首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Alzheimer disease (AD) brain, the level of I (1)(PP2A), a 249-amino acid long endogenous inhibitor of protein phosphatase 2A (PP2A), is increased, the activity of the phosphatase is decreased, and the microtubule-associated protein Tau is abnormally hyperphosphorylated. However, little is known about the detailed regulatory mechanism by which PP2A activity is inhibited by I (1)(PP2A) and the consequent events in mammalian cells. In this study, we found that both I (1)(PP2A) and its N-terminal half I (1)(PP2A(1-120)), but neither I (1)(PP2A(1-163)) nor I (1)(PP2A(164-249)), inhibited PP2A activity in vitro, suggesting an autoinhibition by amino acid residues 121-163 and its neutralization by the C-terminal region. Furthermore, transfection of NIH3T3 cells produced a dose-dependent inhibition of PP2A activity by I (1)(PP2A)(1). I (PP2A) and PP2A were found to colocalize in PC12 cells. I (1)(PP2A) could only interact with the catalytic subunit of PP2A (PP2Ac) and had no interaction with the regulatory subunits of PP2A (PP2A-A or PP2A-B) using a glutathione S-transferase-pulldown assay. The interaction was further confirmed by coimmunoprecipitation of I (1)(PP2A) and PP2Ac from lysates of transiently transfected NIH3T3 cells. The N-terminal isotype specific region of I (1)(PP2A) was required for its association with PP2Ac as well as PP2A inhibition. In addition, the phosphorylation of Tau was significantly increased in PC12/Tau441 cells transiently transfected with full-length I (1)(PP2A) and with PP2Ac-interacting I (1)(PP2A) deletion mutant 1-120 (I (1)(PP2A)DeltaC2). Double immunofluorescence staining showed that I (1)(PP2A) and I (1)(PP2A)DeltaC2 increased Tau phosphorylation and impaired the microtubule network and neurite outgrowth in PC12 cells treated with nerve growth factor.  相似文献   

2.
Recombinant I(1)(PP2A) and I(2)(PP2A) did not affect the activity of the catalytic subunit of protein phosphatase 1 (PP1(C)) with (32)P-labeled myelin basic protein, histone H1, and phosphorylase when assayed in the absence of divalent cations. However, in the presence of Mn(2+), I(1)(PP2A) and I(2)(PP2A) stimulated PP1(C) activity by 15-20-fold with myelin basic protein and histone H1 but not phosphorylase. Half-maximal stimulation occurred at 2 and 4 nM I(1)(PP2A) and I(2)(PP2A), respectively. Moreover, I(1)(PP2A) and I(2)(PP2A) reduced the Mn(2+) requirement by about 30-fold to 10 microM. In contrast, PP1(C) activity was unaffected by I(1)(PP2A) and I(2)(PP2A) in the presence of Co(3+) (0.1 mM), Mg(2+) (2 mM), Ca(2+) (0.5 mM), and Zn(2+) (0.1 mM). Following gel filtration chromatography on Sephacryl S-200 in the presence of Mn(2+), PP1(C) coeluted with I(1)(PP2A) and I(2)(PP2A) in the void volume. However, when I(1)(PP2A) and I(2)(PP2A) or Mn(2+) were omitted, PP1(C) emerged with a V(e)/V(0) of approximately 1.6. The results demonstrate that I(1)(PP2A) and I(2)(PP2A) associate with and modify the substrate specificity of PP1(C) in the presence of physiological concentrations of Mn(2+). A novel role is suggested for I(1)(PP2A) and I(2)(PP2A) in the reciprocal regulation of two major mammalian serine/threonine phosphatases, PP1 and PP2A.  相似文献   

