首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intact mesophyll and bundle sheath chloroplasts wee isolated from the NADP-malic enzyme type C4 plants maize, sorghum (monocots), and Flaveria trinervia (dicot) using enzymic digestion and mechanical isolation techniques. Bundle sheath chloroplasts of this C4 subgroup tend to be agranal and were previously reported to be deficient in photosystem II activity. However, following injection of intact bundle sheath chloroplasts into hypotonic medium, thylakoids had high Hill reaction activity, similar to that of mesophyll chloroplasts with the Hill oxidants dichlorophenolindophenol, p-benzoquinone, and ferricyanide (approximately 200 to 300 micromoles O2 evolved per mg chlorophyll per hour). In comparison to that of mesophyll chloroplasts, the Hill reaction activity of bundle sheath chloroplasts of maize and sorghum was labile and lost activity during assay. Bundle sheath chloroplasts of maize also exhibited some capacity for 3-phosphoglycerate dependent O2 evolution (29 to 58 micromoles O2 evolved per milligram chlorophyll per hour). Both the mesophyll and bundle sheath chloroplasts were equally effective in light dependent scavenging of hydrogen peroxide. The results suggest that both chloroplast types have noncyclic electron transport and the enzymology to reduce hydrogen peroxide to water. The activities of ascorbate peroxidase from these chloroplast types was consistent with their capacity to scavenge hydrogen peroxide.  相似文献   

2.
The influence of varying light intensity and quality on thecarbon labelling patterns in Rumex vesicarius (a C3 plant),Setaria italica (a malate-formingC4 plant), and Amaranthus paniculatus(an aspartate-forming C4 plant) was studied. In A. paniculatusand B. vesicarius blue light decreased the transfer of radioactivityto sugars and starch but in S. italica only slightly decreasedradioactivity in sugar phosphates, sucrose, and insolubles.Negligible transfer was observed from the C4 acids to sugarphosphates, sucrose, and starch under dim blue-green and blue-yellowlights in S. italica and A. paniculatus. Blue light favouredthe formation of malate, aspartate, and alanine in all threeplants. The differential effect of blue and red light suggesteda variation in the mechanisms of C4-photosynthesis in Setariaand Amaranthus. Leaves of S. italica and A. paniculatus were allowed to photosynthesizein 14CO2 for 5 s and then the distribution of the labelled productsbetween the mesophyll and the bundle sheath cells was determinedduring subsequent photosynthesis in 12CO2. Malate and aspartatewhich appeared initially in the mesophyll layer moved rapidlyinto the bundle sheath cells. Phosphoglyceric acid originatingin the bundle sheath moved swiftly to the mesophyll layer. Sugarphosphates were recovered from both the mesophyll and the bundlesheath cells. Most of the starch was found in the bundle sheathcells while sucrose and alanine were localized in the mesophyllcells.  相似文献   

3.
Several photochemical and spectral properties of maize (Zea mays) bundle sheath and mesophyll chloroplasts are reported that provide a better understanding of the photosynthetic apparatus of C4 plants. The difference absorption spectrum at 298 K and the fluorescence excitation and emission spectra of chlorophyll at 298 K and 77 K provide new information on the different forms of chlorophyll a in bundle sheath and mesophyll chloroplasts: the former contain, relative to short wavelength chlorophyll a forms, more long wavelength chlorophyll a form (e.g. chlorophyll a 693 and chlorophyll a 705) and less chlorophyll b than the latter. The degree of polarization of chlorophyll a fluorescence is 6% in bundle sheath and 4% in mesophyll chloroplasts. This result is consistent with the presence of relatively high amounts of oriented long wavelength forms of chlorophyll a in bundle sheath compared to mesophyll chloroplasts. The relative yield of variable, with respect to constant, chorophyll a fluorescence in mesophyll chloroplasts is more than twice that in bundle sheath chloroplast. Furthermore, the relative yield of total chlorophyll a fluorescence is 40% lower in bundle sheath compared to that in mesophyll chloroplasts. This is in agreement with the presence of the higher ratio of the weakly fluorescent pigment system I to pigment system II in bundle sheath than in mesophyll chloroplast. The efficiency of energy transfer from chlorophyll b and carotenoids to chlorophyll a are calculated to be 100 and 50%, respectively, in both types of chloroplasts. Fluorescence quenching of atebrin, reflecting high energy state of chloroplasts, is 10 times higher in mesophyll chloroplasts than in bundle sheath chloroplasts during noncyclic electron flow but is equal during cyclic flow. The entire electron transport chain is shown to be present in both types of chloroplasts, as inferred from the antagonistic effect of red (650 nm) and far red (710 nm) lights on the absorbance changes at 559 nm and 553 nm, and the photoreduction of methyl viologen from H2O. (The rate of methyl viologen photoreduction in bundle sheath chloroplasts was 40% of that of mesophyll chloroplasts.)  相似文献   

