首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Small cell lung carcinoma (SCLC) is a neuroendocrine subtype of lung cancer that affects more than 200,000 people worldwide every year with a very high mortality rate. Here, we used a mouse genetics approach to characterize the cell of origin for SCLC; in this mouse model, tumors are initiated by the deletion of the Rb and p53 tumor suppressor genes in the lung epithelium of adult mice. We found that mouse SCLCs often arise in the lung epithelium, where neuroendocrine cells are located, and that the majority of early lesions were composed of proliferating neuroendocrine cells. In addition, mice in which Rb and p53 are deleted in a variety of non-neuroendocrine lung epithelial cells did not develop SCLC. These data indicate that SCLC likely arises from neuroendocrine cells in the lung.  相似文献   

2.
The effect of prenatal administration of ethinyl estradiol (EE) on the vaginal epithelium of adult mice was examined histologically. The mice were the offspring of JCL/ICR strain mice given orally 0.02 mg/kg body weight/day or 0.01 mg/kg/day of EE dissolved in olive oil from day 11 to day 17 of gestation at a stage when the urogenital sinus has just appeared in the embryos. The control mice were offspring of those fed with the vehicle alone. Autopsies were performed at 10 to 14 weeks of age. Another group of mice exposed to 0.02 mg/kg/day of EE or vehicle alone in utero, were spayed at 16 weeks of age and killed at 32 weeks of age. In the experimental nonspayed mice, hyperplasia of the vaginal epithelium with intense cornification was seen. The epithelium was significantly thicker than in the controls and showed an EE dose-response relation. One of the 16 mice exposed to 0.01 mg/kg/day of EE in utero had cystic or gland-like structures in the stroma and mucus-secreting cells in the surface epithelium consisting of columnar cells. In some experimental spayed mice, vaginal hyperplasia with cornified epithelium and hypertrophy of the ovarian interstitial tissue without corpus luteum were seen. These results indicate that EE can cross fetal membranes and affect undifferentiated cells in the urogenital sinus and/or Müllerian epithelium.  相似文献   

3.
 Positive selection has been proposed to be involved in protection from diabetes. We examined positive selection by fluorescence-activated cell sorter analyses in thymocytes of protected and susceptible E-transgenic and non-transgenic NOD mice. Three Vb families showed positive selection in E-transgenic mice. Vb6+CD4+ and Vb10+CD4+ thymocytes were found at higher frequencies in both protected NOD-Ea and susceptible NOD-DY mice. The increased frequencies of Vb13+CD8+ thymocytes were found in protected NOD-Ea mice only, and not in susceptible NOD-DY transgenic mice. These three Vb families were further examined in bone-marrow chimeras between NOD-Ea and non-transgenic NOD mice, where we could examine the contribution of E-expressing bone-marrow-derived cells in positive selection. We find that NOD-Ea→NOD-Ea chimeras have an increased positive selection of Vb13+CD8+ cells and that positive selection is more efficient when both thymic epithelium and bone-marrow-derived cells express the E molecule. This was also seen for Vb6+CD4+ cells. However, for Vb6, bone-marrow-derived cells alone were also capable of positive selection. Positive selection of Vb10+CD4+ cells was restricted to E-expressing thymic epithelium only. For Vb13+CD8+ cells, we found that positive selection is most efficient with E-expression on both thymic epithelium and bone-marrow-derived cells, although positive selection also occurs with E-positive epithelium only. For Vb6+ CD4+ cells, the dominating selecting cells are bone-marrow-derived cells, and Vb10+CD4+ cells seem to be selected exclusively by the thymic epithelium. Thus, the conditions for positive selection seem to vary considerably between different Vb families. Received: 8 April 1998 / Revised: 29 June 1998  相似文献   

4.
Summary Mice with targeted disruption of the cftr gene show pathophysiologic changes in the gallbladder, which correlate with hepatobiliary disease seen in cystic fibrosis patients. As gallbladder epithelium secretes mucin, and as this epithelium consists of a relatively homogenous cell type, study of CFTR function in these cells would be beneficial to delineate the complex cellular functions of this protein. The size and anatomic location of the murine gallbladder makes such studies difficult in vivo. Therefore, the need exists for in vitro models of gallbladder epithelium. We describe a method to isolate and culture murine gallbladder epithelium from wild-type and CF mice. Cells were grown in a monolayer on porous inserts over a feeder layer of fibroblasts. These nontransformed cells can be successively passaged and maintain a well-differentiated epithelial cell phenotype as shown by morphologic criteria, characterized by polarized columnar epithelial cells with prominent microvilli and intercellular junctions. Organotypic cultures showed columnar cells simulating in vivo morphology. This culture system should be valuable in delineating cellular processes relating to CFTR in gallbladder epithelium.  相似文献   

