首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
2.
Incubation of rat hepatocytes for 3 hours in a sterol-free medium containing 1.5% albumin resulted in efflux of cellular sterol into the medium and an increased activity of 3-hydroxy-3-methylglutaryl CoA reductase. The secretion of cholesterol was inhibited when cells were incubated with glucagon, norepinephrine, or dibutyryl cyclic AMP. Glucagon and dibutyryl cyclic AMP also inhibited the induction of HMG-CoA reductase. Norepinephrine treatment resulted in a decrease in the synthesis and secretion of proteins but caused an increase in reductase activity. Insulin treatment had no effect either on reductase activity or on sterol efflux from rat hepatocytes.  相似文献   

3.
1. This paper concerns the study of the effect of L-carnitine on cholesterol metabolism in rat hepatocyte cells BRL-3A. In this research the binding of [125I]human low density lipoprotein (LDL) to BRL-3A cells and 3-hydroxy 3-methylglutaryl CoA reductase activity (HMG-CoA reductase activity) after L-carnitine incubation were studied. 2. It was found that L-carnitine is able to increase either the [125I]LDL binding or inhibit the HMG-CoA reductase activity in BRL-3A cells. 3. These results indicate that L-carnitine affects the cholesterol metabolism through an inhibition of HMG-CoA reductase activity that could be responsible for the increased [125I]LDL binding in rat hepatocytes.  相似文献   

4.
Short-term (0–1 h) incubations of rat hepatocytes with oleate (2 mM) resulted in a decrease in the rate of cholesterol synthesis compared to controls incubated in the absence of fatty acid. However, during this period the activity of hydroxy-methylglutaryl coenzyme A (HMG-CoA) reductase was higher in the oleate-incubated cells. After longer incubation periods in the presence of oleate there was a higher rate of cholesterol synthesis than in the corresponding non-oleate controls and HMG-CoA reductase activity remained elevated. This biphasic effect provides an explanation for previous contradictory reports concerning the effect of exogenous fatty acids on the rate of cholesterol synthesis in liver. The present studies also suggest that in some physiological situations, the rate of cholesterol synthesis is determined by substrate supply rather than by HMG-CoA reductase activity.  相似文献   

5.
Microsomal human liver HMG-CoA reductase has been shown to exist in active (dephosphorylated) and inactive (phosphorylated) forms. Microsomal HMG-CoA reductase was inactivated in vitro by ATP-Mg in a time dependent manner; this inactivation was mediated by reductase kinase. Incubation of inactivated enzyme with phosphatase resulted in a time dependent reactivation (dephosphorylation). Polyacrylamide gel electrophoresis of purified HMG-CoA reductase incubated with reductase kinase and radiolabeled ATP revealed that the 32P radioactivity and HMG-CoA reductase enzymic activity were localized in a single electrophoretic position. Partial dephosphorylation of the phosphorylated enzyme was associated with loss of 32P and increase in HMG-CoA reductase activity. Human reductase kinase also exists in active and inactive forms. The active (phosphorylated) form of reductase kinase can be inactivated by incubation with phosphatase. Phosphorylation of inactive reductase kinase with ATP-Mg and a second kinase, reductase kinase kinase, was associated with a parallel increase in the enzymic activity of reductase kinase and the ability to inactivate HMG-CoA reductase. The combined results present initial evidence for the presence of human HMG-CoA reductase and reductase kinase in active and inactive forms, and the in vitro modulation of its enzymic activity by a bicyclic phosphorylation cascade. This bicyclic cascade system may provide a mechanism for short-term regulation of the pathway for cholesterol biosynthesis in man.  相似文献   