4.
Abstract The pattern of photosynthetic carbon fixation by leaves of Amaranthus paniculatus L. (a C4 plant) and Oryza sativa L. (a C3 plant) varied with age. Younger leaves of A. paniculatus incorporated 14CO2 into malate and aspartate while senescent leaves fixed predominantly into phosphoglycerate (PGA) and sugar phosphates. Only developing leaves of O. sativa formed malate/aspartate whereas mature and senescent leaves produced PGA/sugar phosphates as the initial labelled products. Correspondingly the ratio of phosphoenolpyruvate/ribulose bisphosphate (RuBP) carboxylase activities was higher in younger leaves of A. paniculatus and developing leaves of O. sativa than in older leaves. However, pulse chase experiments revealed that the main donors of carbon to end products, irrespective of leaf stage, were C4 acids and PGA in A. paniculatus and O. sativa respectively. The results suggest that although an apparent change from initial β-carboxylation to RuBP carboxylation occurs during leaf ontogeny in both the plants, the overall leaf photosynthesis remains C4 or C3. The high rate of 14CO2 incorporation into PGA/sugar phosphates by senescent leaves of A. paniculatus is suggested to be partly due to the increased intercellular spaces in their mesophyll, allowing greater access of CO2 directly to RuBP carboxylase in the bundle sheath.  相似文献   

5.
The photochemical characteristics of mesophyll and bundle sheath chloroplasts isolated from the leaves of C4 species were investigated in Zea mays (NADP-ME type), Panicum miliaceum (NAD-ME type) and Panicum maximum (PEP-CK type) plants. The aim of this work was to gain information about selected photochemical properties of mesophyll and bundle sheath chloroplasts isolated from C4 plants grown in the same moderate light conditions. Enzymatic as well as mechanical methods were applied for the isolation of bundle sheath chloroplasts. In the case of Z. mays and P. maximum the enzymatic isolation resulted in the loss of some thylakoid polypeptides. It was found that the PSI and PSII activities of mesophyll and bundle sheath chloroplasts of all species studied differed significantly and the differences correlated with the composition of pigment-protein complexes, photophosphorylation efficiency and fluorescence emission characteristic of these chloroplasts. This is the first report showing differences in the photochemical activities between mesophyll chloroplasts of C4 subtypes. Our results also demonstrate that mesophyll and bundle sheath chloroplasts of C4 plants grown in identical light conditions differ significantly with respect to the activity of main thylakoid complexes, suggesting a role of factor(s) other than light in the development of photochemical activity in C4 subtypes.  相似文献   

6.
A procedure is described for isolating and purifying mesophyll protoplasts and bundle sheath protoplasts of the C4 plant Panicum miliaceum. Following enzymic digestion of leaf tissue, mesophyll protoplasts and bundle sheath protoplasts are released and purified by density centrifugation. The lower density of mesophyll protoplasts allowed rapid separation of the two protoplast types. Evidence for separation of mesophyll protoplasts and bundle sheath protoplasts (up to 95% purity) is provided from light microscopy (based on size difference in both chloroplasts and protoplasts), levels of marker enzymes in the preparations (i.e. pyruvate, Pi dikinase and phosphoenolpyruvate carboxylase for mesophyll and ribulose-1,5-bisphosphate carboxylase for bundle sheath), and differences in substrate-dependent O2 evolution by chloroplasts isolated from protoplasts.  相似文献   

