首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of etiolated pea (Pisum sativum L.) internode tissue with ethylene gas inhibits elongation and induces lateral expansion. Precise kinetics of the induction of this altered mode of growth of excised internode segments were recorded using a double laser optical monitoring device. Inhibition of elongation and promotion of lateral expansion began after about 1 hour of treatment and achieved a maximum by 3 hours. Similar induction kinetics were observed after treating internodes with colchicine and 2,6-dichlorobenzonitrile, an inhibitor of cellulose synthesis. In sealed flask experiments, ethylene had no detectable effect on incorporation of label from [14C]glucose into any of the classical pectin, hemicellulose, or cellulose wall fractions. Ethylene inhibited fresh weight increase (total cell expansion) of both excised internode segments (in sealed flasks) and intact seedlings. Ethylene treatment resulted in an increase in cell sap osmolality in those tissues (intact and excised) which are inhibited by the gas. A model for ethylene-induced inhibition of elongation and induction of lateral expansion is presented.  相似文献   

2.
Poplar calli transcribed two cellulase (endo-1,4-beta-glucanase) genes, PopCel1 and PopCel2, whose mRNAs were differentially located in the growing leaves of poplar during cell wall synthesis. Histochemical and RT-PCR analyses of promoter-GUS fusion gene activities in transgenic poplar demonstrated that PopCel1 promoter-derived GUS activity was localized in the petiole and leaf veins, whereas PopCel2 was confined to mesophyll cells and disappeared from the tip during the development of leaves. Autoradiography of the leaf showed that the radioactivity of [14C]sucrose incorporated into cellulose corresponded to the combination of the sucrose-induced tissue-specific patterns of PopCel1 and PopCel2. Interestingly, 2,6-dichlorobenzonitrile (DCB) not only inhibited the incorporation of the radioactivity into cellulose, but also repressed the induction of both cellulase genes. Suppression of cellulases by expression of PopCel1 antisense cDNA or co-suppression of PopCel1 mRNA by overexpression of PopCel1 sense cDNA reduced leaf growth. Therefore, we came to the conclusion that PopCel1 and PopCel2 probably function to promote leaf growth in poplar by the endohydrolysis of 1,4-beta-glucan.  相似文献   

3.
Mesophyll cells of Zinnia elegans var. Envy that had been induced to differentiate into tracheary elements (TEs) in suspension culture were treated with the cellulose synthesis inhibitor 2,6-dichlorobenzonitrile (DCB). The deposition of cellulose into the patterned secondary cell wall thickenings typical of TEs was inhibited as demonstrated by reduced incorporation of [14C]glucose into acetic/nitric insoluble material and absence of cellulose detectable by fluorescence after staining with Tinopal LPW, polarization optics, or labeling with a specific cellulase. Respiration as indicated by release of 14CO2 was inhibited to a much lesser extent, supporting a selective mechanism of action of DCB on the cellulose biosynthetic pathway. Patterned secondary cell wall thickenings were deposited in DCB-treated TEs, but these were smaller and less regularly shaped than those of control TEs. These cellulose-depleted thickenings lacked another abundant component of normal thickenings, the hemicellulose xylan, as indicated by absence of labeling with a specific xylanase or an antibody to xylan. DCB-treated TEs also showed dispersed lignin after staining with phloroglucinol, whereas control TEs contained lignin specifically localized to the secondary cell wall thickenings. Isoxaben, another recently described inhibitor of synthesis of acetic/nitric insoluble cell wall material (putatively cellulose), caused the same absence of detectable cellulose and xylan in the thickenings and dispersed lignin. These data suggest that: (i) the localization of lignin is ultimately dependent on the localization of cellulose; (ii) normal patterned wall assembly in TEs occurs in a self-perpetuating cascade in which some molecules of the secondary cell wall mediate patterning of others.  相似文献   

4.
Protoplasts isolated from cultured soybean cells (Glycine max (L.) Merr., cv. Mandarin) were used to study polysaccharide biosynthesis during the initial stages of cell wall-regeneration. Within minutes after the protoplasts were transferred to a wall-regeneration medium containing [14C]glucose, radioactivity was detected in a product which was chemically characterized as cellulose. The onset and accumulation of radioactivity into cellulose coincided with the appearance fibrils on the surface of protoplasts, as seen under the electron microscope. At these early stages, a variety of polysaccharide-containing polymers other than cellulose were also synthesized. Under conditions where the protoplasts were competent to synthesize cellulose from glucose, uridine diphosphate-[14C]glucose and guanosine diphosphate-[14C]glucose did not serve as effective substrates for cellulose synthesis. However, substantial amounts of label from uridine diphosphate glucose were incorporated into 1,3-glucan.Abbreviations ECM extracellular material - GLC gas liquid chromatography - GDP-glucose guanosine diphosphate glucose - UDP-glucose uridine diphosphate glucose - U enzyme units as defined by Sigma Chemical Corp., St. Louis, Mo., USA  相似文献   