6.
The sources of cholesterol for steroid hormone production were examined using bovine adrenocortical (BAC) cells in primary culture. The experiments were designed to determine the effects of lipoproteins on cortisol production and the level of BAC cell 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Most studies on BAC cell lipoprotein requirements have been conducted using human low-density lipoprotein (hHDL); none have used the homologous bovine lipoproteins. BAC cells treated with corticotropin (ACTH) in a medium devoid of lipoproteins increased and maintained cortisol production 7- to 20-fold above basal levels. Under such conditions ACTH also increased the rate of HMG-CoA reductase activity. Inhibition of HMG-CoA reductase with mevinolin inhibited cortisol production by 85%, indicating that the cells were using cholesterol synthesized de novo for steroid production. Cortisol production was increased almost 40-fold above basal levels if hLDL (100 micrograms/ml) was included in the incubation medium. Human LDL also suppressed the levels of HMG-CoA reductase in a concentration-dependent fashion. Human HDL was without effect on either BAC cell steroidogenesis of HMG-CoA reductase. Addition of bovine LDL (bLDL) to the incubation medium also caused an increase in cortisol production and inhibited cholesterol synthesis. By contrast to hHDL, bHDL (100 micrograms/ml) increased the ability of BAC cells to produce cortisol production. Bovine HDL (bHDL) also was able to decrease HMG-CoA reductase, but not to the extent caused by hLDL or bLDL. These data demonstrate that bovine adrenal cells can use bHDL as a source of cholesterol for steroid hormone production. These findings may be of particular importance when one considers that in vivo, the bHDL content of bovine serum greatly surpasses the level of bLDL.  相似文献   

7.
Compactin, an inhibitor of HMG-CoA (3-hydroxy-3-methylglutaryl-CoA) reductase, decreased cholesterol synthesis in intact Hep G2 cells. However, after the inhibitor was washed away, the HMG-CoA-reductase activity determined in the cell homogenate was found to be increased. Also the high-affinity association of LDL (low-density lipoprotein) to Hep G2 cells was elevated after incubation with compactin. Lipoprotein-depleted serum, present in the incubation medium, potentiated the compactin effect compared with incubation in the presence of human serum albumin. Addition of either mevalonate or LDL prevented the compactin-induced rise in activities of both HMG-CoA reductase and LDL receptor in a comparable manner. It is concluded that in this human hepatoma cell line, as in non-transformed cells, both endogenous mevalonate or mevalonate-derived products and exogenous cholesterol are able to modulate the HMG-CoA reductase activity as well as the LDL-receptor activity.  相似文献   

8.
The effects of insulin, glucagon, pyruvate, and lactate on the rate of sterol synthesis and 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase activity were determined in hepatocytes obtained at different times of the day from rats maintained on a controlled lighting and feeding schedule. In hepatocytes from animals killed immediately before the start of the feeding period (D0 hepatocytes), the initially low activity of HMG-CoA reductase increased during incubation while that in hepatocytes prepared 6 h later (D6 hepatocytes) remained constantly high. The rates of sterol synthesis followed similar patterns of change. In both D0 and D6 cells, insulin stimulated HMG-CoA reductase but had little or no effect on the rates of sterol synthesis. In both types of cell preparation glucagon maximally suppressed HMG-CoA reductase activity at a concentration of 10(-7) M, but there was relatively little change in the rates of sterol synthesis. Both pyruvate and lactate mitigated the glucagon-mediated inhibition of HMG-CoA reductase. Each of these lipogenic precursors alone suppressed the rate of sterol synthesis in a dose-dependent manner. These changes were more apparent in the simultaneous presence of insulin and were greater in the D0 compared to the D6 hepatocytes. In the presence of lactate or pyruvate, the activity of HMG-CoA reductase was elevated, and the increase was greater when insulin was simultaneously present. In general, changes in the rate of fatty acid synthesis were positively correlated with changes in the activity of HMG-CoA reductase. These observations suggest that the latter changes are required to compensate for variations in the availability of simple precursors for sterol synthesis.  相似文献   

