首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microglial activation is a hallmark of brain abscess. The continual release of proinflammatory mediators by microglia following bacterial challenge may contribute, in part, to the destruction of surrounding normal tissue characteristic of brain abscess. Therefore, attenuating chronic microglial activation during the course of CNS bacterial infections may have therapeutic benefits. The purpose of this study was to evaluate the ability of the natural peroxisome proliferator-activated receptor (PPAR)-gamma agonist 15-deoxy-Delta12,14- prostaglandin J2 (15d-PGJ2) to modulate microglial activation in response to Staphylococcus aureus, one of the main etiologic agents of brain abscess in humans. 15d-PGJ2 was a potent inhibitor of proinflammatory cytokine (IL-1beta, TNF-alpha, IL-12 p40) and CC chemokine (MIP-1beta, MCP-1) production in primary microglia, but had no effect upon the expression of select CXC chemokines (MIP-2, KC). 15d-PGJ2 also selectively inhibited the S. aureus-dependent increase in microglial TLR2, CD14, MHC class II, and CD40 expression, whereas it had no effect on the co-stimulatory molecules CD80 and CD86. Microarray analysis revealed additional inflammatory mediators modulated by 15d-PGJ2 in primary microglia following S. aureus exposure, the majority of which were chemokines. These results suggest that suppressing microglial activation through the use of 15d-PGJ2 may lead to the sparing of damage to normal brain parenchyma that often results from brain abscess.  相似文献   

2.
Prostaglandin (PG) E(2) (PGE(2)) plays a predominant role in promoting colorectal carcinogenesis. The biosynthesis of PGE(2) is accomplished by conversion of the cyclooxygenase (COX) product PGH(2) by several terminal prostaglandin E synthases (PGES). Among the known PGES isoforms, microsomal PGES type 1 (mPGES-1) and type 2 (mPGES-2) were found to be overexpressed in colorectal cancer (CRC); however, the role and regulation of these enzymes in this malignancy are not yet fully understood. Here, we report that the cyclopentenone prostaglandins (CyPGs) 15-deoxy-Delta(12,14)-PGJ(2) and PGA(2) downregulate mPGES-2 expression in the colorectal carcinoma cell lines Caco-2 and HCT 116 without affecting the expression of any other PGES or COX. Inhibition of mPGES-2 was subsequently followed by decreased microsomal PGES activity. These effects were mediated via modulation of the cellular thiol-disulfide redox status but did not involve activation of the peroxisome proliferator-activated receptor gamma or PGD(2) receptors. CyPGs had antiproliferative properties in vitro; however, this biological activity could not be directly attributed to decreased PGES activity because it could not be reversed by adding PGE(2). Our data suggest that there is a feedback mechanism between PGE(2) and CyPGs that implicates mPGES-2 as a new potential target for pharmacological intervention in CRC.  相似文献   

3.
Cyclopentenone prostaglandins (cyPG) with antiinflammatory and antiproliferative properties have been envisaged as leads for the development of therapeutic agents. Because cyPG effects are mediated in part by the formation of covalent adducts with critical signaling proteins, it is important to assess the specificity of this interaction. By using biotinylated derivatives of 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)-B) and PGA(1) (PGA(1)-B) we herein provide novel evidence for the differential selectivity of protein modification by distinct cyPG. The marked quantitative and qualitative differences in the binding of 15d-PGJ(2)-B and PGA(1)-B to cellular proteins were related to a differential reactivity in the presence of glutathione (GSH), both in vitro and in intact cells. Therefore GSH levels may influence not only the intensity but also the specificity of cyPG action.  相似文献   