3.
Volvatoxin A2 (VVA2), a novel pore-forming cardiotoxic protein was isolated from the mushroom Volvariella volvacea. We identified an N-terminal fragment (NTF) (1-127 residues) of VVA2 as a domain for oligomerization by limited tryptic digestion. On preincubation of NTF with VVA2, NTF was found to inhibit VVA2 hemolytic activity by inducing VVA2 oligomerization in the solution in the same manner as liposomes. By site-directed mutagenesis, the amphipathic alpha-helix B of NTF or VVA2 was shown to be indispensable for its biological functions. Interestingly, at a molar ratio of recombinant NTF (reNTF)/VVA2 as low as 0.01, reNTF was able to inhibit VVA2 hemolytic activity and induce VVA2 oligomerization. This indicates that reNTF can trigger VVA2 oligomerization by a seeding effect. Furthermore, the recombinant C-terminal fragment (128-199 residues) was found to be a functional domain that mediates the membrane binding of VVA2. We found a fragment localized at the C-terminal half of VVA2 containing beta6, -7, and -8, which is protected from protease digestion because of its insertion of a membrane. We also identified a putative heparin binding site (HBS) located in the VVA2 C terminus (166-194 residues), which was conserved among 10 kinds of snake venom cardiotoxins. VVA2 or the reHBS fragment was shown to interact with sulfated glycoaminoglycans by affinity column chromatography. The finding of a higher number of glycoaminoglycans in the membrane of cardiac myocytes suggested that they could be the specific membrane target for VVA2. Taken together, these findings indicate that VVA2 contains two functional domains, NTF and CTF. The NTF domain is responsible for VVA2 oligomerization and the CTF domain for membrane binding and insertion. Our results support a model whereby the formation of VVA2 oligomeric pre-pore complexes precedes their membrane insertion.  相似文献   

4.
5.
The enzyme gamma-secretase is involved in the cleavage of several type I membrane proteins, such as Notch 1 and amyloid precursor protein. Presenilin-1 (PS-1) is one of the critical integral membrane protein components of the gamma-secretase complex and is processed endoproteolytically, generating N- and C-terminal fragments (NTF and CTF, respectively). PS-1 is also known to incorporate into a high molecular weight complex by binding to other gamma-secretase components such as Nicastrin, Aph-1, and Pen-2. Mutations on PS-1 can alter the effects of gamma-secretase on its many substrates to different extents. Here, we showed that PS-1 mutants have a different activity for Notch cleavage, which depended on the PS-1 mutation site. We demonstrated that defective PS-1 mutants located in CTF, i.e. D385A and C410Y, could restore their gamma-secretase activities with the compensatory overexpression of wild type CTF or of minimal deleted CTF (amino acids 349-467). However, the defective PS-1 D257A mutant could not restore their gamma-secretase activities with the compensatory overexpression of wild type NTF. In comparison, both D257A NTF and D385A CTF could abolish the gamma-secretase activity of wild type and pathogenic PS-1 mutants. We also showed that PS-1 NTF but not CTF forms strong high molecular weight aggregates in SDS-PAGE. Taken together, results have shown that NTF and CTF integrate differently into high molecular weight aggregates and that PS-1 Asp-257 and Asp-385 have different accessibilities in their unendoproteolyzed conformation.  相似文献   

6.
Alpha4 is a signal transduction molecule that is required for B cell activation. Alpha4 associates with the catalytic subunit of protein phosphatase 2A (PP2Ac) and regulates its enzymatic activity. We examined the interaction of alpha4/PP2Ac with S6 kinase1 (S6K1) as a potential downstream signal transduction molecule because both alpha4/PP2Ac association and S6K1 activity were rapamycin-sensitive. Stimulation of spleen B cells with lipopolysaccharide induced the interaction of alpha4/PP2Ac and S6K1. Pull-down assay demonstrated that alpha4 interacts with S6K1 through PP2Ac. S6K1 and alpha4 bind to the different regions of PP2Ac as S6K1 to the region from amino acid 88th to 309th of PP2Ac and alpha4 to the two separated regions of the amino-terminal (from amino acid 19th to 22nd) and the middle (from 150th to 164th) portions of PP2Ac. These results suggest that alpha4 regulates S6K1 activity through PP2Ac in B cell activation.  相似文献   

7.
Chohan MO  Khatoon S  Iqbal IG  Iqbal K 《FEBS letters》2006,580(16):3973-3979
The activity of protein phosphatase (PP)-2A, which regulates tau phosphorylation, is compromised in Alzheimer disease brain. Here we show that the transient transfection of PC12 cells with inhibitor-2 (I2PP2A) of PP2A causes abnormal hyperphosphorylation of tau at Ser396/Ser404 and Ser262/Ser356. This hyperphosphorylation of tau is observed only when a sub-cellular shift of I2PP2A takes place from the nucleus to the cytoplasm and is accompanied by cleavage of I2PP2A into a 20 kDa fragment. Memantine, an un-competitive inhibitor of N-methyl-D-aspartate receptors, inhibits this abnormal phosphorylation of tau and cell death and prevents the I2PP2A-induced inhibition of PP2A activity in vitro. These findings demonstrate novel mechanisms by which I2PP2A regulates the intracellular activity of PP2A and phosphorylation of tau, and by which Memantine modulates PP2A signaling and inhibits neurofibrillary degeneration.  相似文献   