5.
The inhibition of growth and cell wall synthesis by 3-amino-3-deoxy-D-glucose (3-AG), which is known to be one of the constituents of the kanamycin molecule and a metabolite of Bacillus sp., was almost completely overcome by glucosamine and N-acetylglucosamine in Staphylococcus aureus but scarcely affected by D-glucose and D-fructose. The antibiotic did not inhibit the incorporation of [14C]glucosamine and [3H]N-acetylglucosamine into the acid-insoluble fraction, but rather enhanced the incorporation of [14C]glucosamine. On the other hand, it inhibited the incorporation of D-[14C]fructose into the cell wall fraction but hardly affected the incorporation of D-[14C]fructose into the acid-insoluble fraction in the presence of pencillin G. Based on these results, it is suggested that the site of primary action of 3-AG is the formation of glucosamine-6-phosphate from D-fructose-6-phosphate, which is catalyzed by glucosamine synthetase [EC 2.6.1.16].  相似文献   

6.
The cellular site of initial glycosylation of proteins from Saccharomyces cerevisiae has been studied. Short pulses of [U-14C]mannose label the ribosomal fraction of the yeast. Most of the label was associated with polysomes; monosomes contained only a small amount of radioactivity. All of the radioactivity present in the polysomal fraction was accounted by mannose and smaller amounts of glucose and glucosamine. Puromycin treatment detached more than 50% of the radioactivity from the polysomes; treatment of polysomes at pH 10.0 also caused the release of radioactivity. These results indicate that initial sugar binding occurs while the nascent polypeptide chains are still growing on the ribosomes. When the cells were preincubated with 2-deoxy-D-glucose, incorporation of [U-14C]mannose into the polysomes and the cell wall was inhibited, whereas its incorporation into membrane fractions was unimpaired. It was concluded that 2-deoxy-D-glucose inhibited the synthesis of glycoproteins by interference with the initial glycosylation steps at the ribosomal level.  相似文献   

7.
The role of cell wall synthesis in sustained auxin-induced growth   总被引:2,自引:0,他引:2  
The dependence of auxin-induced growth on continued cell wall synthesis was investigated in stem segments of etiolated pea ( Pisum sativum L. cv. Alaska) seedlings using the cell wall synthesis inhibitors monensin and 2,6-dichlorobenzonitrile (DCB). Monensin (5 μ M ) potently inhibited indole-3-acetic acid (IAA)-induced growth, particularly during the second hour of treatment, whereas growth in fusicoccin (FC) was inhibited much less effectively. Incorporation of [14C]-glucose into both matrix and cellulose fractions of the wall showed a sharp increase beginning after about 60 min, this rise being promoted by both IAA and FC. Monensin inhibited this rise in incorporation of label and completely removed the promotion of this by IAA, although some promotion by FC remained. Monensin inhibited incorporation into cellulose in a manner similar to that into matrix, but the use of the apparently specific cellulose synthesis inhibitor DCB showed that cellulose synthesis could be strongly inhibited without effect on growth, at least in the short term. The results support the view that sustained auxin-induced growth depends upon the incorporation of new matrix cell wall components into the wall.  相似文献   

8.
Pretreatment of discs excised from developing tubers of potato (Solanum tuberosum L.) with 10 millimolar sodium fluoride induced a transient increase in 3-phosphoglycerate content. This was followed by increases in triose-phosphate, fructose 1,6-bisphosphate and hexose-phosphate (glucose 6-phosphate + fructose 6-phosphate + glucose 1-phosphate). The effect of fluoride is attributed to an inhibition of glycolysis and a stimulation of triose-phosphate recycling (the latter confirmed by the pattern of 13C-labeling [NMR] in sucrose when tissue was supplied with [2-13C]glucose). Fluoride inhibited the incorporation of [U-14C] glucose, [U-14C]sucrose, [U-14C]glucose 1-phosphate, and [U-14C] glycerol into starch. The incorporation of [U-14C]ADPglucose was unaffected. Inhibition of starch biosynthesis was accompanied by an almost proportional increase in the incorporation of 14C into sucrose. The inhibition of starch synthesis was accompanied by a 10-fold increase in tissue pyrophosphate (PPi) content. Although the subcellular localization of PPi was not determined, a hypothesis is presented that argues that the PPi accumulates in the amyloplast due to inhibition of alkaline inorganic pyrophosphatase by fluoride ions.  相似文献   