4.
5.
Cyclopentenone prostaglandins, delta12-PGJ2 and 15d-PGJ2, have potent anti-tumour and anti-inflammatory activities, and have been shown to induce apoptosis in amnion-derived WISH cells. In this study, we have investigated the protective effects of serum and its constituents (growth factors and albumin) on delta12-PGJ2 and 15d-PGJ2-induced apoptosis in WISH cells. Serum (0.5% w/v) was protective against both delta12-PGJ2 and 15d-PGJ2-induced apoptosis. This was not due to the presence of serum-derived growth factors (EGF, IGF-1 and IGF-2), since they had no significant effect on 15d-PGJ2-induced cell death. In contrast, IGF-1 partially inhibited etoposide-induced apoptosis, confirming the presence of a functional IGF-1 receptor signalling system. Albumin was identified as the key survival factor in serum, since albumin and delipidated albumin exhibited the same level of protection from 15d-PGJ2-induced apoptosis as serum itself. The potential for serum albumin to regulate the bioactivity of cyclopentenone PGs may be of considerable importance in pathological conditions where roles for cyclopentenone PGs have been identified.  相似文献   

6.
7.
Peroxisome proliferator-activated receptors (PPAR) are members of a nuclear hormone receptor superfamily that includes receptors for steroids, retinoids, and thyroid hormone, all of which are known to affect the immune response. Previous studies dealing with PPAR-gamma expression in the immune system have been limited. Recently, PPAR-gamma was identified in monocyte/macrophage cells. In this study we examined the role of PPAR-gamma in experimental autoimmune encephalomyelitis (EAE), an animal model for the human disease multiple sclerosis. The hypothesis we are testing is whether PPAR-gamma plays an important role in EAE pathogenesis and whether PPAR-gamma ligands can inhibit the clinical expression of EAE. Initial studies have shown that the presence of the PPAR-gamma ligand 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ2) inhibits the proliferation of Ag-specific T cells from the spleen of myelin basic protein Ac(1-11) TCR-transgenic mice. 15d-PGJ2 suppressed IFN-gamma, IL-10, and IL-4 production by both Con A- and myelin basic protein Ac(1-11) peptide-stimulated lymphocytes as determined by ELISA and ELISPOT assay. Culture of encephalitogenic T cells with 15d-PGJ2 in the presence of Ag reduced the ability of these cells to adoptively transfer EAE. Examination of the target organ, the CNS, during the course of EAE revealed expression of PPAR-gamma in the spinal cord inflammatory infiltrate. Administration of 15d-PGJ2 before and at the onset of clinical signs of EAE significantly reduced the severity of disease. These results suggest that PPAR-gamma ligands may be a novel therapeutic agent for diseases such as multiple sclerosis.  相似文献   

8.
Microsomal prostaglandin E synthase (mPGES)-1 is a newly identified inducible enzyme of the arachidonic acid cascade with a key function in prostaglandin (PG)E2 synthesis. We investigated the kinetics of inducible cyclo-oxygenase (COX)-2 and mPGES-1 expression with respect to the production of 6-keto-PGF1alpha and PGE2 in rat chondrocytes stimulated with 10 ng/ml IL-1beta, and compared their modulation by peroxisome-proliferator-activated receptor (PPAR)gamma agonists. Real-time PCR analysis showed that IL-1beta induced COX-2 expression maximally (37-fold) at 12 hours and mPGES-1 expression maximally (68-fold) at 24 hours. Levels of 6-keto-PGF1alpha and PGE2 peaked 24 hours after stimulation with IL-1beta; the induction of PGE2 was greater (11-fold versus 70-fold, respectively). The cyclopentenone 15-deoxy-Delta12,14prostaglandin J2 (15d-PGJ2) decreased prostaglandin synthesis in a dose-dependent manner (0.1 to 10 microM), with more potency on PGE2 level than on 6-keto-PGF1alpha level (-90% versus -66% at 10 microM). A high dose of 15d-PGJ2 partly decreased COX-2 expression but decreased mPGES-1 expression almost completely at both the mRNA and protein levels. Rosiglitazone was poorly effective on these parameters even at 10 microM. Inhibitory effects of 10 microM 15d-PGJ2 were neither reduced by PPARgamma blockade with GW-9662 nor enhanced by PPARgamma overexpression, supporting a PPARgamma-independent mechanism. EMSA and TransAM analyses demonstrated that mutated IkappaBalpha almost completely suppressed the stimulating effect of IL-1beta on mPGES-1 expression and PGE2 production, whereas 15d-PGJ2 inhibited NF-kappaB transactivation. These data demonstrate the following in IL-1-stimulated rat chondrocytes: first, mPGES-1 is rate limiting for PGE2 synthesis; second, activation of the prostaglandin cascade requires NF-kappaB activation; third, 15d-PGJ2 strongly inhibits the synthesis of prostaglandins, in contrast with rosiglitazone; fourth, inhibition by 15d-PGJ2 occurs independently of PPARgamma through inhibition of the NF-kappaB pathway; fifth, mPGES-1 is the main target of 15d-PGJ2.  相似文献   

