首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Michaelis constant values for the highly purified pyruvate dehydrogenase complex (PDC) from human heart are 25, 13 and 50 microM for pyruvate, CoA and NAD, respectively. Acetyl-CoA produces a competitive inhibition of PDC (Ki = 35 microM) with respect to CoA, whereas NADH produces the same type of inhibition with respect to NAD (Ki = 36 microM). The oxoglutarate dehydrogenase complex (OGDC) from human heart has active sites with two different affinities for 2-oxoglutarate ([S]0.5 of 30 and 120 microM). ADP (1 mM) decreases the [S]0.5 values by a half. The inhibition of OGDC (Ki = 81 microM) by succinyl-CoA is of a competitive type with respect to CoA (Km = 2.5 microM), whereas that of NADH (Ki = 25 microM) is of a mixed type with respect to NAD (Km = 170 microM).  相似文献   

2.
1. N10-Formyltetrahydrofolate dehydrogenase was purified to homogeneity from rat liver with a specific activity of 0.7--0.8 unit/mg at 25 degrees C. The enzyme is a tetramer (Mw = 413,000) composed of four similar, if not identical, substrate addition and give the Km values as 4.5 micron [(-)-N10-formyltetrahydrofolate] and 0.92 micron (NADP+) at pH 7.0. Tetrahydrofolate acts as a potent product inhibitor [Ki = 7 micron for the (-)-isomer] which is competitive with respect to N10-formyltetrahydrofolate and non-competitive with respect to NADP+. 3. Product inhibition by NADPH could not be demonstrated. This coenzyme activates N10-formyltetrahydrofolate dehydrogenase when added at concentrations, and in a ratio with NADP+, consistent with those present in rat liver in vivo. No effect of methionine, ethionine or their S-adenosyl derivatives could be demonstrated on the activity of the enzyme. 4. Hydrolysis of N10-formyltetrahydrofolate is catalysed by rat liver N10-formyltetrahydrofolate dehydrogenase at 21% of the rate of CO2 formation based on comparison of apparent Vmax. values. The Km for (-)-N10-folate is a non-competitive inhibitor of this reaction with respect to N10-formyltetrahydrofolate, with a mean Ki of 21.5 micron for the (-)-isomer. NAD+ increases the maximal rate of N10-formyltetrahydrofolate hydrolysis without affecting the Km for this substrate and decreases inhibition by tetrahydrofolate. The activator constant for NAD+ is obtained as 0.35 mM. 5. Formiminoglutamate, a product of liver histidine metabolism which accumulates in conditions of excess histidine load, is a potent inhibitor of rat liver pyruvate carboxylase, with 50% inhibition being observed at a concentration of 2.8 mM, but has no detectable effect on the activity of rat liver cytosol phosphoenolpyruvate carboxykinase measured in the direction of oxaloacetate synthesis. We propose that the observed inhibition of pyruvate carboxylase by formiminoglutamate may account in part for the toxic effect of excess histidine.  相似文献   

3.
Initial velocity studies and product inhibition studies were conducted for the forward and reverse reactions of formaldehyde dehydrogenase (formaldehyde: NAD oxidoreductase, EC 1.2.1.1) isolated from a methanol-utilizing yeast Candida boidinii. The data were consistent with an ordered Bi-Bi mechanism for this reaction in which NAD+ is bound first to the enzyme and NADH released last. Kinetic studies indicated that the nucleoside phosphates ATP, ADP and AMP are competitive inhibitors with respect to NAD and noncompetitive inhibitors with respect to S-hydroxymethylglutathione. The inhibitions of the enzyme activity by ATP and ADP are greater at pH 6.0 and 6.5 than at neutral or alkaline pH values. The kinetic studies of formate dehydrogenase (formate:NAD oxidoreductase, EC 1.2.1.2) from the methanol grown C. boidinii suggested also an ordered Bi-Bi mechanism with NAD being the first substrate and NADH the last product. Formate dehydrogenase the last enzyme of the dissimilatory pathway of the methanol metabolism is also inhibited by adenosine phosphates. Since the intracellular concentrations of NADH and ATP are in the range of the Ki values for formaldehyde dehydrogenase and formate dehydrogenase the activities of these main enzymes of the dissimilatory pathway of methanol metabolism in this yeast may be regulated by these compounds.  相似文献   