9.
10.
Pure cholesterol associated in complexes with lipoproteins (whole serum and human low density lipoproteins) or esterified with succinic acid (cholesteryl succinate) and bound to albumin effectively suppresses 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity in hepatoma tissue culture (HTC) cells grown in lipoprotein-poor serum medium during short 4-hour) incubation periods. Simultaneous measurments of the kinetics of uptake of radioactive unesterified cholesterol of whole serum and cholesteryl succinate, their conversion to lipid products, and the decay in enzyme activity, suggest that the cholesterol-induced suppression is mediated by the sterol itself rather than by inhibitory lipid products derived from its metabolism. Several cholesterol derivatives such as cholestenone, 7-ketocholesterol, and 7alpha-and 25-hydroxycholesterol also suppress reductase activiy in HTC cells and are significantly more inhibitory than the pure cholesterol preparations. The decrease in enzyme activity produced by cholesterol and its derivatives is concentration-dependent and specific. [1-14C]Oleate incorporation experiments indicate that cholesterol ester formation in HTC cells is not increased at inhibitory concentrations of the steroids. These data suggest that sterol ester formation is not an obligatory process in the feedback control of HMG-CoA reductase activity. The half-life of the reductase (3 to 4 hours) is not significantly changed by cycloheximide, plus or minus whole serum, and cholesteryl succinate. In contrast, the half-life is strongly reduced when HTC cells are incubated with cycloheximide plus maximal concentrations of 25-hydroxycholesterol, 7-ketocholesterol, or cholestenone, resulting in t1/2 values of 24, 36, and 60 min, respectively. Increasing concentrations of whole serum and cholesteryl succinate have no significant effect on the apparent rate constant of inactivation of the enzyme, whereas its apparent rate of synthesis is decreased 3- and 10-fold, respectively. These results are reversed with oxygenated steroid inhibitors. The rate of synthesis of reductase is essentially unchanged as the concentrations of 25-hydroxycholesterol, 7-ketocholesterol, and cholestenone are increased in the culture medium, whereas the apparent rate constant for degradation is increased 9-, 7-, and 3-fold, respectively. HMG-CoA reductase activity in HTC cells thus appears to be modulated by two different mechanisms in which steroid structure is important. Whole serum and cholesteryl succinate specifically decrease the rate of enzyme synthesis, while 25-hydroxycholesterol, 7-ketocholesterol, and cholestenone increase the rate of inactivation of the reductase.  相似文献   

11.
The activity of acetoacetyl-CoA (AcAc-CoA) ligase (E.C.6.2.1.16) in hepatocytes from rats was shown to be the same as the activity in homogenates of their livers. In hepatocytes treated with 25-hydroxycholesterol, AcAc-CoA ligase, 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase and rates of sterol synthesis were substantially decreased. Hepatocytes treated with high density lipoprotein (HDL) exhibited a 2 to 4 fold induction of HMG-CoA reductase activity; however an accompanying increase in AcAc-CoA ligase activity and the rate of cholesterol synthesis was not observed. We conclude (a) that increases in the activity of HMG-CoA reductase when mediated by HDL in hepatocytes do not result in a corresponding change in the capacity for sterol synthesis and (b) that changes in the activity state of HMG-CoA reductase can be dissociated from that of AcAc-CoA ligase.  相似文献   

12.
The current studies demonstrate that corticosteroidogenesis can be maintained by primary cultures of bovine adrenocortical cells under lipoprotein-depleted conditions. The cholesterol necessary as substrate for steroid synthesis was found to arise from de novo synthesis within these cells. Adrenocorticotropin (ACTH) increased 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity 5-fold within 12 h after addition to the medium. The increase in activity apparently represented accumulation of enzyme as determined by protein blotting and immunodetection. The predominant immunodetectable species of HMG-CoA reductase from bovine adrenal cells was 97,000 daltons; no higher molecular mass species was detectable. The ACTH induction of HMG-CoA reductase activity could be prevented after inhibition of cholesterol conversion to pregnenolone with clotrimazole. These results are suggestive that ACTH increases adrenocortical cholesterol biosynthesis and HMG-CoA reductase activity after conversion of a cellular pool of cholesterol and/or oxysterol into steroid. The increased rate of cholesterol biosynthesis is then capable of maintaining ACTH-promoted steroid production. This is the first study, in vitro, to demonstrate an ACTH-promoted accumulation of HMG-CoA reductase of adrenocortical cells.  相似文献   

13.
A key enzyme in the regulation of mammalian cellular cholesterol biosynthesis is 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase). It is well established that treatment with the compound 25-hydroxycholesterol lowers HMG-CoA reductase activity in cultured Chinese hamster ovary (CHO-K1) cells. After brief incubation (0-4 h) with 25-hydroxycholesterol (0.5 microgram/ml), cellular HMG-CoA reductase activity is decreased to 40% of its original level. This also occurs in the presence of exogenous mevinolin, a competitive inhibitor of HMG-CoA reductase which has previously been shown to inhibit its degradation. The inhibition of HMG-CoA reductase activity by 25-hydroxycholesterol is complete after 2 h. Radio-immune precipitation analysis of the native enzyme under these conditions shows a degradation half-life which is considerably longer than that of the observed inhibition. Studies with sodium fluoride, phosphatase 2A, bacterial alkaline phosphatase and calf alkaline phosphatase indicate that the observed loss of activity is not due to phosphorylation. These data are not consistent with described mechanisms of HMG-CoA reductase activity regulation by phosphorylation or degradation but are consistent with a novel mechanism that regulates the catalytic efficiency of this enzyme.  相似文献   

