首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reproducing Varroa jacobsoni obtained from brood cells of Apis mellifera L. with 13–16 day old bees (pupae) and Varroa mites kept on adult bees for at least 8 days were simultaneously tested for their choice in three host types. Comparisons were made of attractiveness of Varroa jacobsoni to nurse bees, pollen foragers as to larvae from nearly capped brood cells. Host choices were observed in Petri dishes and in an Y-shaped olfactometer. Varroa jacobsoni obtained from capped brood cells showed a stronger preference for nurse bees in Petri dish simultaneous choice tests with pollen foragers or larvae than did mites which were previously kept on adult bees. In olfactometer simultaneous choice tests, the two mite test groups showed no clear difference in preferences for bees of different ages. The preference of Varroa jacobsoni for bees of different ages is therefore not only influenced by host factors but also by intrinsic factors in female mites that depend on the mite's reproductive stage.  相似文献   

2.
Reproduction ofVarroa jacobsoni Oudemans (Acari: Varroidae) and the number ofVarroa mites that were found dead on the bottom board of the hive, were studied in relation to the period the mites spent on adult honey bees,Apis mellifera L. (Hymenoptera: Apidae), prior to invasion into brood cells. The maximum period on adult bees was 23 days. To introduce mites, combs with emerging worker brood, heavily infested with mites, were placed into a colony and removed the next day. At the beginning of the first day following emergence from brood cells, 18% of the mites introduced into the colony was found on the bottom of the hive. Part of these mites may already have died inside the capped brood cells, and then fallen down after cleaning of cells by the bees. At the second and third day following emergence, respectively 4% and 2% of the mites on adult bees at the previous day was recovered on the bottom, whereas from the fourth day on only 0.6% of the mites on adult bees was recovered on the bottom per day. After invasion into brood cells, 8–12% of the mites did not produce any offspring. Of the mites that did reproduce, the total number of offspring was 4.0–4.4 per mite during one reproductive cycle, part of which may reach maturity resulting in 1.2–1.3 viable daughters, and 8–10% of the mites produced only male offspring. Reproduction was independent of the period the mites had spent on adult bees prior to invasion into brood cells.  相似文献   

3.
Adult bees, worker brood cells and drone brood cells ofApis florea were examined for the presence of mites by stereo microscope and by washing with soap. Tropilaelaps clareae was only found on adult bees;Euvarroa sinhai on adult bees and drone brood. The level ofT. clareae infestation is always very low, generally not exceeding 0.1%; that ofE. sinhai is somewhat higher. The mites were never found together on a single bee.  相似文献   

4.
The parasitic mite Varroa jacobsoni Oud. reproduces in sealed honey bee brood cells. Within worker cells a considerable fraction of the mites do not produce offspring. It is investigated whether variation in the ratio of cells without reproduction is caused by properties of the worker brood, or by the state of the mites entering cells. Pieces of brood comb were taken from colonies of 12 different bee lines and were placed simultaneously into highly infested colonies. Non-reproduction was independent of the origin of the brood pieces, indicating a minor role of a variation due to different brood origin. Between colonies used for infestation, however, it differed considerably. A comparison of the proportion of cells without reproduction when infested by one Varroa mite or when infested by two or three Varroa mites showed, that non-reproduction was mainly related to the state of the mites entering cells, and only to a minor degree to an influence of the brood cells. A high ratio of worker cells without reproduction was consistently reported in bee lines which survive the disease without treatment, and a high level of non-reproduction is thus regarded to be a key factor in breeding bees for high Varroa tolerance. The current results indicate, that differences in this trait are only to a minor degree related to differences between bee lines in the ability of the bee brood to induce oviposition. These differences seem rather to depend on other, unknown colony factors influencing the reproductive state of Varroa when they enter cells for reproduction.  相似文献   

5.
Varroa jacobsoni Oudemans (Acari: Varroidae) was studied with respect to invasion into different types of honeybee,Apis mellifera L., brood cells. Different cell types were obtained by shortening and elongating of cells, grafting worker larvae into drone cells andvice versa. The type of cell strongly affected the number of mites per cell, and the attractive period of the cells to the mites. The type of cell also affected the distance from larva to cell rim preceding cell capping. When this distance was larger in comparison to control cells of the same age, the attractive period of the brood cells was shorter andvice versa. Since in all cell types the distance from larva to cell rim continuously decreased preceding cell capping, this negative correlation is in agreement with the hypothesis that there is a critical larva-rim distance under which brood cells are attractive to mites. Then, the length of the attractive period of brood cells depends on the moment this critical distance is reached. The distribution of mites over different cell types in turn results from differences in the attractive period.  相似文献   