5.
This research was carried out to study the effects of infection with Taenia crassiceps cysticerci on the seminiferous epithelium histoarchitecture in the testes of male mice. Our results showed a severe disruption of the histoarchitecture of the testis epithelium in infected mice. In these animals, a significant infiltration of macrophages within seminiferous tubules was observed (P < 0.001). Generalized apoptosis of germ cells within the seminiferous tubules was observed, as assessed by TUNEL assay and apoptotic nuclei were quantified. The total number of fluorescent objects (DNA) (including clusters, singles, and objects in clusters) was significantly higher in the infected cells than in the control group (P = 0.0286). Observation of the interstitial tissue showed disorder and deterioration of many Leydig cells of infected mice, as well as intense vacuolization and destruction of their inter-cellular junctions. Several ultrastructural abnormalities were observed through electron microscopy as well. The observed pathology could lead to a state of infertility.  相似文献   

6.
Summary Sperm antigen expression during epididymal transit was examined in 4- to 16-week-old intact and castrated ICR mice, using the avidin-biotin complex (ABC) immunohistochemical method with monoclonal antibody T21 against a flagellar surface antigen. On untreated sections, the antigen was first expressed weakly on sperm in the proximal part of the corpus epididymis, and intraluminal components were stained in 4-week-old mice. Epididymal epithelial cells and their stereocilia, and cells in other reproductive organs were not stained. In contrast, on sections treated with neuramainidase, (1) the initial site of antigen appearance is a more proximal position in treated than in untreated sections, (2) stereocilia stained strongly, (3) the staining intensity of sperm and intraluminal components increased, and (4) some clear cells in the epithelium from the distal position of the caput to the corpus epididymis were stained. These results indicate that the antigen is produced by clear cells of the epididymal epithelium, that the antigenic determinant is masked initially by sialic acid residues, and that expression of the antigenic determinant on the sperm surface during epididymal maturation apparently involves desialylation.  相似文献   

7.
Regeneration and restoration of the airway epithelium after mechanical, viral or bacterial injury have a determinant role in the evolution of numerous respiratory diseases such as chronic bronchitis, asthma and cystic fibrosis. The study in vivo of epithelial regeneration in animal models has shown that airway epithelial cells are able to dedifferentiate, spread, migrate over the denuded basement membrane and progressively redifferentiate to restore a functional respiratory epithelium after several weeks. Recently, human tracheal xenografts have been developed in immunodeficient severe combined immunodeficiency (SCID) and nude mice. In this review we recall that human airway cells implanted in such conditioned host grafts can regenerate a well-differentiated and functional human epithelium; we stress the interest in these humanized mice in assaying candidate progenitor and stem cells of the human airway mucosa.  相似文献   

8.
Growth of mouse vaginal epithelial cells in vitro   总被引:1,自引:0,他引:1  
Summary Pieces of adult mouse vagina (comprising epithelium and connective tissue), when explanted onto glass coverslips, gave rise to outgrowing sheets of pure epithelium whose cells had ultrastructural features in common with the cells of origin in vivo. Epithelial outgrowths from vaginas of estradiol-primed and nonprimed ovariectomized mice were studied. After the first 5 days in vitro, in the absence of estradiol, the labeling index and length of the cell cycle were similar in both types of cultures. The values were similar to those reported by others in vivo in response to estrogen. Thus, proliferative activity of cells from nonprimed mice was stimulated merely by in vitro conditions, while proliferation of cells from primed mice continued at the high level existing prior to explantation. The high rate of proliferation wasnot associated with keratinization of any cells. In the continued absence of estrogen, cells from both kinds of cultures showed a progressive decrease in proliferative activity between 5 and 14 days, also associated with inability of cells to keratinize. Addition of estradiol didnot reverse the mitotic drop or promote keratinization. Supplementation with hydrocortisone and insulin had no effect. The results suggest that (a) vaginal epithelial cells in vitro require factors in addition to estradiol in order to maintain a high level of proliferative activity or to differentiate fully by keratinization and (b) keratinization is not dependent on rate of cell proliferation. Supported by grants from the National Cancer Institute (1 PO 1 CA 11536) and the National Institute of Arthritis and Metabolic Diseases (1 P0 1 AM 15515).  相似文献   