9.
10.
Rheumatoid arthritis (RA) is a chronic polyarticular joint disease associated with massive synovial proliferation, inflammation, and angiogenesis. PPAR-gamma ligands, both 15-deoxy-Delta(12,14)-prostaglandin J2 (15d- PGJ2) and troglitazone (TRO), can inhibit the growth of RA synoviocytes in vitro, and suppress the chronic inflammation of adjuvant-induced arthritis in rats, but the potency of 15d-PGJ2 is higher than TRO. Prostaglandin (PG) E2 plays important roles in joint erosion and synovial inflammation. In the present study, 15d-PGJ2, but not TRO and other prostanoids, suppressed interleukin (IL)-1beta-induced PGE2 synthesis in rheumatoid synovial fibroblasts (RSFs) through the inhibition of cyclooxygenase (COX-2) and cytosolic phospholipase A2 (cPLA2) expression. Furthermore, the inhibition was not affected by pretreatment with anti-PPAR-gamma antibody. It means that this anti-inflammatory effect of 15d-PGJ2 for PG synthesis may be independent of PPAR-gamma and 15d-PGJ2 is a key regulator of negative feedback of the arachidonate cascade on the COX pathway. These findings provide new insight into the feedback mechanism of the arachidonate cascade.  相似文献   

11.
Brain abscesses arise from a focal parenchymal infection by various pathogens, particularly Staphylococcus aureus. We have shown that astrocytes are activated upon exposure to S. aureus and may contribute to the excessive tissue damage characteristic of brain abscess. Therefore, modulating astrocyte activation may facilitate a reduction in brain abscess severity. Peroxisome proliferator activated receptor-gamma (PPAR-gamma) agonists are potent inhibitors of microglial activation; however, the effects of these compounds on S. aureus-dependent astrocyte activation have not yet been examined. Here, we demonstrate that two chemically distinct PPAR-gamma agonists, 15-deoxy-delta12,14-prostaglandin J2 (15d-PGJ2) and ciglitazone, suppress the production of several pro-inflammatory molecules in S. aureus-stimulated astrocytes including interleukin-1beta and nitric oxide (NO). Interestingly, 15d-PGJ2 attenuated Toll-like receptor 2 (TLR2) and inducible nitric oxide synthase expression, but failed to modulate macrophage inflammatory protein-2 (MIP-2/CXCL2) production, suggesting that 15d-PGJ2 is not a global inhibitor of astrocyte activation. Another novel finding of this study was the fact that both 15d-PGJ2 and ciglitazone were capable of attenuating pre-existing astrocyte activation, indicating their potential benefit in a therapeutic setting. Importantly, 15d-PGJ2 and ciglitazone were still capable of inhibiting S. aureus-induced pro-inflammatory mediator release in PPAR-gamma-deficient astrocytes, supporting PPAR-gamma-independent effects of these compounds. Collectively, these results suggest that 15d-PGJ2 and ciglitazone exert their anti-inflammatory actions on astrocytes primarily independent of the PPAR-gamma pathway.  相似文献   