6.
Movements of the parasitic honey bee mite,Varroa jacobsoni (Oud.) were monitored in several assays as they moved among adult host honey bees,Apis mellifera. We examined the propensity of mites to leave their hosts and to move onto new bee hosts. We also examined their preference for bees of different age and hive function. Mites were standardized by selecting mites from newly emerged worker bees (NEWs). In closed jars, 50% ofVarroa left NEWs irreversibly when no physical path was present for the mites to return to the NEWs; about 90% of mites left newly emerged drones in identical assays. In petri dish arenas, mites were rarely seen off NEW hosts when monitored at 15-min intervals for 4 h; this was the case for single NEWs with one mite (NEWs+) and when a NEW+ and a NEW− (no mites) were placed together in a petri dish. When a NEW+ was held with either a nurse beeor a pollen forager, 25% of the mites moved to the older bees. When both a nurseand a pollen forager were placed in a petri dish with a NEW+, about 50% of the mites transferred to older bees; nurse bees received about 80% of these mites, whereas pollen foragers received significantly fewer mites (about 20%,P < 0.05). Most mite transfers occurred during the first 30 min after combining NEWs+ and test bees. When NEWs+ were combined with bees of known ages, rather than function, mites transferred more often to young bees than to older bees (1- and 5-day-old bees vs. 25-day-old bees,P < 0.05; 1-day-old vs. 13- and 25-day-old bees;P < 0.05). No differences in proportions of transferring mites were seen when the range of bee ages was ≤ 8 days (P > 0.05), implying that the factors mediating the mites’ adult-host preference change gradually with bee age. A possible chemical basis for host choice byVarroa is indicated by their greater propensity to move onto freezer-killed nurse bees than onto freezer-killed pollen foragers (P < 0.05) and by their lower movement onto heat-treated bees than onto control bees (P < 0.05). Bee age, hive function, and directional changes in cuticular chemistry are all correlated. Movements of newly emerged mites in relation to these variables may provide insights into their reproductive success inApis mellifera colonies.  相似文献   

7.
Colony infestation by the parasitic mite, Varroa destructor is one of the most serious problems for beekeeping worldwide. In order to reproduce varroa females, enter worker or drone brood shortly before the cell is sealed. To test the hypothesis that, due to the preference of mites to invade drone brood to reproduce, a high proportion of the mite reproduction should occur in drone cells, a comparative study of mite reproductive rate in worker and drone brood of Africanized honey bees (AHB) was done for 370 mites. After determining the number, developmental stage and sex of the offspring in worker cells, the foundress female mite was immediately transferred into an uninfested drone cell. Mite fertility in single infested worker and drone brood cells was 76.5 and 79.3%, respectively. There was no difference between the groups (X 2 = 0.78, P = 0.37). However, one of the most significant differences in mite reproduction was the higher percentage of mites producing viable offspring (cells that contain one live adult male and at least one adult female mite) in drone cells (38.1%) compared to worker cells (13.8%) (X 2 = 55.4, P < 0.01). Furthermore, a high level of immature offspring occurred in worker cells and not in drone cells (X 2 = 69, P < 0.01). Although no differences were found in the percentage of non-reproducing mites, more than 74% (n = 85) of the mites that did not reproduce in worker brood, produced offspring when they were transferred to drone brood.  相似文献   

8.
Reproduction in Varroa jacobsoni occurs only in cells of the capped honey bee brood. Female mites were sampled at different times after cell sealing and ovaries containing a vitellogenic oocyte of the first gonocycle were examined under an electron microscope. It was found that the cytoplasmic connection between the lyrate organ and the oocyte persists far into the vitellogenic growth phase. In addition, a large amount of yolk material is taken up from the haemolymph. All ultrastructural features characteristic of vitellogenesis, such as microvilli, coated pits, vesicles and growing yolk platelets, are present. If more than four Varroa females live in an overcrowded brood cell, they appear to be in stress conditions and their vitellogenic oocytes may become atretic. Alterations typical for oocyte degradation and oosorption were observed in such situations.  相似文献   

