首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to correlate ultrastructural features of tendon collagen fibrils at various stages of development with the presence of procollagen, pN-collagen, pC-collagen, and the free amino propeptides and carboxyl propeptide of type I procollagen. Tendons from 10-, 14-, and 18-day chicken embryos reveal small, well-defined intercellular compartments containing collagen fibrils with diameters showing a unimodal distribution. At 21 days (hatching) and 9 days (post hatching) and at 5 weeks (post hatching), the compartments are larger, less well-defined, and there is multimodal distribution of tendon fibril diameters. Procollagen and the intermediates pN-collagen and pC-collagen are present in tendons up to 18 days. Thereafter there is a marked reduction in procollagen, whereas the intermediates persist throughout all stages of development. Similarly, free amino propeptides and carboxyl propeptides of type I procollagen were found at all stages. The amino propeptide of type III procollagen was restricted to the peritendineum until 7 weeks post hatching. At that time, a network of fibrils containing the amino propeptide of type III procollagen was seen delineating well-circumscribed compartments of collagen fibrils throughout the entire tendon. This study supports the notion that pN- and pC-collagen have an extracellular role and participate in collagen fibrillogenesis.  相似文献   

2.
A general mechanism for the assembly of procollagens is proposed from a biosynthetic study of procollagen III. This was shown to proceed by a stepwise process punctuated by disulfide bond formation and an assembly intermediate was recovered. The biosynthesis of type III procollagen in excised chick embryo blood vessels was studied by radioactive labeling for 30 min. Velocity sedimentation under denaturing conditions and purified antibodies specific against bovine amino propeptide III were used to identify and characterize monomeric pro alpha 1 III chains and a type III procollagen intermediate which is interchain disulfide-linked only at the carboxyl end but not at the amino end. The monomeric chains presumably have intrachain disulfide bonds within the propeptides. The monomeric pro alpha 1 III chains were also found when alpha, alpha'-dipyridyl was present during incubation. Pulse-chase experiments show that the monomeric chains and the intermediate are biosynthetic precursors of type III procollagen. Furthermore, it is shown that monomeric pro alpha 1 chains are not triple helical when extracted under nondenaturing conditions. The results indicate that the assembly of pro alpha 1 III chains into type III procollagen starts with the association of the folded carboxyl propeptides and is followed by formation of disulfide bonds between carboxyl propeptides, folding of the triple helix, and formation of disulfide bonds between amino propeptides. All procollagens may follow a similar assembly sequence.  相似文献   

3.
S Curran  D J Prockop 《Biochemistry》1982,21(7):1482-1487
The amino-terminal propeptide from type II procollagen was isolated from organ cultures of sternal cartilages from 17-day-old chick embryos. The procedure provided the first isolation of the propeptide in amounts adequate for chemical characterization. The propeptide had an apparent molecular weight of 18000 as estimated by gel electrophoresis in sodium dodecyl sulfate. It contained a collagen-like domain as demonstrated by its amino acid composition, circular dichroism spectrum, and susceptibility to bacterial collagenase. One residue of hydroxylysine was present, the first time this amino acid has been detected in a propeptide. The peptide contained no methionine and only two residues of half-cystine. Antibodies were prepared to the propeptide and were used to establish its identity. The antibodies precipitated type II procollagen but did not precipitate type II procollagen from which the amino and carboxy propeptides were removed with pepsin. Also, they did not precipitate the carboxy propeptide of type II procollagen. The data demonstrated th at the type II amino propeptide was similar to the amino propeptides of type I and type III procollagens in that it contained a collagen-like domain. It differed, however, in that it lacked a globular domain as large as the globular domain of 77-86 residues found at the amino-terminal ends of the pro alpha 1 chains of type I and type III procollagens.  相似文献   