12.
7β-hydroxy-epiandrosterone (7β-OH-EPIA) has been shown to be cytoprotective in various organs including the brain. It has also been shown that prostaglandin D2 (PGD2) and its spontaneous metabolite 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) are also cytoprotective. It is possible that these prostaglandins derived from circulating mononuclear cells may mediate the actions of 7β-OH-EPIA. The aim of this study, therefore, was to ascertain the effect of 7β-OH-EPIA (in the absence or presence of tumour necrosis factor-α (TNF-α)), a pro-inflammatory stimulus, on the biosynthesis of PGD2, PGE2 and 15d-PGJ2 from human mononuclear cells. Prostaglandins were measured by enzyme immunoassay (EIA). 7β-OH-EPIA alone induced a concentration-dependant increase in the production of PGD2. TNF-α increased PGD2 levels which were enhanced by 7β-OH-EPIA. 7β-OH-EPIA increased 15d-PGJ2 levels both in the absence and presence of TNF-α. 7β-OH-EPIA alone had no effect on PGE2 biosynthesis but suppressed TNF-α-induced PGE2 circa 50%. 7β-OH-EPIA also increased the level of free arachidonic acid and radiolabelled prostaglandins in cells pre-incubated with radiolabelled arachidonic acid, indicating that the increase may occur via the enhanced release of substrate arachidonic acid. 7β-OH-EPIA did not affect levels of the anti-inflammatory cytokine IL-10 indicating that this is an unlikely mechanism by which 7β-OH-EPIA induces its actions but more likely exerts its effects via the production of cytoprotective prostaglandins.  相似文献   

13.
A peroxisome proliferator-activated receptor gamma (PPARgamma) ligand, 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)), has been reported to possess anti-inflammatory activity in activated monocytes/macrophages. In this study, we investigated the effect of 15d-PGJ(2) on the lipopolysaccharide (LPS)-induced expression of chemokine mRNAs, especially macrophage inhibitory protein (MIP)-2 (CXCL2), in mouse peritoneal macrophages. The inhibitory actions of the natural PPARgamma ligands, 15d-PGJ(2) and prostaglandin A1 (PGA1), on the expression of RANTES (regulated upon activation, normal T expressed and secreted; CCL5), MIP-1beta (CCL4), MIP-1alpha (CCL3), IFN-gamma-inducible protein 10 kilodaltons (IP-10; CXCL10) and monocyte chemoattractant protein-1 (MCP-1; CCL2) mRNA in LPS-treated cells were stronger than those of the synthetic PPARgamma ligands troglitazone and ciglitazone. However, 15d-PGJ(2) enhanced the expression of LPS-induced MIP-2 (CXCL2) mRNA. A specific PPARgamma antagonist (GW9662) had no effect on the inhibitory action of 15d-PGJ(2) and PGA1 in LPS-induced chemokine mRNA expression and on the synergistic action of 15d-PGJ(2) in LPS-induced MIP-2 (CXCL2) expression. Moreover, LPS itself reduced the expression of PPARgamma. Although the synergistic effect of 15d-PGJ(2) on LPS-induced MIP-2 (CXCL2) mRNA expression was remarkable, the production of MIP-2 (CXCL2) in cells treated with 15d-PGJ(2) and LPS did not increase compared to the production in cells treated with LPS alone. The synergistic action of 15d-PGJ(2) on LPS-induced MIP-2 (CXCL2) mRNA expression was dependent on the activation of nuclear factor-kappaB (NF-kappaB), and 15d-PGJ(2) increased the phosphorylation of p38 and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) in cells stimulated with LPS. These results suggest that the synergistic effect of 15d-PGJ(2) on LPS-induced MIP-2 (CXCL2) expression is PPARgamma-independent, and is mediated by the p38 and SAPK/JNK pathway in mitogen-activated protein kinase signaling pathways, which activates NF-kappaB. Our data may give more insights into the different mechanisms contrary to the anti-inflammatory effect of 15d-PGJ(2) on the expression of chemokine genes.  相似文献   