9.
The present research was performed to isolate and study the effects of a low molecular weight (<1300 Da) parasite-associated substance, obtained from peritoneal fluids of female mice infected with Taenia crassiceps cysticerci, on seminiferous epithelium cells of male mice testis. The results showed an intense disruption of Sertoli cells and germ cells within the seminiferous tubules of experimental mice, along with the destruction of their gap junction (GJ). Significant generalized apoptosis of germ cells within seminiferous tubules was determined by TUNEL staining (P = 0.0159). In addition, a significant number of infiltrating macrophages were found in the luminal space of these seminiferous tubules (P < 0.0001). Finally, electron microscopy studies revealed structural and morphological abnormalities in the somatic cells (Sertoli and Leydig cells) and in the germ cells, primarily in the round and elongate spermatids.  相似文献   

10.
11.
When Hymenoiepis nana eggs were inoculated orally into unimmunized mice, the oncosphere larvae penetrated the intestinal villi and underwent postembryonic development. The ultra-structural changes during the 48 h after infection were characterized by the development of microvillar protrusions on the surface of the epithelium, development of many membranous vesicles in the epithelium, and proliferation of undifferentiated cells in the parenchyma with a rapid disappearance of penetration gland cells and muscle cells. The epithelium of larvae from a challenge infection of mice that had been immunized by oral infection with eggs was severely damaged as shown by the increased electron density, shrinking of the cytoplasm and formation of large empty vacuoles. Development of microvillar protrusions and intraepithelial vesicles were not seen. Changes of internal structure were similar to those changes seen in the larvae of unimmunized mice. It was evident that host immunity, resulting in the ultimate death of challenge larvae during 24 h after challenge, was primarily directed against the epithelium of the larva. Host cells which firmly adhered to the larva in unimmunized mice were monocytes and macrophages with occasional infiltration of eosinophils and plasma cells, whereas the host cells in immunized mice were almost exclusively eosinophils and macrophages. It was suggested that the degeneration of larvae in immunized mice was caused by the action of specific antibody directed against larval epithelium. The cooperative action of antibody and eosinophils or macrophages in killing challenge larvae was also suggested.  相似文献   

12.
Transport of macromolecules from the interstitial testis tissue to cells at the adlumenal compartment of the seminiferous epithelium occurs naturally through Sertoli cells. In previous studies we have shown that Cr(V) intoxication disturbed spermatogenesis in mice. To test if Sertoli cells are affected by chromium, a well proved carcinogen, the uptake and the horseradish peroxidase transport ability of isolated seminiferous tubules of mice administered with a chromium(V) compound, have been studied. Male CD-R mice were exposed daily for 5 days to [CrV-BT]2– through subcutaneous injection and comparisons were made with groups of vehicle-treated mice. Using an in vitro assay we demonstrated that the seminiferous tubules were able to uptake and transport the tracer, in a much faster way than controls, mainly via intercellular and transcellular pathways, providing evidence that this functional role of Sertoli cells is affected by the Cr(V) compound. These findings might improve the knowledge on the toxicity mechanisms of chromium.  相似文献   

13.
The homeostasis of both cornea and hair follicles depends on a constant supply of progeny cells produced by populations of keratin (K) 14-expressing stem cells localized in specific niches. To investigate the potential role of Co-factors of LIM domains (Clims) in epithelial tissues, we generated transgenic mice expressing a dominant-negative Clim molecule (DN-Clim) under the control of the K14 promoter. As expected, the K14 promoter directed high level expression of the transgene to the basal cells of cornea and epidermis, as well as the outer root sheath of hair follicles. In corneal epithelium, the transgene expression causes decreased expression of adhesion molecule BP180 and defective hemidesmosomes, leading to detachment of corneal epithelium from the underlying stroma, which in turn causes blisters, wounds and an inflammatory response. After a period of epithelial thinning, the corneal epithelium undergoes differentiation to an epidermis-like structure. The K14-DN-Clim mice also develop progressive hair loss due to dysfunctional hair follicles that fail to generate hair shafts. The number of hair follicle stem cells is decreased by at least 60% in K14-DN-Clim mice, indicating that Clims are required for hair follicle stem cell maintenance. In addition, Clim2 interacts with Lhx2 in vivo, suggesting that Clim2 is an essential co-factor for the LIM homeodomain factor Lhx2, which was previously shown to play a role in hair follicle stem cell maintenance. Together, these data indicate that Clim proteins play important roles in the homeostasis of corneal epithelium and hair follicles.  相似文献   