4.
Summary Collagen fibrillogenesis was studied in tibiae of chick embryos, 9, 11, and 14 days old. Specimens were incubated with antibodies against the amino and the carboxyl propeptides of type-I collagen and subjected to ferritin-la-belling immuno-electron microscopy. The amino propeptide was found in thin fibrils, 20–40 nm in diameter, distributed at 60-nm periodicity. The carboxyl propeptide antibody labelled a wide spectrum of fibrils, although the majority were in the range of 40–100 nm, distinctly larger than those labelled with the amino propeptide antibody. The presence of pN (amino propeptide plus collagen) and pC (carboxyl propeptide plus collagen) collagen was also demonstrated by Western blotting in all specimens. This study suggests that the sequence of propeptide removal may regulate collagen fibril diameter.  相似文献   

5.
Folding of carboxyl domain and assembly of procollagen I   总被引:3,自引:0,他引:3  
An early form of procollagen I was found in acetic acid extracts of radioactively labeled chick embryo skull bones. It resembled native procollagen I, but sedimented slightly faster, and its component chains were slightly underhydroxylated and were not disulfide-linked to each other, although its propeptides were internally disulfide-bonded. Pulse-chase experiments showed its conversion to disulfide-linked procollagen. As the same conversion occurred when proline hydroxylation was blocked by 2,2'-dipyridyl, we infer that the formation of this precursor from its component chains does not require collagen triple helix formation. We suggest that interaction between the folded carboxyl propeptides of individual pro-alpha (I) chains is an important step in the formation of this precursor and of procollagen I. Studies of the refolding and association of fully reduced and denatured carboxyl propeptides supported this concept. In the presence of glutathione the correct disulfide bonds could be reestablished, as judged by a mapping of some tryptic peptides. Individual carboxyl propeptides refolded first, and this occurred even in 2 M urea. Recognition between folded carboxyl propeptides occurred only when less than 0.5 M urea was present. The presence of the carboxyl telopeptides was important for trimeric reassembly. Individual propeptides also folded spontaneously during cell-free translation of pro-alpha (I) chains and were recognized by specific antibodies. We consider the role of carboxyl propeptides in the formation of procollagen I molecules and suggest a model of self-assembly, possibly facilitated by interactions with the luminal surface of the rough endoplasmic reticulum.  相似文献   

6.
We present, here, evidence for a pretranslational role of procollagen propeptides in the regulation of collagen synthesis. Amino- and carboxyl-terminal type I procollagen propeptides were isolated and purified from chick calvaria and tendon cultures. Human lung fibroblasts (IMR-90) were incubated in medium containing varying concentrations of propeptides. Amino-propeptides at 10 nM caused an 80% decrease in collagen synthesis compared to control. Higher concentrations of amino-propeptides did not decrease collagen synthesis further and no significant effect on non-collagen synthesis was found throughout the entire concentration range. Carboxyl-propeptides also inhibited collagen synthesis. At 10 nM, collagen synthesis was decreased by 30% and a concentration of 40 nM caused an 80% reduction. However, at the latter concentration non-collagen synthesis was also affected, decreasing by 20% relative to control. To assess possible pretranslational effects of propeptides, IMR-90 fibroblasts were treated with varying concentrations of each propeptide and levels of type I procollagen mRNA was determined by dot hybridization with a 32P-alpha 2(I) cDNA probe. Both propeptides caused significant concentration-dependent decreases in procollagen type I mRNA levels. At 10 nM, the amino-propeptide resulted in a 55% decrease in collagen mRNA levels while at 40 nM these levels decreased by 72% compared to control. Carboxyl-propeptides were also inhibitory, decreasing mRNA levels by 33% at 10 nM and 73% at 40 nM. Messenger RNA levels of a representative noncollagenous protein, beta-actin, were unaffected by either propeptide throughout the concentration range.  相似文献   