14.
Changes in the activities of acetyl-CoA carboxylase and HMG-CoA (3-hydroxy-3-methylglutaryl-CoA) reductase were studied in primary cultures of adult-rat hepatocytes after exposure of the cells to insulin and/or carbohydrates. To determine the contribution of protein synthesis to changes in enzyme activity, the relative rate of synthesis of each enzyme was measured and the amount of translatable mRNA coding for the enzymes was determined by translation in vitro and immunoprecipitation. Addition of insulin to the culture medium increased the activities of acetyl-CoA carboxylase and HMG-CoA reductase by approx. 4- and 3-fold respectively. Although similar increases in the relative rate of synthesis of each protein and template activity were noted, initial increases in the activity of each enzyme occurred before any changes in protein synthesis were observed, suggesting the involvement of post-translational modification of enzyme activity in addition to changes in protein synthesis. The addition of fructose to the culture medium, in the absence of insulin, increased the activity of the carboxylase and the reductase approx. 3-fold, similar to the effects of insulin. However, the effect of fructose was to increase the rate of synthesis and the amount of translatable mRNA coding for acetyl-CoA carboxylase, whereas the increase in the activity of HMG-CoA reductase was not accompanied by any changes in the rate of synthesis or template activity. The effects of fructose could not be mimicked by glucose unless insulin was also present in the culture medium. Similar to observations in vitro, the injection of insulin or the feeding of a high-fructose diet to rats made diabetic by the injection of streptozotocin produced an increase in the activities of acetyl-CoA carboxylase and HMG-CoA reductase, and only the increase in the activity of the carboxylase was accompanied by an increase in the amount of translatable mRNA coding for the enzyme. The results are discussed in terms of the effects of fructose on the synthesis of enzymes involved in lipogenesis.  相似文献   

15.
ML-236B (“Compactin”), a competitive inhibitor of 3-hydroxy-3-methylglutaryl(HMG)-CoA reductase, increased the cholesterol synthesis and the HMG-CoA reductase activity in isolated rat hepatocytes. These increases were prevented by 0.2 mM puromycin, but not by 10 μg/ml actinomycin D and 40 μg/ml α-amanitin. These results indicated that the increases in cholesterol synthesis and HMG-CoA reductase activity by ML-236B required the enzyme synthesis but not newly synthesized mRNA. The regulatory site of feed-back inhibition by cholesterol for the HMG-CoA reductase synthesis in liver may be at the translational level.  相似文献   

16.
1. Compactin, (-)-hydroxycitrate and dexamethasone gave rise to a decrease in the rate of cholesterol production in hepatocytes from fed rats by interfering with the flow of substrate into the sterol biosynthetic pathway. The cells responded to the deficit of biosynthetic sterol by increasing the activity of hydroxymethylglutaryl-CoA reductase (HMG-CoA reductase). 2. Compactin and (-)-hydroxycitrate gave similar results in hepatocytes from rats starved for 24 h but in this case dexamethasone had no significant effect. 3. Exogenous oleate interferes with the production of carbohydrate-derived acetyl-CoA and also gives rise initially to opposing effects on the rate of sterol synthesis and HMG-CoA reductase activity. Over a longer period, however, oleate itself was capable of replacing carbohydrate as the major source of carbon for sterol synthesis. 4. The increase in HMG-CoA reductase activity observed when liver cells were incubated in the presence of compactin, (-)-hydroxycitrate or oleate could be partially reversed by the simultaneous presence of glucagon. 5. Under some physiological conditions, a deficiency of biosynthetic cholesterol or of a related precursor may lead to an increase in the activity of HMG-CoA reductase.  相似文献   