9.
Varroa jacobsoni reproduces in honey bee brood cells. Here the behavioral activity and use of space by infestingVarroa females and progeny were quantified in transparent artificial brood cells. The time-activity budget of both infesting and developing mites converged toward a stable pattern which was established during the bee prepupal stage of the infesting mites and the protonymphal stage of mite progeny. The pattern was such that infesting females and offspring eventually divided their activity between the fecal accumulation on the cell wall, which served as the rendezvous site for newly molted individuals, and the feeding site prepared on the pupa by the foundress. Other parts of the cell wall were used for oviposition and molting, away from the fecal accumulation on which activity of mobile stages was concentrated. Space structuring and the time-activity budget inVarroa probably evolved to enhance the number of fertilized females produced within the capped brood, where space and time are limiting factors. These behavioral adaptations parallel those of other mite species which show group behavior within cavities.  相似文献   

10.
The present study was conducted to determine whether Varroa jacobsoni can transmit American foulbrood (AFB), caused by the bacterium Paenibacillus larvae to healthy colonies by the surface transport of spores. Five two-storey Langstroth colonies of Apis mellifera ligustica were infested by placing a sealed brood comb, with 10% Varroa prevalence, between the central brood combs of each colony. Two months later the colonies were inoculated with P. larvae by adding brood comb pieces with clinical signs of AFB (45±5 scales per colony). After 60 days the brood area was completely uncapped by means of dissecting needles and tweezers, separating the Varroa mites from the larvae and the collected mites were introduced at a rate of 51 per colony into four recipient hives placed in an isolated apiary. Twenty female Varroa specimens were separated at random and observed by SEM. Paenibacillus larvae spores were found on the dorsal shield surface and on idiosomal setae. All colonies died after 4–5 months due to a high incidence of varroosis. No clinical AFB symptoms or P. larvae spores were observed in microscopic preparations. It is concluded that Varroa jacobsoni does not transmit AFB from infected to healthy colonies; it does, however transport P. larvae spores on its surface.  相似文献   

11.
Thirty-five honey-bee colonies, originally free fromVarroa jacobsoni (Oudemans) were monitored approximately every third week for the presence of the mite during 16 months following an initial introduction of five to eight adultVarroa females in early July. Investigations of hive debris detected the presence ofV. jacobsoni in 22 colonies (63%) within three months of the mite introduction. During the first winter period (October–April), mites were found in the hive debris of 13 colonies (37%). In terms of detectingVarroa during the summer in colonies with sealed brood, investigations of hive debris were more effective than sampling of brood. Brood sampling was more effective than sampling of live bees. In colonies without sealed brood, investigations of hive debris or of live bee samples seemed approximately equally efficient. The highest correlation between sampling methods was found between daily mite downfall and mites per live bee (r=0.81) in colonies with sealed brood. During the winter, investigations of dead bees and hive debris were approximately equally efficient in detectingVarroa.  相似文献   

12.
Reproduction and population growth of Varroa destructor was studied in ten naturally infested, Africanized honeybee (AHB) (Apis mellifera) colonies in Yucatan, Mexico. Between February 1997 and January 1998 monthly records of the amount of pollen, honey, sealed worker and drone brood were recorded. In addition, mite infestation levels of adult bees and worker brood and the fecundity of the mites reproducing in worker cells were determined. The mean number of sealed worker brood cells (10,070 ± 1,790) remained fairly constant over the experimental period in each colony. However, the presence and amount of sealed drone brood was very variable. One colony had drone brood for 10 months and another for only 1 month. Both the mean infestation level of worker brood (18.1 ± 8.4%) and adult bees (3.5 ± 1.3%) remained fairly constant over the study period and did not increase rapidly as is normally observed in European honey bees. In fact, the estimated mean number of mites fell from 3,500 in February 1997 to 2,380 in January 1998. In May 2000 the mean mite population in the study colonies was still only 1,821 mites. The fertility level of mites in this study was much higher (83–96%) than in AHB in Brazil(25–57%), and similar to that found in EHB (76–94%). Mite fertility remained high throughout the entire study and was not influenced by the amount of pollen, honey or worker brood in the colonies. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Mites in the genus Tropilaelaps (Acari: Laelapidae) are ectoparasites of the brood of honey bees (Apis spp.). Different Tropilaelaps subspecies were originally described from Apis dorsata, but a host switch occurred to the Western honey bee, Apis mellifera, for which infestations can rapidly lead to colony death. Tropilaelaps is hence considered more dangerous to A. mellifera than the parasitic mite Varroa destructor. Honey bees are also infected by many different viruses, some of them associated with and vectored by V. destructor. In recent years, deformed wing virus (DWV) has become the most prevalent virus infection in honey bees associated with V. destructor. DWV is distributed world-wide, and found wherever the Varroa mite is found, although low levels of the virus can also be found in Varroa free colonies. The Varroa mite transmits viral particles when feeding on the haemolymph of pupae or adult bees. Both the Tropilaelaps mite and the Varroa mite feed on honey bee brood, but no observations of DWV in Tropilaelaps have so far been reported. In this study, quantitative real-time RT-PCR was used to show the presence of DWV in infested brood and Tropilaelaps mercedesae mites collected in China, and to demonstrate a close quantitative association between mite-infested pupae of A. mellifera and DWV infections. Phylogenetic analysis of the DWV sequences recovered from matching pupae and mites revealed considerable DWV sequence heterogeneity and polymorphism. These polymorphisms appeared to be associated with the individual brood cell, rather than with a particular host.  相似文献   