7.
The biosynthesis and proteolytic processing of type XI procollagen was examined using pulse-chase labelling of 17-day embryonic chick sterna in organ culture with [3H]proline. Products of biosynthesis were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with and without prior reduction of disulfide bonds. Pro-alpha chains, intermediates, and matrix forms were identified by cyanogen bromide or Staphylococcus aureus V8 protease digestion. The results show that type XI pro-alpha chains assemble into trimeric molecules with interchain disulfide bonds. Proteolytic processing begins at least 40 min after the start of labeling which is later than that of type II procollagen (25 min). This first processing step involves the loss of the domain containing the interchain disulfide bonds which most likely is the carboxyl propeptide. In the case of the pro-alpha 3 chain, this generates the matrix form, m alpha 3, which retains its amino propeptide. For the pro-alpha 1 and pro-alpha 2 chains, this step generates intermediate forms, p alpha 1 and p alpha 2, which undergo a second proteolytic conversion to m alpha 1 and m alpha 2, and yet retain a pepsin-labile domain. The conversion of p alpha 2 to m alpha 2 is largely complete 2 h after labeling. p alpha 1 is converted to m alpha 1 very slowly and is 50% complete after 18 h of chase in organ culture. The apparent proteolytic processing within the amino propeptide, and the differential rate of processing between two chains in the same molecule are unusual and distinguish type XI from collagen types I, II, and III. It is possible that the extremely slow processing of p alpha 1 affects the formation of the heterotypic cartilage collagen fibrils and may be related to the function of type XI collagen.  相似文献   

8.
The specific mammalian collagenase isolated from cultures of metastatic mouse PMT sarcoma cells cleaves murine procollagen IV into two segments, of approximate mass ratio 3:1. These fragments were separated by velocity sedimentation, visualized by electron microscopy, and analyzed. The longer COOH-terminal procollagen segment has a 270-nm collagenous portion with a knob at one end. This knob consists of the three previously identified, noncollagenous carboxyl propeptides, of approximately 30,000 daltons each. These carboxyl propeptides are chain-specific, and the three chains of each segment have the same amino to carboxyl orientation. The collagenase cuts through all three chains at one site, and the three-component chains of both the longer COOH-terminal procollagen segment and the shorter NH2-terminal procollagen segment are linked by interchain disulfide bridges. The enzyme cuts off the same COOH-terminal procollagen segment from procollagen IV monomers and tetramers, and the flexibility of this segment is similar to that of interstitial collagen helices. The amino ends of the NH2-terminal procollagen segments derived from tetramers remain joined as the 32-nm long "7 S collagen" junctional complex, and the remaining 89-nm long projecting threads are significantly more flexible than the COOH-terminal procollagen segment. The electrophoretic mobilities of the enzyme cleavage products are consistent with a heterotrimeric composition of this procollagen IV.  相似文献   

9.
Summary The aim of this study was to assess and compare the accumulation and distribution of newly synthesized type I and III collagens in usual interstitial pneumonia (UIP) and pulmonary sarcoidosis. Lung biopsies from 10 patients with UIP and 13 patients with sarcoidosis were investigated by immunohistochemical technique and mRNA in situ hybridization. The antibodies for the aminoterminal propeptide of type I procollagen and the aminoterminal propeptide of type III procollagen (PINP and PIIINP, respectively) were used. When compared to healthy lung, levels of type I pN- and type III pN-collagens were increased in both of these disorders. Type I procollagen was mostly present as intracellular spots in newly formed fibrosis in UIP while type III pN-collagen was expressed extracellularly underneath metaplastic alveolar epithelium. Type I procollagen was present intracellularly within and around the granulomas of sarcoidosis, whereas type III pN-collagen was expressed extracellularly, mainly around the granulomas. mRNAs of both collagens colocalized with the precursor proteins. We conclude that the expression of precursor proteins and mRNA of type I and type III collagens is increased in UIP and sarcoidosis, reflecting mainly active synthesis of these collagens in different areas of the lung.  相似文献   