4.
Inhibition of acetoacetyl-CoA synthetase from rat liver by fatty acyl-CoAs   总被引:1,自引:0,他引:1  
The activity of acetoacetyl-CoA synthetase from rat liver was found to be negatively regulated by coenzyme A, fatty acyl-CoAs and acetoacetyl-CoA in vitro. With increasing concentrations of coenzyme A (substrate inhibition occurring at concentrations higher than 50 microM) the pH optimum shifted toward the acidic side (7.5-8.5 with 5 microM coenzyme A and 6.5-7.0 with 500 microM coenzyme A), in parallel with progressively decreasing enzyme activity. Fatty acyl-CoAs of various chain lengths dose-dependently inhibited acetoacetyl-CoA synthetase from rat liver, but much less effectively a similar enzyme from a bacterium, Zoogloea ramigera I-16-M. Palmitoyl-CoA, the most potent inhibitor of the rat liver enzyme, with an apparent Ki value of 9.8 microM, apparently inhibited the enzyme below its critical micellar concentration, not due to its detergent action. Acetoacetyl-CoA showed product inhibition with a Ki value of 15 microM. These results suggest a possible physiological regulation mechanism for this enzyme with respect to fatty acid biosynthesis.  相似文献   

5.
The mechanism of inhibition of pyruvate carboxylase, pyruvate dehydrogenase, and carbamyl phosphate synthetase induced by alpha-ketoisovalerate metabolism has been investigated in isolated rat hepatocytes incubated with lactate, pyruvate, ammonia, and ornithine as substrates. Half-maximum inhibitions of flux through each of these enzyme steps were obtained with 0.3 mM alpha-ketoisovalerate. The inhibition of pyruvate carboxylase flux by alpha-ketoisovalerate was largely reversed by oleate addition, but pyruvate dehydrogenase flux was inhibited further. Inhibition of flux through pyruvate carboxylase could be attributed mainly to the fall of its allosteric activator, acetyl-CoA, with some additional effect due to inhibition by methylmalonyl-CoA. Tissue acetyl-CoA levels decrease as a result of an inhibition of the active form of pyruvate dehydrogenase. Kinetic studies with the purified pig heart pyruvate dehydrogenase complex showed that methyl-malonyl-CoA, propionyl-CoA, and isobutyryl-CoA were inhibitory, the latter noncompetitive with CoASH with an apparent Ki of 90 microM. The observed inhibition of pyruvate dehydrogenase flux correlated with increases of the acetyl-CoA/CoASH and propionyl-CoA/CoASH ratios and isobutyryl-CoA levels, while increases of the mitochondrial NADH/NAD+ ratio explained differences between the effects of alpha-ketoisovalerate and propionate. Carbamyl phosphate synthetase I purified from rat liver was shown to be inhibited directly by methylmalonyl-CoA (apparent Ki of 5 mM). Inhibition of flux through carbamyl phosphate synthetase during alpha-ketoisovalerate metabolism could be attributed both to a direct inhibitory effect of methyl-malonyl-CoA and to a diminished activation by N-acetylglutamate. Direct effects of various acyl-CoA metabolites on these key enzymes may explain symptoms of hypoglycemia and hyperammonemia observed in patients with inherited disorders of organic acid metabolism.  相似文献   

6.
In extension of a previous study with yeast glucose-6-P dehydrogenase (Kawaguchi, A., and Bloch, K. (1974) J. Biol. Chem. 249, 5793-5800), the structural changes accompanying the inhibition of glutamate dehydrogenase and several malate dehydrogenases by palmitoyl-CoA and by sodium dodecyl sulfate have been investigated. Palmitoyl-CoA converts liver glutamate dehydrogenase to enzymatically inactive dimeric subunits (Mr = 1.2 X 10(5)) and tightly binds to the dissociated enzyme. Removal of the inhibitor from the palmitoyl-CoA-dimer complex fails to regenerate enzyme activity. The Ki values for palmitoyl-CoA inhibition of malate dehydrogenases (oxalacetate reduction) are, for the enzyme from pig heart mitochondria, 1.8 muM, 500 muM from pig heart supernatant, and 10 muM from chicken heart supernatant. These inhibitions are readily reversible. Palmitoyl-CoA does not alter the quaternary structure of any of the malate dehydrogenases and binds only weakly to these enzymes. Mitochondrial malate dehydrogenase assayed in the direction malate to oxalacetate is much less sensitive to palmitoyl-CoA, with Ki values of 50 muM at pH 10 and greater than 50 muM at pH 7.4. While the differences in palmitoyl-CoA sensitivity in the forward and backward reactions catalyzed by mitochondrial dehydrogenase are unexplained, a physiological rationale for these differential effects is offered. Sodium dodecyl sulfate dissociates the various dehydrogenases to monomeric subunits in contrast to the more selective effects of palmitoyl-CoA.  相似文献   

