughout the protein, so that the redox-dependent chemical shift discrepancy, delta delta-delta pc, could be evaluated. Large residual changes in chemical shift define the Fermi contact shifts, which are found as expected to be limited to the immediate covalent structure of the heme and its ligands and to be asymmetrically distributed over the heme. Smaller chemical shift discrepancies point to a concerted change, involving residues 39-43 and 50-60 (bottom of the protein), and to other changes in the immediate vicinity of the heme ligands. Also, the three internal water molecules are implicated in redox sensitivity. The residues found to change are in good but not perfect agreement with prior X-ray diffraction observations of subangstrom redox-related displacements in the tuna protein. The chemical shift discrepancies observed appear in the main to reflect structure-dependent diamagnetic shifts rather than hyperfine effects due to displacements in the pseudocontact shift field. Although 51 protons in 29 different residues exhibit significant chemical shift changes, the general impression is one of small structural adjustments to redox-dependent strain rather than sizeable structural displacements or rearrangements.  相似文献   

18.
A K Churg  A Warshel 《Biochemistry》1986,25(7):1675-1681
X-ray structural information provides the opportunity to explore quantitatively the relation between the microenvironments of heme proteins and their redox potentials. This can be done by considering the protein as a "solvent" for its redox center and calculating the difference between the electrostatic energy of the reduced and oxidized heme. Such calculations are presented here, applying the protein dipoles-Langevin dipoles (PDLD) model to cytochrome c. The calculations focus on an evaluation of the difference between the redox potentials of cytochrome c and the octapeptide-methionine complex formed by hydrolysis of cytochrome c. The corresponding difference (approximately 7 kcal/mol) is accounted for by the PDLD calculations. It is found that the protein provides basically a low dielectric environment for the heme, which destabilizes the oxidized heme (relative to its energy in water). The effect of the charged propionic acids on the heme is examined in a preliminary way. It is found that the negative charges of these groups are in a hydrophilic rather than a hydrophobic environment and that the protein-water system provides an effective high dielectric constant for their interaction with the heme. The dual nature of the dielectric effect of the cytochrome (a low dielectric constant for the self-energy of the heme and a high dielectric constant for charge-charge interactions) is discussed. The findings of this work are consistent with the difference between the folding energies of the reduced and oxidized cytochrome c.  相似文献   

19.
The normal modes of the gramicidin-A dimer channel.   总被引:1,自引:4,他引:1       下载免费PDF全文
The dynamics of the gramicidin-A dimer channel is studied in the harmonic approximation by a vibrational analysis of the atomic motions relative to their equilibrium positions. The system is represented by an empirical potential energy function, and all degrees of freedom (bonds lengths, bond angles, and torsional angles) are allowed to vary. The thermal fluctuations in the backbone dihedral angles phi and psi, atomic root mean square displacements, and the correlations between the different amide planes are computed. It is found that only adjacent dihedral psi i and phi i+1 are strongly correlated, while different hydrogen-bonded amide planes are only weakly correlated. Modes with relatively low vibrational frequencies (75-175 cm-1) make the dominant contributions to the carbonyl librations. The general flexibility of the structure and the role of carbonyl librations in the ion transport mechanism are discussed.  相似文献   

20.
Heteronuclear NMR spectroscopy was performed to determine the solution structure of (15)N-labeled ferrocytochrome c(3) from Desulfovibrio vulgaris Miyazaki F (DvMF). Although the folding of the reduced cytochrome c(3) in solution was similar to that of the oxidized one in the crystal structure, the region involving hemes 1 and 2 was different. The redox-coupled conformational change is consistent with the reported solution structure of D. vulgaris Hildenborough ferrocytochrome c(3), but is different from those of other cytochromes c(3). The former is homologous with DvMF cytochrome c(3) in amino acid sequence. Small displacements of hemes 1 and 2 relative to hemes 3 and 4 were observed. This observation is consistent with the unusual behavior of the 2(1)CH(3) signal of heme 3 reported previously. As shown by the (15)N relaxation parameters of the backbone, a region between hemes 1 and 2 has more flexibility than the other regions. The results of this work strongly suggest that the cooperative reduction of hemes 1 and 2 is based on the conformational changes of the C-13 propionate of heme 1 and the aromatic ring of Tyr43, and the interaction between His34 and His 35 through covalent and coordination bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号