14.
It is claimed that Perizin, a pesticide to control the mite Varroa jacobsoni, acts systemically and is distributed by trophallaxis of the bees. We studied the role of trophallactic interactions in the distribution of coumaphos, the active ingredient, among the colony members and whether coumaphos can reach all mites by systemic activity. Colonies were divided into three compartments by a screen, one receiving a Perizin treatment by sprinkling, the others receiving no Perizin. In this way it was possible to trace the amount of coumaphos transferred between bees through the screen from the treated part to the untreated one by trophallaxis. After different periods of time the number of fallen mites was counted and the amount of coumaphos in bees was determined for all hive compartments. We found that trophallactic interactions are of minor importance in the distribution of Perizin between the two compartments. The recommended method of sprinkling Perizin over the bees was shown to be very inefficient; only 24% of the applied amount reaches the alimentary canal of the bees; the rest must therefore remain at other places: on the outside of the bees, in the combs and on the hive-parts.  相似文献   

15.
A study carried out during the summer of 1994, in southern England, investigated the developmental times and mortality ofVarroa jacobsoni inApis mellifera drone cells. The position and time of capping of 2671 naturally infested drone cells were recorded. Six hours after the cell was capped, 90% of the mites were free from the brood food to start feeding on the developing drone. The developmental time of the mite's first three female offspring (133±3 h) and the male offspring (150 h) and the intervals between egg laying (20–32 h) were similar to those found in worker cells. However, the mortality of the offspring was much lower in drone cells than worker cells. The mode numbers of eggs laid were six and five in drone and worker cells, respectively. All offspring had ample time to develop fully in drone cells with the sixth offspring reaching maturity approximately 1 day before the drone bee emerged. Normal mites (those which lay five or six viable eggs) produced on average four female adult offspring but since only around approximately 55% of the mite population produced viable offspring the mean number of viable adult female offspring per total number of mother mites was 2 to 2.2 in drone cells.  相似文献   

16.
Studies of Varroa destructor orientation to honey bees were undertaken to isolate discrete chemical compounds that elicit host-finding activity. Petri dish bioassays were used to study cues that evoked invasion behaviour into simulated brood cells and a Y-tube olfactometer was used to evaluate varroa orientation to olfactory volatiles. In Petri dish bioassays, mites were highly attracted to live L5 worker larvae and to live and freshly freeze-killed nurse bees. Olfactometer bioassays indicated olfactory orientation to the same type of hosts, however mites were not attracted to the odour produced by live pollen foragers. The odour of forager hexane extracts also interfered with the ability of mites to localize and infest a restrained nurse bee host. Varroa mites oriented to the odour produced by newly emerged bees (<16 h old) when choosing against a clean airstream, however in choices between the odours of newly emerged workers and nurses, mites readily oriented to nurses when newly emerged workers were <3 h old. The odour produced by newly emerged workers 18–20 h of age was equally as attractive to mites as that of nurse bees, suggesting a changing profile of volatiles is produced as newly emerged workers age. Through fractionation and isolation of active components of nurse bee-derived solvent washes, two honey bee Nasonov pheromone components, geraniol and nerolic acid, were shown to confuse mite orientation. We suggest that V. destructor may detect relative concentrations of these compounds in order to discriminate between adult bee hosts, and preferentially parasitize nurse bees over older workers in honey bee colonies. The volatile profile of newly emerged worker bees also may serve as an initial stimulus for mites to disperse before being guided by allomonal cues produced by older workers to locate nurses. Fatty acid esters, previously identified as putative kairomones for varroa, proved to be inactive in both types of bioassays.  相似文献   