7.
The RS-isomers of beta-mercapto-alpha-ketoglutarate, beta-methylmercapto-alpha-ketoglutarate and beta-methylmercapto-alpha-hydroxyglutarate have been synthesized. Beta-Mercapto-alpha-ketoglutarate was a potent inhibitor, competitive with isocitrate and noncompetitive with NADP+, of the mitochondrial NADP-specific isozyme from pig heart (Ki = 5 nM; Km (DL-isocitrate)/Ki(RS-beta-mercapto-alpha-ketoglutarate) = 650) and pig liver, the cytosolic isozyme from pig liver (I0.5 = 23 nM), and the NADP-linked enzymes from yeast (Ki = 58 nM) and Escherichia coli (Ki = 58 nM) at pH 7.4 and with Mg2+ as activator. beta-Mercapto-alpha-ketoglutarate was also an effective inhibitor of NADP-isocitrate-dehydrogenase activity in intact liver mitochondria. beta-Mercapto-alpha-ketoglutarate was a much less potent inhibitor for heart NAD-isocitrate dehydrogenase (Ki = 520 nM) than for the NADP-specific enzyme. beta-Methylmercapto-alpha-ketoglutarate (I0.5 = 10 microM) was a much less effective inhibitor than the beta-mercapto derivative for heart NADP-isocitrate dehydrogenase. The beta-sulfur substituted alpha-ketoglutarates were substrates for the oxidation of NADPH by heart NADP-isocitrate dehydrogenase without requiring CO2. beta-Methylmercapto-alpha-hydroxyglutarate, the expected product of reduction of beta-methylmercapto-alpha-ketoglutarate, did not cause reduction of NADP+ but it was an inhibitor competitive with isocitrate for NADP-isocitrate dehydrogenase. The beta-sulfur substituted alpha-ketoglutarate derivatives were alternate substrates for alpha-ketoglutarate dehydrogenase and the cytosolic and mitochondrial isozymes of heart aspartate aminotransferase but had no effect on glutamate dehydrogenase or alanine aminotransferase.  相似文献   

8.
Procedures are described for isolating highly purified porcine liver pyruvate and α-ketoglutarate dehydrogenase complexes. Rabbit serum stabilized these enzyme complexes in mitochondrial extracts, apparently by inhibiting lysosomal proteases. The complexes were purified by a three-step procedure involving fractionation with polyethylene glycol, pelleting through 12.5% sucrose, and a second fractionation under altered conditions with polyethylene glycol. Sedimentation equilibrium studies gave a molecular weight of 7.2 × 106 for the liver pyruvate dehydrogenase complex. Kinetic parameters are presented for the reaction catalyzed by the pyruvate dehydrogenase complex and for the regulatory reactions catalyzed by the pyruvate dehydrogenase kinase and pyruvate dehydrogenase phosphatase. For the overall catalytic reaction, the competitive Ki to Km ratio for NADH versus NAD+ and acetyl CoA versus CoA were 4.7 and 5.2, respectively. Near maximal stimulations of pyruvate dehydrogenase kinase by NADH and acetyl CoA were observed at NADH:NAD+ and acetyl CoA:CoA ratios of 0.15 and 0.5, respectively. The much lower ratios required for enhanced inactivation of the complex by pyruvate dehydrogenase kinase than for product inhibition indicate that the level of activity of the regulatory enzyme is not directly determined by the relative affinity of substrates and products of catalytic sites in the pyruvate dehydrogenase complex. In the pyruvate dehydrogenase kinase reaction, K+ and NH+4 decreased the Km for ATP and the competitive inhibition constants for ADP and (β,γ-methylene)adenosine triphosphate. Thiamine pyrophosphate strongly inhibited kinase activity. A high concentration of ADP did not alter the degree of inhibition by thiamine pyrophosphate nor did it increase the concentration of thiamine pyrophosphate required for half-maximal inhibition.  相似文献   