9.
METABOLISM OF HEXOSES IN RAT CEREBRAL CORTEX SLICES   总被引:3,自引:0,他引:3  
Abstract—
  • 1 The metabolism of two 14C-labelled hexoses and one hexose analogue, viz. mannose, fructose and glucosamine, has been compared with that of glucose for slices of rat cerebral cortex incubated in vitro.
  • 2 The metabolism of [U-14C]mannose was essentially identical to that of glucose; oxygen consumption and CO3 production were similar and maximal at a substrate concentration of 2·75 mM. Incorporation of label into lactate, aspartate, glutamate and GABA was similar for the two substrates at 5·5 mM substrate concentration.
  • 3 With [U-14C]fructose, maximal oxygen consumption and CO3 production were obtained at a substrate concentration of 11 mM. At 5·5 mM, incorporation into lactate was 5 per cent, into glutamate and GABA 30 per cent, into alanine 63 per cent and into aspartate 152 per cent of that from glucose. Increasing substrate concentration to 27·5 mm was without effect on incorporation into amino acids from glucose and raised incorporation from fructose into glutamate, GABA and alanine to a level similar to that found with glucose; at the higher substrate concentration aspartate incorporation from fructose was 200 per cent and lactate 42 per cent of that with glucose. Unlabelled fructose was without effect on incorporation of radioactivity from [3-14C]pyruvate into CO2 or amino acids; it increased incorporation into lactate by 36 per cent. Unlabelled glucose diminished incorporation into CO2 from [U-14C]fructose to 35 per cent; incorporation into lactate was stimulated 178 per cent at 5·5 mM fructose; at 27·5 mM it was diminished to 75 per cent.
  • 4 By comparison with [1-14C]glucose, incorporation of radioactivity from [1-14C]-glucosamine into lactate, CO2, alanine, GABA and glutamine was very low; incorporation into aspartate was similar to glucose. Thus the metabolism of glucosamine resembled that of fructose. Glucosamine-1-phosphate, glucosamine-6-phosphate, and an unidentified metabolite, all accumulated.
  相似文献   

10.
The concentration of uridine in the media of cultured L1210 cells was maintained within the concentration range found in plasma (1 to 10 microM) to determine if such concentrations are sufficient to satisfy the pyrimidine requirements of a population of dividing cells and to determine if cells utilize de novo and/or salvage pathways when exposed to plasma concentrations of uridine. When cells were incubated in the presence of N-(phosphonacetyl)-L-aspartate to block de novo biosynthesis, plasma concentrations of uridine maintained normal cell growth. De novo pyrimidine biosynthesis, as determined by [14C]sodium bicarbonate incorporation into uracil nucleotides, was affected by the low concentrations of uridine found in the plasma. Below 1 microM uridine, de novo biosynthesis was not affected; between 3 and 5 microM uridine, de novo biosynthesis was inhibited by approximately 50%; and above 12 microM uridine, de novo biosynthesis was inhibited by greater than 95%. Inhibition of de novo biosynthesis correlated with an increase in the uracil nucleotide pool. The de novo pathway was much more sensitive to the uracil nucleotide pool size than was the salvage pathway, such that when de novo biosynthesis was inhibited by greater than 95% the uracil nucleotide pool continued to expand and the cells continued to take up [14C]uridine. Thus, the pyrimidine requirements of cultured L1210 cells can be met by concentrations of uridine found in the plasma and, when exposed to such physiologic concentrations, L1210 cells decrease their dependency on de novo biosynthesis and utilize their salvage pathway. Circulating uridine, therefore, may be of physiologic importance and could be an important determinant in anti-pyrimidine chemotherapy.  相似文献   