17.
Mouse mammary carcinoma FM3A cells, which are able to grow in a serum-free medium, have novel characteristics that could be valuable in biochemical and somatic cell genetic studies. In FM3A cells grown in the presence of serum, both sterol synthesis and the activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the major rate-limiting enzyme in the cholesterol biosynthetic pathway, were strongly suppressed by human low density lipoprotein (LDL). The addition of LDL (50 micrograms protein/ml) resulted in a 50% decrease in the reductase activity within 3 h and a 95% reduction after 24 h. Similarly, over 90% suppression of the reductase activity was obtained by the addition of LDL or mevalonolactone when the cells were grown on a serum-free medium. ML-236B (compactin), a specific inhibitor of HMG-CoA reductase, inhibited sterol synthesis from [14C]acetate by 80% at 1 microM. Reductase activity in FM3A cells was increased by 2.5- to 5-fold when the cells were treated with ML-236B (at 0.26-2.6 microM for 24 h). Thus, in FM3A cells, HMG-CoA reductase activity responded well to LDL, as is observed in human skin fibroblasts. Along with other novel features of this cell line, the present observations indicate that FM3A cells should be useful in biochemical and somatic cell genetic analysis of cholesterol metabolism, especially as regards the regulation of HMG-CoA reductase activity.  相似文献   

18.
3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase from rat liver microsomes has been purified to apparent homogeneity with recoveries of approximately 50%. The enzyme obtained from rats fed a diet supplemented with cholestyramine had specific activities of approximately 21,500 nmol of NADPH oxidized/min/mg of protein. After amino acid analysis a specific activity of 31,000 nmol of NADPH oxidized/min/mg of amino acyl mass was obtained. The s20,w for HMG-CoA reductase was 6.14 S and the Stokes radius was .39 nm. The molecular weight of the enzyme was 104,000 and the enzyme subunit after sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 52,000. Antibodies prepared against the homogeneous enzyme specifically precipitated HMG-CoA reductase from crude and pure fractions of the enzyme. Incubation of rat hepatocytes for 3 h in the presence of lecithin dispersions, compactin, or rat serum resulted in significant increases in the specific activity of the microsomal bound reductase. Immunotitrations indicated that in all cases these increases were associated with an activated form of the reductase. However activation of the enzyme accounted for only a small percentage of the total increase in enzyme activity; the vast majority of the increase was apparently due to an increase in the number of enzyme molecules. In contrast, when hepatocytes were incubated with mevalonolactone the lower enzyme activity which resulted was primarily due to inactivation of the enzyme with little change in the number of enzyme molecules. Immunotitrations of microsomes obtained from rats killed at the nadir or peak of the diurnal rhythm of 3-hydroxy-3-methylglutaryl-CoA reductase indicated that the rhythm results both from enzyme activation and an increased number of reductase molecules.  相似文献   

19.
3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the enzyme catalyzing the rate-limiting step in cholesterol biosynthesis, exists in one active (dephosphorylated) and one inactive (phosphorylated) form in liver microsomes obtained from several animal species. The present study was undertaken in order to determine a) whether the human enzyme also exists in active and inactive readily interconvertible forms; b) whether the large inter-individual variation in HMG-CoA reductase activity observed in normal man can be explained by variations in the activation state of the enzyme; and c) to characterize the reactivity of antibodies raised against rat liver HMG-CoA reductase with the intact human microsomal enzyme. HMG-CoA reductase activity, assayed in microsomes prepared in the presence of 50 mM NaF, was only 17 +/- 3% of the activity observed in microsomes prepared from the same liver in the absence of fluoride. Preincubation of microsomes prepared in NaF with alkaline phosphatase resulted in a tenfold increase of enzyme activity, while the activity of microsomes prepared without fluoride was increased also (by about 45%) with this treatment. On the other hand, the activated enzyme could be inactivated by incubation of microsomes with Mg-ATP. In eleven normal weight, normolipidemic gallstone patients, the HMG-CoA reductase activity determined in microsomes prepared without NaF ("standard procedure") reflected well both the "expressed" activity (in microsomes prepared with NaF) and the "total" (fully activated) enzyme activity; correlation coefficients were +0.80 and +0.84, respectively. Preincubation of human liver microsomes with rabbit antiserum against partially purified HMG-CoA reductase from rat liver resulted in a 72 +/- 6% inhibition of enzyme activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号