9.
Tauropine dehydrogenase (tauropine:NAD oxidoreductase) was purified from the shell adductor muscle of the ormer, Haliotis lamellosa. The enzyme was found to utilize stoichiometrically NADH as co-enzyme and pyruvate and taurine as substrates producing tauropine [rhodoic acid; N-(D-1-carboxyethyl)-taurine]. The enzyme was purified to a specific activity of 463 units/mg protein using a combination of ammonium sulphate fractionation, ion-exchange and affinity chromatography. The relative molecular mass was 38,000 +/- 1000 when assessed by gel filtration on Ultrogel AcA 54 and 42,000 +/- 150 by electrophoresis on 5-10% polyacrylamide gels in the presence of 1% sodium dodecyl sulphate; the data suggest a monomeric structure. Tauropine and pyruvate were found to be the preferred substrates. Among the amino acids tested for activity with the enzyme, only alanine is used as an alternative substrate, but with a rate less than 6% of the enzyme activity with taurine. Of the oxo acids tested, 2-oxobutyrate and 2-oxovalerate were also found to be substrates. Apparent Km values for the substrates NADH, pyruvate and taurine are 0.022 +/- 0.003 mM, 0.64 +/- 0.07 mM and 64.7 +/- 5.4 mM, respectively, at pH 7.0 and for the products, NAD+ and tauropine, are 0.29 +/- 0.01 mM and 9.04 +/- 1.27 mM, respectively, at pH 8.3. Apparent Km values for both pyruvate and taurine decrease with increasing co-substrate (taurine or pyruvate) concentration. NAD+ and tauropine were found to be product inhibitors of the forward reaction. NAD+ was a competitive inhibitor of NADH, whereas tauropine gave a mixed type of inhibition with respect to pyruvate and taurine. Succinate was found to inhibit non-competitively with respect to taurine and pyruvate with an apparent Ki value in the physiological range of this anaerobic end product. The inhibition by L-lactate, not an end product in the ormer, was competitive with respect to pyruvate. The physiological role or tauropine dehydrogenase during anaerobiosis is discussed.  相似文献   

10.
Inhibition of pyruvate dehydrogenase complex by moniliformin.   总被引:2,自引:0,他引:2       下载免费PDF全文
The mechanism for the inhibition of pyruvate dehydrogenase complex from bovine heart by moniliformin was investigated. Thiamin pyrophosphate proved to be necessary for the inhibitory action of moniliformin. The inhibition reaction was shown to be time-dependent and to follow first-order and saturation kinetics. Pyruvate protected the pyruvate dehydrogenase complex against moniliformin inactivation. Extensive dialysis of the moniliformin-inactivated complex only partially reversed inactivation. Moniliformin seems to act by inhibition of the pyruvate dehydrogenase component of the enzyme complex and not by acting on the dihydrolipoamide transacetylase or dehydrogenase components, as shown by monitoring the effect of moniliformin on each component individually. On the basis of these results, a suicide inactivator mechanism for moniliformin on pyruvate dehydrogenase is proposed.  相似文献   

11.
Starting from 6-chloropurine riboside and NAD+, different reactive analogues of NAD+ have been obtained by introducing diazoniumaryl or aromatic imidoester groups via flexible spacers into the nonfunctional adenine moiety of the coenzyme. The analogues react with different amino-acid residues of dehydrogenases and form stable amidine or azobridges, respectively. After the formation of a ternary complex by the coenzyme, the enzyme and a pseudosubstrate, the reactive spacer is anchored in the vicinity of the active site. Thus, the coenzyme remains covalently attached to the protein even after decomposition of the complex. On addition of substrates the covalently bound coenzyme is converted to the dihydro-form. In enzymatic tests the modified dehydrogenases show 80-90% of the specific activity of the native enzymes, but they need remarkably higher concentrations of free NAD+ to achieve these values. The dihydro-coenzymes can be reoxidized by oxidizing agents like phenazine methosulfate or by a second enzyme system. Various systems for coenzyme regeneration were investigated; the modified enzymes were lactate dehydrogenase from pig heart and alcohol dehydrogenase from horse liver; the auxiliary enzymes were alcohol dehydrogenase from yeast and liver, lactate dehydrogenase from pig heart, glutamate dehydrogenase and alanine dehydrogenase. Lactate dehydrogenase from heart muscle is inhibited by pyruvate. With alanine dehydrogenase as the auxiliary enzyme, the coenzyme is regenerated and the reaction product, pyruvate, is removed. This system succeeds to convert lactate quantitatively to L-alanine. The thermostability of the binary enzyme systems indicates an interaction of covalently bound coenzymes with both dehydrogenases; both binding sites seem to compete for the coenzyme. The comparison of dehydrogenases with different degrees of modifications shows that product formation mainly depends on the amount of incorporated coenzyme.  相似文献   