10.
Recently we presented the partial covalent structure of a type V collagen chain. Analysis of amino acids 796-1020 in the human alpha 2(V) Gly-X-Y region showed strong conservation of charged positions with the interstitial collagens but also revealed substitutions unique to type V. To gain more information about this procollagen and primarily to resolve the ambiguous nature of the 3' noncollagenous propeptide, we sequenced several cDNA clones coding for amino acids adjacent to the carboxyl end of the alpha chain. Here we report the complete primary structure of the alpha 2(V) COOH-terminal propeptide. In general, the latter sequence (270 residues) bears a greater degree of similarity to those of the interstitial rather than the basement membrane procollagens. Compared to the interstitial procollagens, however, more divergence has occurred in alpha 2(V) surrounding the conserved N-asparaginyl-linked carbohydrate attachment site at residues 171-173, and alpha 2(V) possesses an additional potential glycosylation site (Asn-Lys-Thr) located in a hypervariable region near the NH2 terminus. Although certainly premature to form any rigid hypothesis, a pattern emerges that may be characteristic of alpha 2 versus alpha 1 chains. Both the alpha 2(I) and alpha 2(V) telopeptides are devoid of a lysine, which in alpha 1 chains forms an interchain cross-link with residue 87 of the collagenous region. Also in contrast to the interstitial alpha 1 carboxyl propeptides is the absence in alpha 2(I) and alpha 2(V) of a cysteine that probably participates in an interchain disulfide bond. Therefore, one can speculate that those alpha 2 chains, represented only once in procollagen trimers, may not be under the same selective pressure as alpha 1 chains to maintain certain residues responsible for stabilizing the triple helical molecules.  相似文献   

11.
During the second phase of osteogenesis in vitro, rat osteoblasts secrete inducer(s) of chemotaxis and chemoinvasion of endothelial and tumor cells. We report here the characterization and purification from mature osteoblast conditioned medium of the agent chemotactic for endothelial cells. The chemoactive conditioned medium specifically induces directional migration of endothelial cells, not affecting the expression and activation of gelatinases, cell proliferation, and scattering. Directional migration induced in endothelial cells by conditioned medium from osteoblasts is inhibited by pertussis toxin, by blocking antibodies to integrins alpha(1), beta(1), and beta(3), and by antibodies to metalloproteinase 2 and 9. The biologically active purified protein has two sequences, coincident with the amino-terminal amino acids, respectively, of the alpha(1) and of the alpha(2) carboxyl propeptides of type I collagen, as physiologically produced by procollagen C proteinase. Antibodies to type I collagen and to the carboxyl terminus of alpha(1) or alpha(2) chains inhibit chemotaxis. The chemoattractant is the propeptide trimer carboxyl-terminal to type I collagen, and its activity is lost upon reduction. These data illustrate a previously unknown function for the carboxyl-terminal trimer, possibly relevant in promoting endothelial cell migration and vascularization of tissues producing collagen type I.  相似文献   

12.
Substantial evidence supports the role of the procollagen C-propeptide in the initial association of procollagen polypeptides and for triple helix formation. To evaluate the role of the propeptide domains on triple helix formation, human recombinant type I procollagen, pN-collagen (procollagen without the C-propeptides), pC-collagen (procollagen without the N-propeptides), and collagen (minus both propeptide domains) heterotrimers were expressed in Saccharomyces cerevisiae. Deletion of the N- or C-propeptide, or both propeptide domains, from both proalpha-chains resulted in correctly aligned triple helical type I collagen. Protease digestion assays demonstrated folding of the triple helix in the absence of the N- and C-propeptides from both proalpha-chains. This result suggests that sequences required for folding of the triple helix are located in the helical/telopeptide domains of the collagen molecule. Using a strain that does not contain prolyl hydroxylase, the same folding mechanism was shown to be operative in the absence of prolyl hydroxylase. Normal collagen fibrils were generated showing the characteristic banding pattern using this recombinant collagen. This system offers new opportunities for the study of collagen expression and maturation.  相似文献   