11.
Designing new drugs that inhibit the biosynthesis of the D-arabinan moiety of the mycobacterial cell wall arabinogalactan is one important basic approach for treatment of mycobacterial diseases. However, the biosynthetic origin of the D-arabinosyl monosaccharide residues themselves is not known. To obtain information on this issue, mycobacteria growing in culture were fed glucose labeled with 14C or 3H in specific positions. The resulting radiolabeled cell walls were isolated and hydrolyzed, the arabinose and galactose were separated by high-pressure liquid chromatography, and the radioactivity in each sugar was determined. [U-14C]glucose, [6-3H]glucose, [6-14C]glucose, and [1-14C]glucose were all converted to cell wall arabinosyl residues with equal retention of radioactivity. The positions of the labeled atoms in the arabinose made from [1-14C]glucose and [6-3H]glucose were shown to be C-1 and H-5, respectively. These results demonstrated that the arabinose carbon skeleton is formed via the nonoxidative pentose shunt and not via hexose decarboxylation or via triose condensations. Since the pentose shunt product, ribulose-5-phosphate, is converted to arabinose-5-phosphate as the first step in 3-keto-D-manno-octulosonic acid biosynthesis by gram-negative bacteria, such a conversion was then searched for in mycobacteria. However, cell-free enzymatic analysis using both phosphorous nuclear magnetic resonance spectrometry and colorimetric methods failed to detect the conversion. Thus, the conversion of the pentose shunt intermediates to the D-arabino stereochemistry is not via the expected isomerase but rather must occur via novel metabolic transformations.  相似文献   

12.
H. Edelmann  R. Bergfeld  P. Schonfer 《Planta》1989,179(4):486-494
The involvement of cell-wall polymer synthesis in auxin-mediated elongation of coleoptile segments from Zea mays L. was investigated with particular regard to the growth-limiting outer epidermis. There was no effect of indole acetic acid (IAA) on the incorporation of labeled glucose into the major polysaccharide wall fractions (cellulose, hemicellulose) within the first 2 h of IAA-induced growth. 2,6-Dichlorobenzonitrile inhibited cellulose synthesis strongly but had no effect on IAA-induced segment elongation even after a pretreatment period of 24 h, indicating that the growth response is independent of the apposition of new cellulose microfibrils at the epidermal cell wall. The incorporation of labeled leucine into total and cell-wall protein of the epidermis was promoted by IAA during the first 30 min of IAA-induced growth. Inhibition of IAA-induced growth by protein and RNA-synthesis inhibitors (cycloheximide, cordycepin) was accompanied by an inhibition of leucine incorporation into the epidermal cell wall during the first 30 min of induced growth but had no effect on the concomitant incorporation of monosaccharide precursors into the cellulose or hemicellulose fractions of this wall. It is concluded that at least one of the epidermal cell-wall proteins fulfills the criteria for a growth-limiting protein induced by IAA at the onset of the growth response. In contrast, the synthesis of the polysaccharide wall fractions cellulose and hemicellulose, as well as their transport and integration into the growing epidermal wall, appears to be independent of growth-limiting protein and these processes are therefore no part of the mechanism of growth control by IAA.Abbreviations CHI cycloheximide - COR cordycepin - DCB 2,6-dichlorobenzonitrile - GLP growth-limiting protein(s) - IAA indole-3-acetic acid  相似文献   

13.
Lipids from the archaebacterium Sulfolobus solfataricus are based on 72-membered macrocyclic tetraethers made up from two C40 diol units differently cyclized and either two glycerol moieties or one glycerol moiety and a unique branched-chain nonitol named calditol (glycerodialkylnonitol tetraethers, GDNTs). To elucidate the biosynthesis of calditol and related tetraethers, labelled precursors, [U-14C,1(3)-3H]glycerol, [U-14C,2-3H]glycerol, D-[1-14C,6-3H]glucose, D-[6-14C,1-3H]glucose, D-[1-14C,2-3H]glucose, D-[1-14C,6-3H]fructose and D-[1-14C]galactose, were fed to S. solfataricus. Without regard to stereochemistry or phosphorylation, incorporation experiments provided evidence that the biosynthesis of calditol occurs via an aldolic condensation between dihydroxyacetone and fructose, through a 2-oxo derivative of calditol as an intermediate. The latter is in turn reduced and then alkylated to yield the GDNTs. The biogenetic origins of both glycerol and C40 isoprenoid moieties of GDNTs are also discussed.  相似文献   