12.
A method was devised to purify branched-chain oxo acid dehydrogenase (BCOAD) from rat kidney which retains endogenous kinase activity. Incorporation of 32P into purified enzyme parallels the time course of enzyme inhibition by ATP. Phosphorylation occurs on a serine residue(s) of the 46000-mol.wt. subunit of the enzyme complex. Endogenous phosphatase activity is not present after purification, and added pyruvate dehydrogenase phosphate phosphatase does not re-activate BCOAD or liberate 32P from previously labelled enzyme. These results demonstrate that BCOAD can be regulated by an endogenous protein kinase and that the phosphorylation-cycle enzymes regulating BCOAD appear to be distinct from those associated with pyruvate dehydrogenase complex.  相似文献   

13.
1. A branched-chain 2-oxo acid dehydrogenase was partially purified from ox liver mitochondria. 2. The preparation oxidized 4-methyl-2-oxopentanoate, 3-methyl-2-oxobutyrate and D- and L-3-methyl-2-oxopentanoate. The apparent Km values for the oxo acids and for thiamin pyrophosphate, CoA, NAD+ and Mg2+ were determined. 3. The oxidation of each oxo acid was inhibited by isovaleryl (3-methylbutyryl)-CoA (competitive with CoA) and by NADH (competitive with NAD+); Ki values were determined. 4. The preparation showed substrate inhibition with each 2-oxo acid. The oxidative decarboxylation of 4-methyl-2-oxo[1-14C]pentanoate was inhibited by 3-methyl-2-oxobutyrate and DL-3-methyl-2-oxopentanoate, but not by pyruvate. The Vmax. with 3-methyl-2-oxobutyrate as variable substrate was not increased by the presence of each of the other 2-oxo acids. 5. Ox heart pyruvate dehydrogenase did not oxidize these branched-chain 2-oxo acids and it was not inhibited by isovaleryl-CoA. The branched-chain 2-oxo acid dehydrogenase activity (unlike that of pyruvate dehydrogenase) was not inhibited by acetyl-CoA. 6. It is concluded that the branched-chain 2-oxo acid dehydrogenase activity is distinct from that of pyruvate dehydrogenase, and that a single complex may oxidize all three branched-chain 2-oxo acids.  相似文献   

14.
1. The reaction of the pyruvate dehydrogenase multienzyme complex of Escherichia coli with maleimides was examined. In the absence of substrates, the complex showed little or no reaction with N-ethylmaleimide. However, in the presence of pyruvate and N-ethylmaleimide, inhibition of the pyruvate dehydrogenase complex was rapid. Modification of the enzyme was restricted to the transacetylase component and the inactivation was proportional to the extent of modification. The lipoamide dehydrogenase activity of the complex was unaffected by the treatment. The simplest explanation is that the lipoyl groups on the transacetylase are reductively acetylated by following the initial stages of the normal catalytic cycle, but are thereby made susceptible to modification. Attempts to characterize the reaction product strongly support this conclusion. 2. Similarly, in the presence of N-ethylmaleimide and NADH, much of the pyruvate dehydrogenase activity was lost within seconds, whereas the lipoamide dehydrogenase activity of the complex disappeared more slowly: the initial site of the reaction with the complex was found to be in the lipoyl transacetylase component. The simplest interpretation of these experiments is that NADH reduces the covalently bound lipoyl groups on the transacetylase by means of the associated lipoamide dehydrogenase component, thereby rendering them susceptible to modification. However, the dependence of the rate and extent of inactivation on NADH concentration was complex and it proved impossible to inhibit the pyruvate dehydrogenase activity completely without unacceptable modification of the other component enzymes. 3. The catalytic reduction of 5,5'-dithiobis-(2-nitrobenzoic acid) by NADH in the presence of the pyruvate dehydrogenase complex was demonstrated. A new mechanism for this reaction is proposed in which NADH causes reduction of the enzyme-bound lipoic acid by means of the associated lipoamide dehydrogenase component and the dihydrolipoamide is then oxidized back to the disulphide form by reaction with 5,5'-dithiobis-(2-nitrobenzoic acid). 4. A maleimide with a relatively bulky N-substituent, N-(4-diemthylamino-3,5-dinitrophenyl)maleimide, was an effective replacement for N-ethylmaleimide in these reactions with the pyruvate dehydrogenase complex. 5. The 2-oxoglutarate dehydrogenase complex of E. coli behaved very similarly to the pyruvate dehydrogenase complex, in accord with the generally accepted mechanisms of the two enzymes. 6. The treatment of the 2-oxo acid dehydrogenase complexes with maleimides in the presence of the appropriate 2-oxo acid substrate provides a simple method for selectively inhibiting the transacylase components and for introducing reporter groups on to the lipoyl groups covalently bound to those components.  相似文献   