13.
The distribution of the extracellular matrix proteins types III pN-collagen and IV collagen, laminin and tenascin was investigated in fetal, infant, and adult human spleens by using immuno-electron microscopy. The presence of type III pN-collagen was assessed by using an antibody against the aminoterminal propeptide of type III procollagen. All the proteins other than type III pN-collagen were found in reticular fibers throughout development. In the white pulp of the fetus aged 16 gestational weeks, only an occasional type III pN-collagen-containing fibril was present, although type III pN-collagen was abundant in the reticular fibers of the red pulp. Conversely, in adults, most of the reticular fibers of the white pulp, but not of the red pulp, were immunoreactive for type III pN-collagen. Ring fibers, the basement membranes of venous sinuses, were well developed in both infant and adult spleens. The first signs of their formation could be seen as a discontinuous basement membrane, which was immunoreactive for type IV collagen, laminin, and tenascin in the fetus aged 20 gestational weeks. Intracytoplasmic immunoreactivity for all the proteins studied was visible in the mesenchymal cells of the fetus aged 16 gestational weeks and in the reticular cells of the older fetuses, which also showed labeling for type IV collagen and laminin in the endothelial cells. The results suggest that proteins of the extracellular matrix are produced by these stationary cells.  相似文献   

14.
At high concentrations, type I pN-collagen, pC-collagen and procollagen (the first 2 generated from procollagen by enzymic cleavage of C-propeptides and N-propeptides, respectively) can all be made to assemble in vitro into thin D-periodic sheets or tapes. Scanning transmission electron microscopy mass measurements show that the pN-collagen sheets and procollagen tapes have a mass per unit area corresponding to that of approximately 6.8 monolayers of close-packed molecules. pN-collagen sheets are extensive and remarkably uniform in mass thickness (fractional S.D. 0.035); procollagen tapes are neither as extensive nor as uniform in thickness. The mean thickness of pC-collagen tapes is less and the variability is greater. In pN-collagen sheets, the overlap: gap mass contrast in a D-period is increased from 5:4 (the ratio in a native collagen fibril) to 6:4, showing that the N-propeptides do not project into the gap but are folded back over the overlap zone. Assuming all N-propeptides to be constrained to the two surfaces of a sheet, their surface density can be found from the mass thickness of the sheet. In a lateral direction (i.e. normal to the axial direction where the spacing is D-periodic), the N-propeptide domains are calculated to be spaced, centre to centre, by 2.23 (+/- 0.1) nm on both surfaces. This value (approx. 1.5 x the triple-helix diameter) implies close-packing laterally with adjacent domains in contact. Sheet formation and the "surface-seeking" behaviour of propeptides can be understood in terms of the dual character of the molecules, evident from solubility data, with propeptides possessing interaction properties very different from those displayed by the rest of the molecule. The form and stability of sheets (and of first-formed fibrils assembling in vivo) could, it is suggested, depend on the partially fluid-like nature of lateral contacts between collagen molecules.  相似文献   

15.
In cultures of dermal fibroblasts, procollagen and the intermediates pC- and pN-collagen accumulated in the culture medium with little further processing to collagen. When polyethylene glycol (PEG) or other neutral polymers were added to fibroblast culture medium, no collagen or procollagen was found in the medium, but all the collagen was associated with the cell layer. The type I procollagen was fully processed to collagen with an initial transient accumulation of pN-collagen, and the processed collagen formed covalently cross-linked dimers. The presence of pepsin-sensitive COOH-terminal telopeptides and the accumulation of pN-collagen in PEG-treated cultures of dermatosparactic fibroblasts indicated that it was likely that processing occurred via the correct in vivo propeptidase activities. At the levels used in this study, PEG did not have any toxic effect during the incubation period on the fibroblasts in culture, since the amount of total protein synthesis was not altered by addition of PEG to cultures. However, the level of collagen production was reduced to about half, indicating that there was increased degradation or that the released collagen propeptides or the accumulation of processed collagen in association with the cells exerted a feedback regulation on collagen synthesis. Addition of neutral polymers to the culture medium provided a simple means of achieving complete and accurate processing of procollagen which more closely resembled the in vivo process.  相似文献   