17.
A behavioral and physiological resistance mechanism of the Asian honey bee (Apis cerana) to an ectoparasitic mite, Varroa jacobsoni, which causes severe damage to the European honey bee (Apis mellifera) in the beekeeping industry worldwide, is reported here for the first time. Parasitism by the mite induced Asian worker bees to perform a series of cleaning behaviors that effectively removed the mites from the bodies of the adult host bees. The mites were subsequently killed and removed from the bee hives in a few seconds to a few minutes. The grooming behavior consists of self-cleaning, grooming dance, nestmate cleaning, and group cleaning. Worker bees can also rapidly and effectively remove the mites from the brood. The European bee showed cleaning behavior at low frequency and generally failed to remove the mites from both the adult bees and the brood.  相似文献   

18.
The reproduction of pyrethroid-resistant Varroa destructor mite, a brood parasite of honey bees, was observed in Weslaco, Texas, and the results compared with known susceptible mite populations from other studies. Seven Apis mellifera colonies that had mite populations resistant to the acaricide Apistan were used. Pyrethroid-resistance was confirmed when only 17% rather than 90% of mites confined in dishes containing Apistan died after 12 h of exposure. The average number of eggs laid by resistant mites invading worker and drone cells was 4.4 and 5.4 respectively. This is similar to the number of eggs laid by susceptible mites in worker (4.4–4.8) or drone (4.7–5.5) cells. Also the average number of fertilised V. destructor female mites produced by resistant mites in worker (1.0) and drone (2.1) cells were similar to the number produced by susceptible mites in worker (0.9) and drone (1.9–2.2) cells. In addition, no major differences between the resistant and susceptible mite populations were observed in either worker or drone cells when six different reproductive categories and offspring mortality rates were compared. Therefore, it appears that there is little or no reproductive fitness cost associated with pyrethroid resistance in V. destructor in Texas. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
OneApis mellifera and oneApis cerana observation hive were used to test the response to individually introducedVarroa jacobsoni mites. Within 60s, 88.6% of the involved cerana worker bees (n=44) showed auto-grooming behaviour. Within 5 min, allo-grooming behaviour, involving up to four nestmates, was observed in 33.3% of the infested bees. Successful mite removal was observed in 75% of the not-prematurely discontinued observations (n=36); 32% of the mites removed were caught with the mandibles.For mellifera auto-grooming behaviour was observed in most cases but delayed in comparison to cerana, and allo-grooming behaviour was rarely observed. Within 5 min, 48% of the mites in notprematurely discontinued observations (n=25) were removed, but none of the mites was caught with the mandibles.ForApis dorsata auto-grooming behaviour in response to the infestation withTropilaelaps clareae andVarroa mites is reported for the first time.Varroa was removed at a higher rate thanTropilaelaps. The higher survival chance ofTropilaelaps seems to be due to differences in mite behaviour and the preference for certain parts of the bee-body.  相似文献   

20.
The development of an infestation by five to eight introduced adult females ofVarroa jacobsoni Oud. in 35 honey-bee (Apis mellifera L.) colonies was monitored for 16 months with no outside source of infestation. Calculations on the size of the mite populations were based on collection of debris, samples of bees and brood, and estimates of number of bees and broodcells during the summer. In the winter, only dead bees and debris were collected. Samples were taken at 3-week intervals. Data indicated that the mite population probably could increase more than 100 times within one summer, and more than ten times between years, in a climate with a brood-rearing period of less than five months. A large variation in mite population increase existed between colonies. The winter mortality of mites that die with the host or drop from the winter cluster has a large influence on the population dynamics of the mite. Data also indicated that the simple method of counting mites in hive debris is a useful parameter for monitoring the population development ofVarroa in colonies with hatching brood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号