15.
The regulatory effects of alpha-ketoisovalerate on purified bovine heart pyruvate dehydrogenase complex and endogenous pyruvate dehydrogenase kinase were investigated. Incubation of pyruvate dehydrogenase complex with 0.125 to 10 mM alpha-ketoisovalerate caused an initial lag in enzymatic activity, followed by a more linear but inhibited rate of NADH production. Incubation with 0.0125 or 0.05 mM alpha-ketoisovalerate caused pyruvate dehydrogenase inhibition, but did not cause the initial lag in pyruvate dehydrogenase activity. Gel electrophoresis and fluorography demonstrated the incorporation of acyl groups from alpha-keto[2-14C]isovalerate into the dihydrolipoyl transacetylase component of the enzyme complex. Acylation was prevented by pyruvate and by arsenite plus NADH. Endogenous pyruvate dehydrogenase kinase activity was stimulated specifically by K+, in contrast to previous reports, and kinase stimulation by K+ correlated with pyruvate dehydrogenase inactivation. Maximum kinase activity in the presence of K+ was inhibited 62% by 0.1 mM thiamin pyrophosphate, but was inhibited only 27% in the presence of 0.1 mM thiamin pyrophosphate and 0.1 mM alpha-ketoisovalerate. Pyruvate did not affect kinase inhibition by thiamin pyrophosphate at either 0.05 or 2 mM. The present study demonstrates that alpha-ketoisovalerate acylates heart pyruvate dehydrogenase complex and suggests that acylation prevents thiamin pyrophosphate-mediated kinase inhibition.  相似文献   

16.
A steady-state kinetic analysis with evaluation of product inhibition was accomplished with purified rat liver flavokinase and FAD synthetase. For flavokinase, Km values were calculated as approximately 11 microM for riboflavin and 3.7 microM for ATP. Ki values were calculated for FMN as 6 microM against riboflavin and for ZnADP as 120 microM against riboflavin and 23 microM against ZnATP. From the inhibition pattern, the flavokinase reaction followed an ordered bi bi mechanism in which riboflavin binds first followed by ATP; ADP is released first followed by FMN. For FAD synthetase, Km values were calculated as 9.1 microM for FMN and 71 microM for MgATP. Ki values were calculated for FAD as 0.75 microM against FMN and 1.3 microM against MgATP and for pyrophosphate as 66 microM against FMN. The product inhibition pattern suggests the FAD synthetase reaction also followed an ordered bi bi mechanism in which ATP binds to enzyme prior to FMN, and pyrophosphate is released from enzyme before FAD. Comparison of Ki values with physiological concentrations of FMN and FAD suggests that the biosynthesis of FAD is most likely regulated by this coenzyme as product at the stage of the FAD synthetase reaction.  相似文献   

