首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
CNS myelin inhibits axon growth due to the expression of several growth-inhibitory proteins, including myelin-associated glycoprotein, oligodendrocyte myelin glycoprotein and Nogo. Myelin-associated inhibitory proteins activate rho GTPase in responsive neurons. Rho kinase (ROCK) has been implicated as a critical rho effector in this pathway due to the ability of the pharmacological inhibitor Y-27632 to circumvent myelin-dependent inhibition. Y-27632, however, inhibits the activity of additional kinases. Using three independent approaches, we provide direct evidence that ROCKII is activated in response to the myelin-associated inhibitor Nogo. We demonstrate that Nogo treatment enhances ROCKII translocation to the cellular membrane in PC12 cells and enhances ROCKII kinase activity towards an in vitro substrate. In addition, Nogo treatment enhances phosphorylation of myosin light chain II, a known ROCK substrate. Further, we demonstrate that primary dorsal root ganglia neurons can be rendered insensitive to the inhibitory effects of myelin via infection with dominant negative ROCK. Together these data provide direct evidence for a rho-ROCK-myosin light chain-II signaling cascade in response to myelin-associated inhibitors.  相似文献   

3.
4.
Actin-based motility is critical for nervous system development. Both the migration of neurons and the extension of neurites require organized actin polymerization to push the cell membrane forward. Numerous extracellular stimulants of motility and axon guidance cues regulate actin-based motility through the rho GTPases (rho, rac, and cdc42). The rho GTPases reorganize the actin cytoskeleton, leading to stress fiber, filopodium, or lamellipodium formation. The activity of the rho GTPases is regulated by a variety of proteins that either stimulate GTP uptake (activation) or hydrolysis (inactivation). These proteins potentially link extracellular signals to the activation state of rho GTPases. Effectors downstream of the rho GTPases that directly influence actin polymerization have been identified and are involved in neurite development. The Arp2/3 complex nucleates the formation of new actin branches that extend the membrane forward. Ena/VASP proteins can cause the formation of longer actin filaments, characteristic of growth cone actin morphology, by preventing the capping of barbed ends. Actin-depolymerizing factor (ADF)/cofilin depolymerizes and severs actin branches in older parts of the actin meshwork, freeing monomers to be re-incorporated into actively growing filaments. The signaling mechanisms by which extracellular cues that guide axons to their targets lead to direct effects on actin filament dynamics are becoming better understood.  相似文献   

5.
Coordinated cell migration is a fundamental feature of embryogenesis but the intracellular mechanism by which cells integrate co-existing extracellular cues to yield appropriate vectoral migration is unknown. Cells in the cornea are guided by a naturally occurring DC electric field (EF) (electrotaxis) as they navigate non-planar substrata but the relative potencies of electrotaxis and guidance by substratum shape (contact guidance) have never been determined. We tested the hypothesis that vectoral migration was controlled by selective activation of rac, cdc42 or rho in response to a 150 mV/mm EF or to a series of parallel substratum nanogrooves (NGs) 130 nm deep. EFs and NGs were presented singly or in combination. Electrotaxis of dissociated bovine corneal epithelial cells (CECs) on planar quartz required signalling by cdc42 and rho but not rac. Contact guidance by substratum NGs required rho but not cdc42 or rac activities. When an EF and NGs were superimposed in parallel, cathodal electrotaxis along NGs was enhanced compared to that on planar quartz but when they were superimposed orthogonally (vertical NGs with horizontal EF) cells were recruited from contact guidance to electrotaxis, suggesting that the EF was more potent. However, increasing the EF to 250 mV/mm was insufficient to recruit the majority to electrotaxis. Consistent for the cues in isolation, when an EF (150 mV/mm) and NGs were superimposed orthogonally, rac activity was not essential for either contact guidance or electrotaxis. However, attenuation of cdc42 signalling abolished electrotaxis and enhanced contact guidance relative to controls (no drug), whereas inhibiting rho signalling enhanced electrotaxis and rho stimulation enhanced contact guidance. Our data are consistent with the idea that migrating CECs use a cdc42/rho “switch” to sort vectoral cues, with cdc42 controlling electrotaxis and rho controlling contact guidance.  相似文献   