7.
Primary leaf segments from 8-day-old dark-grown, and from 4- and 8-day-old light-grown seedlings of Zea mays L. cv. Fronica, were treated with 10-bM benzyladenine (BA) in the dark for 14 h. The segments were then studied after an exposure to light for 14 h. Photosynthetic activity (O2 evolution and CO2 fixation) and chlorophyll accumulation were stimulated by BA in dark-grown leaf segments with etioplastids in the earliest stage of development. In these segments BA stimulated the activities of ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39), phosphoenolpyruvate carboxylase (EC 4.1.1.31), NADP+-malic enzyme (EC 1.1.1.40) and pyruvate, orthophosphate dikinase (EC 2.7.9.1). In segments taken from 4- and 8-day light-grown seedlings, BA did not enhance the photosynthetic activity nor the chlorophyll accumulation. The activity of the enzymes mentioned above, was significantly enhanced by the BA-treatment. BA mainly affected grana stacking in mesophyll cell chloroplasts in primary leaf segments taken from 3- to 5-day light-grown seedlings. Stroma thylakoid development was stimulated only in leaf segments from 3-day-old plants. At the same time BA accelerated grana loss in chloroplasts of bundle sheath cells, a typical phenomenon of development in such chloroplasts. Stroma thylakoid length in these chloroplasts increased by a BA treatment in segments from 3- and 4-day light-grown plants. A significantly higher number of chloroplasts was only observed with segments taken from 8-day light-grown seedlings and treated with BA. The etiochloroplast number in segments taken from 8-day etiolated plants was significantly higher in BA-treated segments after 26 h illumination. In etiochloroplasts from both mesophyll and bundle sheath cells, BA enhanced grana stacking after illumination for 4 h or more, whereas stroma membrane length was significantly higher only after 26 h light. It is concluded that the effects of BA depend on the developmental stage. BA accelerates the development of mesophyll and bundle sheath cell (etio)chloroplasts, but does not affect the ultrastructure of mature chloroplasts.  相似文献   

8.
Variable factors affecting the enzymatic isolation of mesophyll protoplasts from Triticum aestivum (wheat), a C3 gras, and mesophyll protoplasts and bundle sheath strands from Digitaria sanguinalis (crabgrass), a C4 grass, have been examined with respect to yields and also photosynthetic capacity after isolation. Preparations with high yields and high photosynthetic capacity were obtained when small transverse leaf segments were incubated in enzyme medium in the light at 30°C, without mechanical shaking and without prior vacuum infiltration. Best results were obtained with an enzyme medium that included 0.5 M sorbitol, 1 mM MgCl2, 1 mM KH2PO4, 2% cellulase and 0.1% pectinase at pH 5.5. In gerneral, leaf age and leaf segment size were important factors, with highest yields and photosynthetic capacities obtained from young leaves cut into segments less than 0.8 mm. To facilitate the cutting of such small segments, a mechanical leaf cutter is described that uniformly (± 0.05 mm) cuts leaf tissue into transverse segments of variable size (0.4–2 mm). Isolations that required more than roughly 4 h gave poor yields with reduced photosynthetic capacity; however, using the optimum conditions described, functional preparations could be roughly 2 h. High rates of light dependent CO2 fixation by the C4 mesophyll protoplasts required the addition of pyruvate and low levels of oxalacetate, while isolated bundle sheath strands and C3 mesophyll protoplasts supported CO2 fixation without added substrates. Rates of CO2 fixation by isolated wheat protoplasts generally exceeded the reported rates of whole leaf photosynthesis. Wheat mesophyll protoplasts and crabgrass bundle sheath strands were stable when stored at 4°C while C4 mesophyll protoplasts were stable when stored at 25°C.  相似文献   

9.
The soluble proteins of C3 and C4 mesophyll chloroplasts and C4 bundle sheath extracts have been analyzed by gel electrophoresis for fraction I protein. Gel scans of soluble protein from C4 bundle sheath extracts and C3 mesophyll chloroplasts showed typical fraction I protein peaks that could be identified by ribulose diphosphate carboxylase activity. No such peak was observed for C4 mesophyll chloroplasts, which also lacked both large and small subunits of ribulose diphosphate carboxylase on sodium dodecyl sulfate gels. The absence of fraction I protein in these chloroplasts was reflected in the soluble protein to chlorophyll ratios, which were roughly 3-fold lower than the ratio obtained for C3 chloroplasts. The carboxylating enzyme in C4 mesophyll cells, phosphoenolpyruvate carboxylase, was found to be a major protein in the cytoplasm of C4 mesophyll protoplasts, and had higher mobility than fraction I protein.  相似文献   