14.
15.
The research described herein evaluates the expression and functional significance of peroxisome proliferator activator receptor-gamma (PPAR-gamma) on B-lineage cells. Normal mouse B cells and a variety of B lymphoma cells reflective of stages of B cell differentiation (e.g., 70Z/3, CH31, WEHI-231, CH12, and J558) express PPAR-gamma mRNA and, by Western blot analysis, the 67-kDa PPAR-gamma protein. 15-Deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)), a PPAR-gamma agonist, has a dose-dependent antiproliferative and cytotoxic effect on normal and malignant B cells as shown by [(3)H]thymidine and 3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide assays. Only PPAR-gamma agonists (thiazolidinediones), and not PPAR-alpha agonists, mimicked the effect of 15d-PGJ(2) on B-lineage cells, indicating that the mechanism by which 15d-PGJ(2) negatively affects B-lineage cells involves in part PPAR-gamma. The mechanism by which PPAR-gamma agonists induce cytotoxicity is via apoptosis, as shown by annexin V staining and as confirmed by DNA fragmentation detected using the TUNEL assay. Interestingly, addition of PGF(2alpha), which was not known to affect lymphocytes, dramatically attenuated the deleterious effects of PPAR-gamma agonists on B lymphomas. Surprisingly, 15d-PGJ(2) induced a massive increase in nuclear mitogen-activated protein kinase activation, and pretreatment with PGF(2alpha) blunted the mitogen-activated protein kinase activation. This is the first study evaluating PPAR-gamma expression and its significance on B lymphocytes. PPAR-gamma agonists may serve as a counterbalance to the stimulating effects of other PGs, namely PGE(2), which promotes B cell differentiation. Finally, the use of PGs, such as 15d-PGJ(2), and synthetic PPAR-gamma agonists to induce apoptosis in B-lineage cells may lead to the development of novel therapies for fatal B lymphomas.  相似文献   

16.
17.
18.
19.
15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) has been identified as a natural ligand for peroxisome proliferator-activated receptor (PPAR) γ to promote adipogenesis. However, it remains elusive about the ability of PPARγ-expressing adipocytes to produce PGJ2 series and the role in the life cycle of adipocytes. Here, we developed an enzyme-linked immunosorbent assay specific for 15d-PGJ2. The analysis using this method revealed the increase in the endogenous synthesis of immunoreactive 15d-PGJ2 in cultured adipocytes during the maturation phase. Further studies using cyclooxygenase inhibitors clarified the contribution of endogeous 15d-PGJ2 produced by mature adipocytes to upregulation of fat storage in an autocrine manner.  相似文献   

20.
Liu JD  Tsai SH  Lin SY  Ho YS  Hung LF  Pan S  Ho FM  Lin CM  Liang YC 《Life sciences》2004,74(19):2451-2463
Heme oxygenase-1 (HO-1) is induced as a beneficial and adaptive response in cells and tissues exposed to oxidative stress. Herein we examined how various eicosanoids affect the induction of HO-1, and the possible mechanism underlying 15-deoxy-Delta(12,14)- prostaglandin J(2) (15d-PGJ(2))-induced HO-1 expression. PGH(2), PGD(2) and its metabolites of the PGJ(2) series, and PGA(1) markedly induced the protein expression of HO-1. Arachidonic acid (AA), docosahexaenoic acid (DHA), PGE(2), PGF(2 alpha), and thromboxane B(2) (TXB(2)) were shown to have no effect on the induction of HO-1. 15d-PGJ(2) was the most potent activator achieving significance at 5 microM. Although 15d-PGJ(2) significantly activated the MAPKs of JNK and ERK, the activation of JNK and ERK did not contribute to the induction of HO-1 as determined using transfection of dominant-negative plasmids and MAPKs inhibitors. Additional experiment indicated that 15d-PGJ(2) induced HO-1 expression through peroxisome proliferator-activated receptor (PPAR)-independent pathway. 15d-PGJ(2) significantly decreased the intracellular level of reduced glutathione; and the thiol antioxidant, N-acetyl-L-cysteine (NAC), and the thiol-reducing agent, dithiothreitol (DTT), inhibited the induction of HO-1 by 15d-PGJ(2). Finally, NAC and DTT exhibited significant inhibition of HO-1 mRNA and HO-1 promoter reporter activity induced by 15d-PGJ(2). These results suggest that thiol antioxidant and reducing agents attenuate the expression of HO-1 induced by 15d-PGJ(2), and that the cellular thiol-disulfide redox status may be linked to HO-1 activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号