14.
The vertebrate lens provides anin vivomodel to study the molecular mechanisms by which growth factors influence development decisions. In this study, we have investigated the expression patterns of platelet-derived growth factor (PDGF) and PDGF receptors during murine eye development byin situhybridization. Postnatally, PDGF-A is highly expressed in the iris and ciliary body, the ocular tissues closest to the germinative zone of the lens, a region where most proliferation of lens epithelial cells occurs. PDGF-A is also present in the corneal endothelium anterior to the lens epithelium in embryonic and early postnatal eyes. PDGF-B is expressed in the iris and ciliary body as well as in the vascular cells which surround the lens during early eye development. In the lens, expression of PDGF-α receptor (PDGF-αR), a receptor that can bind both PDGF-A and PDGF-B, is restricted to the lens epithelium throughout life. The expression of PDGF-αR in the lens epithelial cells and PDGF (A- and B-chains) in the ocular tissues adjacent to the lens suggests that PDGF signaling may play a key role in regulating lens development. To further examine how PDGF affects lens developmentin vivo,we generated transgenic mice that express human PDGF-A in the lens under the control of the αA-crystallin promoter. The transgenic mice exhibit lenticular defects that result in cataracts. The percentage of surface epithelial cells in S-phase is increased in transgenic lenses compared to their nontransgenic littermates. Higher than normal levels of cyclin A and cyclin D2 expression were also detected in transgenic lens epithelium. These results together suggest that PDGF-A can induce a proliferative response in lens epithelial cells. The lens epithelial cells in the transgenic mice also exhibit characteristics of differentiating fiber cells. For example, the transgenic lens epithelial cells are slightly elongated, contain larger and less condensed nuclei, and express fiber-cell-specific β-crystallins. Our results suggest that PDGF-A normally acts as a proliferative factor for the lens epithelial cellsin vivo.Elevated levels of PDGF-A enhance proliferation, but also appear to induce some aspects of the fiber cell differentiation pathway.  相似文献   

15.
Deficiency of Smad3, an intracellular mediator of TGF-β, was shown to significantly accelerate re-epithelialization of the colonic mucosa. This study was performed to investigate the molecular mechanisms by which Smad3 controls colonic epithelial cell proliferation and crypt formation. Smad3ex8/ex8 C57BL/6 mice were used in this study and wild-type littermates served as controls. The number of proliferating cells in the isolated colonic epithelium of Smad3−/− mice was significantly increased compared to that in wild-type littermates. Protein levels of the cell cycle inhibitors p21 and p27 were significantly decreased, while that of c-Myc was increased in the isolated colonic epithelium from Smad3−/− mice. In the colonic tissue of wild-type mice, cell proliferation was restricted to the bottom of the crypts in accordance with nuclear β-catenin staining, whereas proliferating cells were located throughout the crypts in Smad3−/− mice in accordance with nuclear β-catenin staining, suggesting that Smad3 is essential for locating proliferating cells at the bottom of the colonic crypts. Notably, in Smad3−/− mice, there was loss of EphB2 and EphB3 receptor protein expression, critical regulators of proliferating cell positioning, while EphB receptor protein expression was confirmed at the bottom of the colonic crypts in wild-type mice. These observations indicated that disturbance of the EphB/ephrin B system brings about mispositioning of proliferating cells in the colonic crypts of Smad3−/− mice. In conclusion, Smad3 is essential for controlling number and positioning of proliferating cells in the colonic crypts and contributes to formation of a “proliferative zone” at the bottom of colonic crypts in the normal colon.  相似文献   

16.
The olfactory epithelium of mice generally consists of olfactory cells, progenitors of olfactory cells (globose basal cells), supporting cells, and horizontal basal cells. However, in the dorsal fossa (the roof) of the posterior nasal cavity of mice, we found seven epithelial patches consisting of only non-neuronal cell types, i.e., supporting cells and horizontal basal cells, among the normal olfactory epithelium. The supporting cells occupied three or four layers in the apical to middle regions; in the basal region, horizontal basal cells were localized in a single row adjacent to the basement membrane. Bowman's gland ducts were also present in the epithelium. Neuronal cells (olfactory cells and globose basal cells) were totally absent. The ultrastructure of the supporting cells, horizontal basal cells, and Bowman's glands was essentially similar to that in the normal olfactory epithelium. In the early postnatal period (P1-P7), cell types in the epithelium were the same as those in the normal olfactory epithelium. From P10 to P21, olfactory cells and globose basal cells had disappeared from the olfactory epithelium. At this period, the number of TUNEL-positive cells was significantly higher than that in the surrounding olfactory epithelium; ultrastructurally, many apoptotic figures were observed. This suggests that the epithelium consisting of supporting cells and horizontal basal cells is generated by the apoptotic death of olfactory cells and globose basal cells during postnatal development.  相似文献   