16.
Procollagen carboxyl-terminal proteinase, the enzyme which cleaves the carboxyl-terminal propeptides from type I procollagen, was extensively purified in a yield of 25% from pooled culture media of 17-day-old chick embryo tendons using a procedure which involved chromatography on Green A Dye matrix gel, concanavalin A-Sepharose and heparin-Sepharose, and filtration gels of Sephacryl S-300 and S-200. The purified enzyme is a neutral, Ca2+-dependent proteinase which is inhibited by metal chelators, but not by inhibitors for serine and cysteine proteinases. Calcium in a concentration of 5-10 mM is required for optimal activity. The molecular weight of the enzyme was determined to be 97,000-110,000 by gel filtration and by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. Other properties of the carboxyl-terminal proteinase are: 1) the Km for the type I procollagen is 96 nM at pH 7.5 and 35 degrees C; 2) the activation energy for the reaction with type I procollagen is 21,000 cal mol-1; 3) amino acid sequencing of the released carboxyl-terminal propeptide indicated the enzyme specifically cleaves an -Ala-Asp- bond in both the pro-alpha 1(I) and pro-alpha 2(I) chains; 4) the enzyme specifically cleaves the carboxyl-terminal propeptides of a homotrimer of pro-alpha 1(I) chains and type II and III procollagens, but it does not cleave type IV procollagen. The results suggest that the enzyme is involved in the processing of type I procollagen in vivo.  相似文献   

17.
A codon frameshift mutation caused by a single base (U) insertion after base pair 4088 of prepro alpha 1(I) mRNA of type I procollagen was identified in a baby with lethal perinatal osteogenesis imperfecta. The mutation was identified in fibroblast RNA by a new method that allows the direct detection of mismatched bases by chemical modification and cleavage in heteroduplexes formed between mRNA and control cDNA probes. The region of mismatches was specifically amplified by the polymerase chain reaction and sequenced. The heterozygous mutation in the amplified cDNA most likely resulted from a T insertion in exon 49 of COL1A1. The frameshift resulted in a truncated pro alpha 1(I) carboxyl-terminal propeptide in which the amino acid sequence was abnormal from Val1146 to the carboxyl terminus. The propeptide lacked Asn1187, which normally carries an N-linked oligosaccharide unit, and was more basic than the normal propeptide. The distribution of cysteines was altered and the mutant propeptide was unable to form normal interchain disulfide bonds. Some of the mutant pro alpha 1(I)' chains were incorporated into type I procollagen molecules but resulted in abnormal helix formation with over-hydroxylation of lysine residues, increased degradation, and poor secretion. Only normal type I collagen was incorporated into the extracellular matrix in vivo resulting in a tissue type I collagen content approximately 20% of that of control (Bateman, J. F., Chan, D., Mascara, T., Rogers, J. G., and Cole, W. G. (1986) Biochem. J. 240, 699-708).  相似文献   

18.
19.
Matrix-free cells obtained from chick embryo cartilage were incubated in the presence of α,α′-dipyridyl and radioactive mannose in order to examine the incorporation of mannose into the propeptide extensions of Type II procollagen. Cell proteins were digested with bacterial collagenase and the digests were examined by polyacrylamide gel electrophoresis. Radioactive mannose was found in fragments from both the N- and C-propeptides, and therefore the results provided the first indication that both these propeptides of Type II procollagen contain mannose. The results also supported previous indications that addition of carbohydrate to the propeptides of procollagen does not require folding of the collagen domain into a triple helix.  相似文献   

20.
A rapid assay procedure was developed for measuring the rate of cleavage of the amino-terminal propeptide of type III procollagen. The method was based on the sequential precipitation of type III collagen and uncleaved pN-collagen by 30% ammonium sulfate, while the free amino-terminal propeptide remained in solution and could be further precipitated by 60% ammonium sulfate. Consistently better results were obtained than with the earlier method in which absolute ethanol was used as the precipitant, and selective precipitation was confirmed by polyacrylamide gel electrophoresis of the pellets. The high sensitivity of this method facilitates relatively rapid assays even from small amounts of cultured cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号