14.
Cell Wall Metabolism in Developing Strawberry Fruits   总被引:11,自引:5,他引:6  
Cell wall metabolism was studied in strawberry receptacles (Fragariaananassa, Duchesne) of known age in relation to petal fall (PF).Polysaccharide and protein composition, incorporation of [14C]glucoseand [14C]proline by excised tissue, and the fate of 14CO2 fixedby young, attached fruits were followed in relation to celldivision, cell expansion, fine structure, and ethylene synthesis. Cell division continued for about 7 d after PF although vacuolationof cells was already beginning at PF and the subsequent cellexpansion was logarithmic. There was an associated logarithmicincrease in sugar content per cell and a decreasing rate ofethylene production per unit fresh weight. During cell expansion radioactivity from [14C]glucose was incorporatedinto fractions identified as starch and soluble polyuronideand into glucose and galactose residues in the cell wall. Radioactivityfrom [14C]proline was also incorporated into the cell wall,but only 10 per cent of this activity was found in hydroxyproline.Correspondingly wall protein contained a low proportion of hydroxyprolineresidues. The proportion of radioactivity from 14CO2 fixed byfruitlets remained constant in most sugar residues in the cellwall. The proportion of radioactivity in galactose fell, indicatingturnover of these residues. Between 21 and 28 d after PF receptacles became red and softenedbut there was no change in the rate of ethylene production.Cell expansion continued for at least 28 d. Tubular proliferationof the tonoplast and hydration of middle lamella and wall matrixmaterial had begun 7–14 d after PF but became extremeduring ripening. Associated with the hydration of the wall,over 70 per cent of the polyuronide in the wall became freelysoluble, and arabinose and galactose residues lost from thewall appeared in soluble fractions. There was no increase intotal polysaccharide during ripening and incorporation of [14C]glucoseinto polysaccharides ceased, although protein increased andincorporation of [14C]proline into wall protein continued.  相似文献   

15.
1. Measurable incorporation of radioactive carbon from [U-14C]pyruvate, [U-14C]-glutamate and [14C]bicarbonate into the glycogen synthesized by brain slices in vitro was demonstrated. 2. The fructose diphosphatase activity of guinea-pig brain was determined and found to be about 0.03 mumol of substrate degraded/min per g of fresh tissue. 3. The specific radioactivity of the glucose carbon from glycogen relative to that of the precursor added to the incubation medium gave approximate values of 0.195 for glucose, 0.006 for pyruvate, 0.039 for glutamate and 0.001 for bicarbonate.  相似文献   

16.
1. Incubation of sheep colonic mucosal scrapings in Krebs-Ringer buffer for 2(1/2)hr. in the presence of salicylate (15mm) resulted in decreased incorporation of radioactivity into the epithelial glycoprotein from the following labelled precursors: 16.6mum-d-[2-(14)C]glucose (83.9% inhibition), 20mum-l-[U-(14)C]threonine (82%) and (35)SO(4) (2-)(79%). Oxygen uptake measured simultaneously was diminished to 41% of the control value. 2. At lower concentrations of salicylate (e.g. 3.75mm), incorporation of 20mum-l-[U-(14)C]threonine was little affected (3-6% inhibition), whereas utilization of 4mum-d-[U-(14)C]glucose and (35)SO(4) (2-) was inhibited (41-48% and 40-59% of the control values respectively). 3. Analysis of the papain-digested glycoprotein from tissue incubations with 16.6mum-d-[2-(14)C]glucose in the presence of salicylate (3.75mm) showed large decreases in labelling of N-acetylneuraminic acid and N-glycollylneuraminic acid residues (57% and 34% of the control values respectively) and of hexosamine constituents (glucosamine, 55% inhibition; galactosamine, 33% inhibition). Labelling of neutral sugars (galactose and fucose) was relatively little affected (9 and 11% inhibition respectively). 4. Glucose 6-phosphate transaminase and glucosamine 6-phosphate acetylase in particle-free enzyme preparations of the sheep tissue were unaffected by salicylate at the above concentrations. Acetyl-CoA synthetase was markedly inhibited. 5. Human gastric mucosa (from operation), on incubation as above, had in one experiment an oxygen consumption of 9.9mul./hr./mg. dry wt. of tissue and incorporated 5mum-d-[U-(14)C]glucose (15.8% of the total radioactivity added) into bound hexosamine (20.6% of the total radioactivity incorporated), hexoses (glucose and galactose, 5.7%) and fucose (14.2%). The presence of salicylate (15mm) decreased the incorporation of 5mum-d-[U-(14)C]glucose into the glycoprotein by 74%, all sugar constituents being affected, without influence on the rate of oxygen consumption. 6. The results suggest an inhibitory effect of salicylate on glycoprotein biosynthesis at the level of the amino sugar intermediates.  相似文献   