6.
The aim of this study was to provide morphological evidence for the presence of rho A protein in developing cardiomyocytes and to investigate its possible role in myofibrillogenesis. Immunostaining with a monoclonal anti-rho antibody gave a diffuse pattern in the cytosol of cultured cardiomyocytes. Introduction of C3 exoenzyme into the cells by electroporation was used to inactivate rho A protein by ADP-ribosylation. An immunostaining with anti-vinculin, anti-talin, and anti-integrin antibodies showed the focal adhesions in electroporation control cardiomyocytes to be evenly distributed in the ventral sarcolemma; the costameric structure was also detected using these antibodies. In contrast, in C3 exoenzyme treated cells, focal adhesions were disassembled and costamere were absent; in addition, β-actin-positive, non-striated fibrils were lost and assembly of M-protein, titin, and α-actinin into myofibrils was poor, as shown by diffuse and filamentous staining pattern. C3 exoenzyme treatment had a less marked effect on mature cardiomyocytes than on immature cells; in this case, cells became distorted and few myofibrils were seen. The intensity of anti-phosphotyrosine antibody staining of the focal adhesion was also decreased or diffuse in C3 exoenzyme-treated cardiomyocytes, suggesting dephosphorylation of focal adhesion components. We therefore conclude that small G protein rho A plays an important role in myofibril assembly in cardiomyocytes. J. Cell. Biochem. 66:43–53, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
rho(1) GABA(C) receptor antagonists inhibit myopia in chick but the site of this effect is not known. The sclera ultimately determines the shape and size of the globe and thus an untested possibility is that GABA agents have a scleral mechanism. Whether rho(1) GABA(C) receptors are expressed and located in chick sclera is unknown. Real-time PCR, western blot and immunohistochemistry were used to determine whether rho1 GABA(C) receptors are expressed and located in chick fibrous and cartilaginous sclera. Both layers of the chick sclera were positive for rho1 GABA(C) receptor mRNA (PCR) and protein (western blot) expression and labeling was observed in both fibroblasts and chondrocytes of the fibrous and cartilaginous layers (immunohistochemistry). These investigations clearly show that chick sclera possesses rho(1) GABA(C) receptors. The sclera is thus a potential previously unrecognized site for activity of rho(1) GABA(C) agents.  相似文献   

8.
9.
10.
Poly ADP-ribosylation: A DNA break signal mechanism   总被引:9,自引:0,他引:9  
Recent evidence obtained with transgenic knockout mice suggests that the enzyme poly(ADP-ribose)polymerase (PARP) does not play a direct role in DNA break processing [1, 2]. Nevertheless, inactivation of the catalytic or the DNA nick-binding functions of PARP affects cellular responses to genotoxins at the level of cell survival, sister chromatid exchanges and apoptosis [2, 3]. In the present report, we conceptualize the idea that PARP is part of a DNA break signal mechanism [4, 5]. In vitro screening studies revealed the existence of a protein family containing a polymer-binding motif of about 22 amino acids. This motif is present in p53 protein as well as in MARCKS, a protein involved in the regulation of the actin cytoskeleton. Biochemical analyses showed that these sequences are directly targeted by PARP-associated polymers in vitro, and this alters several molecular functions of p53- and MARCKS protein. PARP-deficient knockout mice from transgenic mice were found to exhibit several phenotypic features compatible with altered DNA damage signaling, such as downregulation and lack of responsiveness of p53 protein to genotoxins, and morphological changes compatible with MARCKS-related cytoskeletal dysfunction. The knockout phenotype could be rescued by stable expression of the PARP gene. - We propose that PARP-associated polymers may recruit signal proteins to sites of DNA breakage and reprogram their functions.  相似文献   

11.
12.
Protein aggregation is a common phenomenon. The preparation of highly concentrated protein samples, typically required for biophysical measurements, often involves a time consuming and tedious testing of solvent conditions for improving protein solubility. Here, in a systematic analysis, we have determined the increase in solubility upon the addition of SEP-tags (solubility enhancement peptide tags) containing, one, three, and five lysines or arginines (or six arginines) to either the N or C terminus of our low solubility model protein, bovine pancreatic trypsin inhibitor variant, BPTI-22 (a BPTI variant containing 22 alanines). As anticipated, the BPTI-22 solubility increased in direct relation to the number of charged residues contained in the SEP-tag, and without altering either the activity or the structure of the protein. The largest solubility increases were of 4.2-, 4.8-, and 6.2-folds produced by the addition, at the C terminus, of five lysine (BPTI-22-C5K), five and six arginine residues (BPTI-22-C5R and BPTI-22-C6R), respectively. The increased solubility of the tagged BPTI-22 yielded higher quality NMR spectra (hetero single quantum correlation HSQC spectra; with respect of the signal-to-noise and line shapes) in a much shorter time than for the untagged BPTI-22. Furthermore, tagged samples remained soluble for over ten days, as observed by their HSQC spectra. We believe that lysine- and arginine-based SEP-tags may provide an effective and versatile method for enhancing protein solubility.  相似文献   