10.
Alopecurus gerardi, Poa alpina, and Carex curvula are spontaneous, perennial forage plants distributed in the high elevation (2300–3200 m) pasture lands of Piedmont and Valle d'Aosta (Italy). Sedum atratum is an annual succulent which grows at elevations up to 3200 m. The three monocotyledons have, in comparison with corresponding plants from the low-land, peculiar organographic and anatomic structures such as curling leaf lamina, vascular bundle sheath layer with chloroplasts arranged in a centrifugal fashion, low stomatal density (stomata number/cm2: upper epidermis x?= 0–11.9; lower epidermis x?= 7.66–11.55), thick cuticles, as well as higher values of S (H2O; g/dm2; x?= 0.6–0.32), Sm (H2O g/mg Chi.; x?= 0.11–0.16), SLW (g f. wt/dm2; x?= 0.86–1.36), but lower SLA values (cm2/g f. wt; x?= 75.07–116.77). All these data are correlated to water stress. Even though the leaf lamina anatomy possesses some features typical of C4 plants, the presence of starch grains in the mesophyll chloroplasts indicates that these plants are probably C3 ones. In spite of high values of thylacoid grana/thylacoid intergrana ratios, typical of shade plants (mesophyll chloroplasts: x? up to 3.81; bundle sheath chloroplasts: x? up to 5.3), and Chi a/Chl b ratios (x? up to 4.23 in C. curvula), the apparent absence of peroxisomes seem to indicate a very efficient dark phase of photosynthesis. S. atratum, in comparison with the typical CAM succulents, which live in dryer and warmer habitats, has a higher values of stomatal density (upper epidermis, x?= 2.59; lower epidermis, x?= 3.15) and of SLA (x?= 24.98), but lower S (x?= 3.83), Sm (x?= 1.19) and SLW (x?= 4.15).  相似文献   

11.
Images of chlorophyll fluorescence emitted at wavelengths above and below 700 nm were recorded from leaf sections of C4 species using confocal laser scanning microscopy (LSM). We investigated species exhibiting both NAD-malic enzyme (NAD-ME) C4 photosynthesis and NADP-malic enzyme (NADP-ME) C4 photosynthesis. Comparing LSM fluorescence of leaf sections with flow-cytometrically determined fluorescence from individual chloroplasts revealed that LSM fluorescence was distorted by the optical properties of leaf sections. Leaf section fluorescence, when corrected by transmission data derived from light transmission images, agreed with flow cytometry data. The corrected LSM fluorescence yielded information on the distribution of the individual photosystems in the C4 leaf sections: PSII concentrations in bundle sheath cells were elevated in NAD-ME species but diminished in most of the NADP-ME species investigated. The NADP-ME species, Arundinella hirta, however, showed normal PSII and increased PSI concentration in bundle sheath chloroplasts. Finally, a gradient of PSI was observed within the bundle sheath cells from Euphorbia maculata.  相似文献   

12.
Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach   总被引:1,自引:0,他引:1  
The effects of nano-TiO2 (rutile) on the photochemical reaction of chloroplasts of spinach were studied. The results showed that when spinach was treated with 0.25% nano-TiO2, the Hill reaction, such as the reduction rate of FeCy, and the rate of evolution oxygen of chloroplasts was accelerated and noncyclic photophosphorylation (nc-PSP) activity of chloroplasts was higher than cyclic photophosphorylation (c-PSP) activity, the chloroplast coupling was improved and activities of Mg2+-ATPase and chloroplast coupling factor I (CF1)-ATPase on the thylakoid membranes were obviously activated. It suggested that photosynthesis promoted by nano-TiO2 might be related to activation of photochemical reaction of chloroplasts of spinach.  相似文献   

13.
The intracellular localization of phosphoenolpyruvate (PEP) carboxylase in plants belonging to the C4, Crassulacean acid metabolism (CAM) and C3 types was invetigated using an immunocytochemical method with an immune serum raised against the sorghum leaf enzyme. The plants studied were sorghum, maize (C4 type), kalanchoe (CAM type), french bean, and spinach (C3 type). In the green leaves of C4 plants, it was shown that the carboxylase was located in the mesophyll and stomatic cells, being largely cytosolic in the mesophyll cells. Similarly, in CAM plants, the enzyme was found mainly outside the chloroplasts. In contrast, in C3 plants, the PEP carboxylase appeared to be distributed between the cytosol and the chloroplasts of foliar parenchyma. Examination of sections from etiolated leaves showed fluorescence emission from etioplasts and cytosol for the parenchyma of french bean as well as for the bundle sheath and mesophyll of sorghum leaves. This data indicated that during the greening process photoregulation and evolution of PEP carboxylase is dependent on the tissue and on the metabolic type of the plant considered.Abbreviations CAM Crassulacean acid metabolism - PEP phosphoenolpyruvate  相似文献   

14.
The photochemical activities of chloroplasts isolated from bundle sheath and mesophyll cells of maize (Zea mays var. DS606A) have been measured. Bundle sheath chloroplasts are almost devoid of grana, except in very young leaves, while mesophyll chloroplasts contain grana at all stages of leaf development.  相似文献   

15.
The activity of ATP sulfurylase, cysteine synthase, and cystathionine β-lyase was measured in crude leaf extracts, bundle sheath strands, and mesophyll and bundle sheath chloroplasts to determine the location of sulfate assimilation of C4 plant leaves. Almost all the ATP sulfurylase activity was located in the bundle sheath chloroplasts while cysteine synthase and cystathionine β-lyase activity was located, in different proportions, in both chloroplast types.