17.
Snail family members regulate epithelial‐to‐mesenchymal transition (EMT) during invasion of intestinal tumours, but their role in normal intestinal homeostasis is unknown. Studies in breast and skin epithelia indicate that Snail proteins promote an undifferentiated state. Here, we demonstrate that conditional knockout of Snai1 in the intestinal epithelium results in apoptotic loss of crypt base columnar stem cells and bias towards differentiation of secretory lineages. In vitro organoid cultures derived from Snai1 conditional knockout mice also undergo apoptosis when Snai1 is deleted. Conversely, ectopic expression of Snai1 in the intestinal epithelium in vivo results in the expansion of the crypt base columnar cell pool and a decrease in secretory enteroendocrine and Paneth cells. Following conditional deletion of Snai1, the intestinal epithelium fails to produce a proliferative response following radiation‐induced damage indicating a fundamental requirement for Snai1 in epithelial regeneration. These results demonstrate that Snai1 is required for regulation of lineage choice, maintenance of CBC stem cells and regeneration of the intestinal epithelium following damage.  相似文献   

18.
19.
Transgenic mice expressing a dominant mutation in the gene for the phototransduction molecule rhodopsin undergo retinal degeneration similar to that experienced by patients with the retinal degenerative disease, retinitis pigmentosa (RP). Although the mutation is thought to cause photoreceptor degeneration in a cell‐autonomous manner, the fact that rod photoreceptor degeneration is slowed in chimeric wild‐type/mutant mice suggests that cellular interactions are also important for maintaining photoreceptor survival. To more fully characterize the nature of the cellular interactions important for rod degeneration in the RP mutant mice, we have used an in vitro approach. We found that when the retinas of the transgenic mice were isolated from the pigmented epithelium and cultured as explants, the rod photoreceptors underwent selective degeneration with a similar time course to that observed in vivo. This selective rod degeneration also occurred when the cells were dissociated and cultured as monolayers. These data indicate that the mutant rod photoreceptors degenerate when removed from their normal cellular relationships and without contact with the pigmented epithelium, thus confirming the relative cell autonomy of the mutant phenotype. We next tested whether normal retinal cells could rescue the mutant photoreceptors in a coculture paradigm. Coculture of transgenic mouse with wild‐type mouse or rat retinal cells significantly enhanced transgenic rod photoreceptor survival; this survival‐promoting activity was diffusible through a filter, was heat labile, and not present in transgenic retinal cells. Several peptide growth factors known to be present in the retina were tested as the potential survival‐promoting molecule responsible for the effects of the conditioned medium; however, none of them promoted survival of the photoreceptors expressing the Pro23His mutant rhodopsin. Nevertheless, we were able to demonstrate that the mutant photoreceptors could be rescued by an antagonist to a retinoic acid receptor, suggesting that the endogeneous survival‐promoting activity may function through this pathway. These data thus confirm and extend the findings of previous work that local trophic interactions are important in regulating rod photoreceptor degeneration in retinitis pigmentosa. A diffusible factor found in normal but not transgenic retinal cells has a protective effect on the survival of rod photoreceptors from Pro23His mutant rhodopsin mice. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 475–490, 1999  相似文献   

20.
Summary There is indirect evidence that the in vivo proliferative response of rodent uterine epithelium to estrogen requires interaction with the underlying stroma in pre- and post-pubescent animals. To examine this potential requirement directly, the proliferative response of epithelium to 17β-estradiol in the presence or absence of stroma was measured in vitro. Uterine epithelial and stromal cells were isolated separately from immature or adult mice, and were maintained as monocultures or cocultures in defined, serum-free medium with or without 8 × 10−9 M 17β-estradiol. Incorporation of bromodeoxyuridine into the DNA was determined by immunolabeling to assay proliferation in individual cells. Cell morphology and immunolabeling of cytokeratin were used to distinguish epithelial from stromal cells. Treatment of cocultures with 17β-estradiol for 24 h increased the proliferation of epithelial cells relative to controls approximately threefold, whereas, in monocultures of epithelial or stromal cells 17β-estradiol decreased the number of bromodeoxyuridine-incorporating cells by approximately half. Furthermore, cell contact between epithelial and stromal cells was important for the effects of 17β-estradiol on cells in cocultures. Approximately three quarters of the 17β-estradiol-induced proliferation of epithelial cells in cocultures was produced by epithelial cells within colonies that were also contacting stromal cells. These results are consistent with the hypothesis that stromal cells mediate the estrogenic proliferative response, and provide evidence that this mediation involves cell contact or stroma-mediated changes in the microenvironment immediately around the epithelial cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号