13.
Although a range of methods are available for determining protein concentration, many scientists encounter problems when quantifying proteins in the laboratory. The most commonly used methods for determining protein concentration in a modern biochemistry laboratory would probably be the Lowry and/or the Bradford protein assays. Other techniques, including direct spectrophotometric analysis and densitometry of stained protein gels, are applied, but perhaps to a lesser extent. However, the reliability of all of the above techniques is questionable and dependent to some extent on the protein to be assayed. In this paper we describe problems we encountered when using some of the foregoing techniques to quantify the concentration of poly(adenosine diphosphate-ribose) polymerase-1 (PARP-1), a nuclear enzyme found in most eukaryotes. We also describe how, by using a fluorescence-based assay and amino acid analysis, we overcame the problems we encountered.  相似文献   

14.
15.
16.
多聚腺苷酸结合蛋白(poly (A) binding protein,PABP)家族通常被认为是mRNA poly (A)尾的一种保护屏障.其中细胞质多聚腺苷酸结合蛋白1 (cytoplasmic poly (A) binding protein-1,PABPC1)在高亲和力作用下能够与mRNA中富含腺苷酸的序列结合,在基因转录后调控中发挥着重要作用.同时PABPC1还参与mRNA的许多代谢通路,包括腺苷酸多聚化/脱腺苷酸化、m RNA转运、m RNA翻译、降解及mircoRNA相关调控.近年来关于PABPC1与生殖细胞的发育、心肌肥大和肿瘤的发生发展的报道屡见不鲜,可见PABPC1与细胞的生长发育有密切联系.本文将主要介绍PABPC1的结构、表达调控、功能及其生物学作用.  相似文献   

17.
Pyruvate, orthophosphate dikinase (PPDK) is a ubiquitous, low-abundance metabolic enzyme of undetermined function in C3 plants. Its activity in C3 chloroplasts is light-regulated via reversible phosphorylation of an active-site Thr residue by the PPDK regulatory protein (RP), a most unusual bifunctional protein kinase (PK)/protein phosphatase (PP). In this paper we document the molecular cloning and functional analysis of the two unique C3 RPs in Arabidopsis thaliana . The first of these, AtRP1 , encodes a typical chloroplast-targeted, bifunctional C4-like RP. The second RP gene, AtRP2 , encodes a monofunctional polypeptide that possesses in vitro RP-like PK activity but lacks PP activity, and is localized in the cytosol. Notably, the deduced primary structures of these two highly homologous polypeptides are devoid of any canonical subdomain structure that unifies all known eukaryotic and prokaryotic Ser/Thr PKs into one of three superfamilies, despite the direct demonstration that AtRP1 is functionally a member of this group. Instead, these C3 RPs and the related C4 plant homologues encode a conserved, centrally positioned, approximately 260-residue sequence currently described as the ' d omain of u nknown f unction 299' (DUF 299). We propose that vascular plant RPs form a unique protein kinase family now designated as the DUF 299 gene family.  相似文献   

18.
19.
The embryonic poly(A)-binding protein (EPAB) functions in the translational regulation of the maternal messenger RNAs (mRNAs) required during oocyte maturation, fertilization, and early embryo development. Since there is no antibody specific to mammalian EPAB protein, all studies related to the Epab gene could be performed at the mRNA levels except for the investigations in the Xenopus. In this study, we have produced an EPAB-specific antibody. When we examined its expressional distribution in the mouse gonadal and somatic tissues, the EPAB protein was found to be expressed only in the mouse ovary and testis tissues, but it is undetectable level in the somatic tissues including stomach, liver, heart, small intestine, and kidney. Additionally, the spatial and temporal expression patterns of the EPAB and poly(A)-binding protein cytoplasmic 1 (PABPC1) proteins were analyzed in the mouse germinal vesicle (GV) and metaphase II (MII) oocytes, one-cell, and two-cell embryos. While EPAB expression gradually decreased from GV oocytes to two-cell embryos, the PABPC1 protein level progressively increased from GV oocytes to one-cell embryos and remarkably declined in the two-cell embryos ( P < 0.05). We have also described herein that the EPAB protein interacted with Epab, Pabpc1, Ccnb1, Gdf9, and Bmp15 mRNAs dependent upon the developmental stages of the mouse oocytes and early embryos. As a result, we have first produced an EPAB-specific antibody and characterized its expression patterns and interacting mRNAs in the mouse oocytes and early embryos. The findings suggest that EPAB in cooperation with PABPC1 implicate in the translational control of maternal mRNAs during oogenesis and early embryo development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号