A new spectrophotometric assay for measuring ATP sulfurylase activity is also described.

  相似文献   

16.
Kimata Y  Hase T 《Plant physiology》1989,89(4):1193-1197
Four ferredoxin isoproteins were identified in the C4 plant Zea mays L. by analysis of extracts from leaves, mesocotyls, and roots of the young seedlings. The relative amounts of the isoproteins isolated from the photosynthetic and nonphotosynthetic organs were different. All the isoproteins were present in the leaves of green and etiolated plants, whereas two out of the four isoproteins were not detected in the roots or in the mesocotyls. During the greening of etiolated seedlings, the level of the two isoproteins unique to the leaf increased markedly. Analysis of the cellular and subcellular distribution of the two major leaf isoproteins showed that one isoprotein was present in the chloroplasts of both mesophyll and bundle sheath cells, whereas the other was only found in the chloroplasts of bundle sheath cells. This is the first report of the cell-specific expression of ferredoxin isoproteins in the leaves of a C4 plant.  相似文献   

17.
Chloroplast photorelocation movement is extensively studied in C3 but not C4 plants. C4 plants have two types of photosynthetic cells: mesophyll and bundle sheath cells. Mesophyll chloroplasts are randomly distributed along cell walls, whereas bundle sheath chloroplasts are located close to the vascular tissues or mesophyll cells depending on the plant species. The cell-specific C4 chloroplast arrangement is established during cell maturation, and is maintained throughout the life of the cell. However, only mesophyll chloroplasts can change their positions in response to environmental stresses. The migration pattern is unique to C4 plants and differs from that of C3 chloroplasts. in this mini-review, we highlight the cell-specific disposition of chloroplasts in C4 plants and discuss the possible physiological significances.Key words: abscisic acid, aggregative movement, avoidance movement, blue light, bundle sheath cell, C4 plant, chloroplast, cytoskeleton, environmental stress, mesophyll cellChloroplasts can change their intracellular positions to optimize photosynthetic activity and/or reduce photodamage occurring in response to light irradiation. On treating with high-intensity light, the chloroplasts move away from the light to minimize photodamage (avoidance response). Meanwhile, on irradiating with low-intensity light, they move toward the light source to maximize photosynthesis (accumulation response). These chloroplast-photorelocation movements are observed in a wide variety of plant species from green algae to seed plants,13 although little attention has been paid to C4 plants. There is a report stating that monocotyledonous C4 plants showed changes in the light transmission of leaves in response to blue light,4 although the direction of migration of the chloroplasts is not described.C4 plants have two types of photosynthetic cells: mesophyll (M) cells and bundle sheath (BS) cells, which have numerous well-developed chloroplasts. BS cells surround the vascular tissues, while M cells encircle the cylinders of the BS cells (Fig. 1). The C4 dicarboxylate cycle of photosynthetic carbon assimilation is distributed between the two cell types, and acts as a CO2 pump to concentrate CO2 in the BS chloroplasts.5,6 C4 plants are divided into three subtypes on the basis of decarboxylating enzymes: NADP-malic enzyme (ME), NAD-ME and phosphoenolpyruvate carboxykinase. Although the M chloroplasts of all C4 species are randomly distributed along the cell walls, BS chloroplasts are located either in a centripetal (close to the vascular tissue) or in a centrifugal (close to M cells) position, depending on the species (Fig. 1A).7 Thus, C4 M and BS cells have different systems for chloroplast positioning: an M cell-specific system for dispersing chloroplasts and a BS cell-specific system for holding chloroplasts in a centripetal or centrifugal disposition.Open in a separate windowFigure 1The intracellular arrangement of chloroplasts in finger millet (Eleusine coracana), an NAD-ME-type C4 plant. (A) Light micrograph of a transverse section of a leaf blade from a control plant. Bundle sheath (BS) cells surround the vascular tissues, while mesophyll (M) cells encircle the cylinders of the BS cells. BS chloroplasts are well developed, and are located in a centripetal position, whereas M chloroplasts are randomly distributed along the cell walls. B, bundle sheath cell; M, mesophyll cell; V, vascular bundle. (B) Transverse section of a leaf blade from a drought-stressed plant. Most M chloroplasts are aggregatively distributed toward the BS side, while the centripetal arrangement of BS chloroplasts is unchanged. (C and D) Transverse sections of leaf segments irradiated with blue light of intensity 500 µmol m−2 s−1 with or without 30 µM ABA for 8 h (C and D, respectively). The adaxial side of each leaf section (upper side in the photograph) was illuminated. In the absence of ABA, M chloroplasts exhibited avoidance movement on the illuminated side and aggregative movement on the opposite side. In the presence of ABA, aggregative movement was observed on both sides. Scale bars = 50 µm.  相似文献   