17.
Three-day-cultured cells of Vinca rosea L. (in the cell division phase) and 5-day-cultured cells (in the cell expansion phase) prelabelled with d -[U-14C] glucose were incubated in a medium containing unlabelled glucose. After various periods of chase, extra-cellular polysaccharides (ECP) and cell walls were isolated, and cell walls were fractionated into pectic substances, hemicellulose, and cellulose fractions. After acid hydrolysis, the radioactive constituents in the pectic substances and hemicellulose fractions were analyzed. Active turnover was observed in arabinose and galactose in the hemicellulose fraction of cell walls, while the constituents of the pectic substances, and xylose and glucose in the hemicellulose fraction did not undergo active turnover. The proportion of radioactivities of arabinose and galactose in total radioactivity of ECP increased markedly after chasing. These results indicate that arabinogalactan was synthesized, deposited in the cell wall, degraded rapidly, and made soluble in the medium as a part of ECP.  相似文献   

18.
Myxospore coat synthesis in Myxococcus xanthus was studied by incorporation of [(14)C]acetate into intermediates in the biosynthesis of coat polysaccharide and into acid-insoluble material during vegetative growth and after glycerol induction of myxospores. During short labeling periods at 27 degrees C, the radioactivity was shown to be located primarily in N-acetyl groups rather than sugar moieties. Two hours after glycerol induction, the pools of N-acetylglucosamine 6-phosphate and uridine 5'-diphosphate-N-acetylgalactosamine (UDPGalNAc) plus uridine 5'-diphosphate-N-glucosamine increased about twofold and were labeled at twice the rate measured for vegetative cells. The increased rate of synthesis of UDPGalNAc and its precursors could be correlated with increased enzyme activities measured in vitro. Controlled acid hydrolysis revealed that the galactosamine portion of the myxospore coat was N-acetylated. After glycerol induction, the incorporation of acetate into acid-insoluble material increased threefold. This enhanced incorporation was sensitive to neither penicillin nor d-cycloserine. In contrast, bacitracin inhibited the incorporation of [(14)C]acetate into acid-insoluble material more effectively 2 h after myxospore induction than during vegetative growth. Chloramphenicol added to cells 90 min after induction blocked further increase in the rate of [(14)C]acetate incorporation. Since the myxospore coat contains glycine, polymer synthesis was also measured by chloramphenicol-insensitive [(14)C]glycine incorporation into acid-insoluble material. Although protein synthesis decreased after glycerol induction, glycine incorporation increased. Two hours after induction, glycine incorporation was only 75% inhibited by chloramphenicol and rifampin. The chloramphenicol-insensitive rate of incorporation of [(14)C]glycine increased during the first hour after myxospore induction and reached a peak rate after 2 to 3 h. The chloramphenicol-resistant incorporation of [(14)C]glycine was resistant to penicillin but sensitive to bacitracin.  相似文献   

19.
Yves Meyer  Werner Herth 《Planta》1978,142(3):253-262
The effect of cytochalasin B, colchicine, coumarin and 2,6-dichlorobenzonitrile on cell wall formation and cellular division was studied by light and electron microscopy with tobacco mesophyll protoplasts cultivated in vitro. 2,6-dichlorobenzonitrile was found to be the most effective and reversible inhibitor of cell wall formation. The other inhibitors caused irreversible damage and/or inhibited mitosis. In protoplasts cultivated in the presence of 2,6-dichlorobenzonitrile the total inhibition of cell wall formation had no effect on nuclear division, but cytokinesis was totally inhibited so that multinucleate protoplasts were obtained.Abbreviations DB 2,6-dichlorobenzonitrile=dichlobenil - CB cytochalasin B  相似文献   

20.
Autoradiographic experiments using preparations of isolatedphragmoplast obtained from tobacco cultured cells revealed thatthe radioactivity incorporated into insoluble material fromUDP-[3H]glucose was exclusively present at the cell plate ofisolated phragmoplasts. Most of the radioactivity incorporatedinto isolated phragmoplasts from UDP-[14C]glucose was solubilizedby 1,3-ß-glucanase and the solubilized radioactivitywas associated only with glucose, indicating that most of theradioactivity was incorporated into 1,3-ß-glucan.In the presence of high concentrations of unlabeled UDP-glucose,isolated phragmoplasts incorporated radioactivity from UDP-[3H]xylose.Most of the radioactivity incorporated into insoluble materialwas present at several sites distributed around the nuclei,while only little was found at the cell plate. (Received October 2, 1991; Accepted February 24, 1992)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号