17.
Initial velocity, product inhibition, and substrate inhibition studies suggest that the endogenous lactate dehydrogenase activity of duck epsilon-crystallin follows an order Bi-Bi sequential mechanism. In the forward reaction (pyruvate reduction), substrate inhibition by pyruvate was uncompetitive with inhibition constant of 6.7 +/- 1.7 mM. In the reverse reaction (lactate oxidation), substrate inhibition by L-lactate was uncompetitive with inhibition constant of 158 +/- 25 mM. The cause of these inhibitions may be due to epsilon-crystallin-NAD(+)-pyruvate and epsilon-crystallin-NADH-L-lactate abortive ternary complex formation as suggested by the multiple inhibition studies. Pyruvate binds to free enzyme very poorly, with a very large dissociation constant. Bromopyruvate, fluoropyruvate, pyruvate methyl ester, and pyruvate ethyl ester are alternative substrates for pyruvate. 3-Acetylpyridine adenine dinucleotide, nicotinamide 1,N6-ethenoadenine dinucleotide, and nicotinamide hypoxanthine dinucleotide serve as alternative coenzymes for epsilon-crystallin. All the above alternative substrates or coenzymes showed an intersecting initial-velocity pattern conforming to the order Bi--Bi kinetic mechanism. Nicotinic acid adenine dinucleotide, thionicotinamide adenine dinucleotide, and 3-aminopyridine adenine dinucleotide acted as inhibitors for this enzymatic crystallin. The inhibitors were competitive versus NAD+ and noncompetitive versus L-lactate. alpha-NAD+ was a noncompetitive inhibitor with respect to the usual beta-NAD+. D-Lactate, tartronate, and oxamate were strong dead-end inhibitors for the lactate dehydrogenase activity of epsilon-crystallin. Both D-lactate and tartronate were competitive inhibitors versus L-lactate while oxamate was a competitive inhibitor versus pyruvate. We conclude that the structural requirements for the substrate and coenzyme of epsilon-crystallin are similar to those of other dehydrogenases and that the carboxamide carbonyl group of the nicotinamide moiety is important for the coenzyme activity.  相似文献   

18.
L Boquist  I Ericsson 《FEBS letters》1984,178(2):245-248
Considerable variations were found in the in vitro effect of alloxan on mouse liver enzymes associated with the citric acid cycle. The following approximative alloxan concentrations induced 50% inhibition of enzyme activity: 10(-6)M for aconitase, 10(-4)M for NAD-linked isocitrate dehydrogenase, glutamate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinyl-CoA synthetase and fumarase, and 10(-3)M for citrate synthase and NADP-linked isocitrate dehydrogenase. Pyruvate dehydrogenase, succinate dehydrogenase and malate dehydrogenase were not inhibited by 10(-3)M alloxan. The inhibition of aconitase was competitive both when using mouse liver and purified porcine heart enzyme. The Ki values for the purified enzyme in the presence of 5 microM alloxan were 0.22 microM with citrate, 4.0 microM with cis-aconitate and 0.62 microM with isocitrate as substrate. The high sensitivity of aconitase for inhibition by alloxan probably plays a prominent role for the toxic effects of alloxan.  相似文献   

19.
alpha-Glycerophosphate dehydrogenase (EC 1.1.99.5) in mitochondria from liver of the triiodothyronine-treated rats is competitively inhibited by phosphoenolpyruvate, glyceraldehyde 3-phosphate and 3-phosphoglycerate, the apparent Ki values for phosphoenolpyruvate being 0.76 mM at pH 7.0, 1.7 mM at pH 7.4 and 3.5 mM at pH 7.7. The apparent Ki values for glyceraldehyde 3-phosphate and 3-phosphoglycerate are also pH-dependent. Other glycolytic intermediates, such as 2-phosphoglycerate, 2,3-diphosphoglycerate, pyruvate, glucose 6-phosphate, fructose 6-phosphate and fructose 1,6-diphosphate did not alter significantly alpha-glycerophosphate dehydrogenase activity. Palmitoyl-CoA is a competitive inhibitor of this enzyme, with Ki value of about 30 micron.  相似文献   

20.
Cooperative interaction of pyruvate with the pyruvate dehydrogenase (PD) complex from pigeon breast muscle was shown. The sigmoidal dependence of the reaction rate on pyruvate concentration was observed for the PD complex. The Hill coefficient is equal to 1,5; no inhibition by the substrate (up to 2.2.10(-3) M) was found. The kinetic behaviour of the isolated pyruvate dehydrogenase component (PDH) analyzed under similar conditions, is more complex; this may be probably due to the presence of oligomeric forms with different molecular weights and specific activities. The competitive inhibitor of the PD complex--an amide of pyruvic acid (PA) (Ki=6.3-10(-6) M) activates the enzyme at low concentrations (less than 2,10(-6) M). When PA is present, the dependence of the reaction rate on pyruvate concentration gives a usual hyperbolic curve, v of [S]o. It is concluded that pyruvate may have a regulatory effect on the activity of muscle PD complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号