18.
PMS-dependent photophosphorylation in bundle sheath chloroplasts isolated from Zea mays was monitored by using a continuous method. Carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) and venturicidin were shown to inhibit the ATP-synthesis. Venturicidin has been shown to inhibit ATP-formation in both mesophyll and bundle sheath chloroplasts. In contrast to the case in mesophyll chloroplasts, FMN was not able to promote photophosphorylation in bundle sheath chloroplasts. The effects of other cofactors and inhibitors on the ATP-synthesis in bundle sheath chloroplasts are shown. No photoinduced synthesis of inorganic pyrophosphate was seen, neither in bundle sheath chloroplasts, nor in mesophyll chloroplasts.  相似文献   

19.
Castrillo  M.  Aso  P.  Longart  M.  Vermehren  A. 《Photosynthetica》1997,33(1):39-50
The location of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) in the leaf mesophyll of some dicotyledonous C4 plants was confirmed by immunofluorescent labelling. The anti-RuBPCO immune serum was obtained by inoculating a rabbit with commercially obtained RuBPCO. Specificity of these antibodies was tested by immunodiffusion, immunoelectrophoresis, and Western blotting. Fresh hand-cuts of leaves from dicotyledonous C4 plants, Amaranthus caudatus, A. dubius, Gomphrena globosa, and Portulaca oleracea, were incubated with the conjugated anti-RuBPCO immune serum and then with a commercial FITC-anti-rabbit IgG conjugate. Nerium oleander was used a control C3 plant pattern and Zea mays as a C4 plant pattern. The immunofluorescent label was distributed in both mesophyll and bundle sheath in all the C4 plants tested. It is an unequivocal proof that in the C4 dicotyledonous plants the RuBPCO is not only located in the chloroplasts of the bundle sheath cells but also in the chloroplasts of the mesophyll cells. In these plants therefore, the C4 pathway cannot exclusively be viewed as an intercellular level concentration mechanism. In the mesophyll cytoplasm, phosphoenolpyruvate carboxylase traps CO2, while in the mesophyll chloroplasts, RuBPCO operates with atmospheric CO2 and CO2 from the C4 decarboxylation step at an intracellular level, which could mean a significant energetic economy. The CO2 from photorespiration could be saved and reincorporated. Location of RuBPCO in the mesophyll and/or bundle sheath chloroplasts is a matter of inter- and intracellular compartmentation which makes another variation of C4 photosynthetic pathway possible. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

20.
A modified fluorescence microscope system was used to measure chlorophyll fluorescence and delayed light emission from mesophyll and bundle sheath cells in situ in fresh-cut sections from leaves of Panicum miliaceum L. The fluorescence rise in 3-(3,4-dichlorophenyl)-1, 1-dimethylurea (DCMU)-treated leaves and the slow fluorescence kinetics in untreated leaves show that mesophyll chloroplasts have larger photosystem II unit sizes than do bundle sheath chloroplasts. The larger photosystem II units imply more efficient noncyclic electron transport in mesophyll chloroplasts. Quenching of slow fluorescence also differs between the cell types with mesophyll chloroplasts showing complex kinetics and bundle sheath chloroplasts showing a relatively simple decline. Properties of the photosynthetic system were also investigated in leaves from plants grown in soil containing elevated NaCl levels. As judged by changes in both fluorescence kinetics in DCMU-treated leaves and delayed light emission in leaves not exposed to DCMU, salinity altered photosystem II in bundle sheath cells but not in mesophyll cells. This result may indicate different ionic distributions in the two cell types or, alternatively, different responses of the two chloroplast types to environmental change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号