8.
9.
Protein phosphatase 2A (PP2A) is a critical human tumor suppressor. Cancerous inhibitor of PP2A (CIP2A) supports the activity of several critical cancer drivers (Akt, MYC, E2F1) and promotes malignancy in most cancer types via PP2A inhibition. However, the 3D structure of CIP2A has not been solved, and it remains enigmatic how it interacts with PP2A. Here, we show by yeast two‐hybrid assays, and subsequent validation experiments, that CIP2A forms homodimers. The homodimerization of CIP2A is confirmed by solving the crystal structure of an N‐terminal CIP2A fragment (amino acids 1–560) at 3.0 Å resolution, and by subsequent structure‐based mutational analyses of the dimerization interface. We further describe that the CIP2A dimer interacts with the PP2A subunits B56α and B56γ. CIP2A binds to the B56 proteins via a conserved N‐terminal region, and dimerization promotes B56 binding. Intriguingly, inhibition of either CIP2A dimerization or B56α/γ expression destabilizes CIP2A, indicating opportunities for controlled degradation. These results provide the first structure–function analysis of the interaction of CIP2A with PP2A/B56 and have direct implications for its targeting in cancer therapy.  相似文献   

10.
The Saccharomyces cerevisiae type 2A protein phosphatase (PP2A) Pph22p differs from the catalytic subunits of PP2A (PP2Ac) present in mammals, plants and Schizosaccharomyces pombe by a unique N-terminal extension of approximately 70 amino acids. We have overexpressed S. cerevisiae Pph22p and its N-terminal deletion mutant Delta N-Pph22p in the GS115 strain of Pichia pastoris and purified these enzymes to apparent homogeneity. Similar to other heterologous systems used to overexpress PP2Ac, a low yield of an active enzyme was obtained. The recombinant enzymes designed with an 8 x His-tag at their N-terminus were purified by ion-exchange chromatography on DEAE-Sephacel and affinity chromatography on Ni2+-nitrilotriacetic acid agarose. Comparison of biochemical properties of purified Pph22p and Delta N-Pph22p with purified human 8 x His PP2Ac identified similarities and differences between these two enzymes. Both enzymes displayed similar specific activities with 32P-labelled phosphorylase a as substrate. Furthermore, selected inhibitors and metal ions affected their activities to the same extend. In contrast to the mammalian catalytic subunit PP2Ac, but similar to the dimeric form of mammalian PP2A, Pph22p, but not Delta N-Pph22p, interacted strongly with protamine. Also with regard to the effects of protamine and polylysine on phosphatase activity Pph22p, but not Delta N-Pph22p, behaved similarly to the PP2Ac-PR65 dimer, indicating a regulatory role for the N-terminal extension of Pph22p. The N-terminal extension appears also responsible for interactions with phospholipids. Additionally Pph22p has different redox properties than PP2Ac; in contrast to human PP2Ac it cannot be reactivated by reducing agents. These properties make the S. cerevisiae Pph22p phosphatase a unique enzyme among all type 2A protein phosphatases studied so far.  相似文献   

11.
12.
Lee WJ  Kim DU  Lee MY  Choi KY 《Proteomics》2007,7(2):206-214
The protein phosphatase 2A (PP2A) is a serine/threonine phosphatase involved in the regulation of multiple signaling pathways including the Wnt/beta-catenin and the ERK pathways. To understand the complex signaling networking associated with PP2A, we searched proteins interacting with the catalytic subunit of protein phosphatase 2A (PP2Ac) by a pull-down analysis followed by 2-D gel electrophoresis and proteomic analyses. The probability of identification of the proteins interacting with PP2Ac was increased by searching proteins differently interacting with PP2Ac according to stimulation of Wnt3a, which regulates both the Wnt/beta-catenin and the ERK pathways. Around 100 proteins, pulled-down by His-tagged PP2Ac, were identified in 2-D gels stained with CBB. By MALDI-TOF-MS analyses of 45 protein spots, we identified several proteins that were previously known to interact with PP2A, such as Axin and CaMK IV. In addition, we also identified many proteins that potentially interact with PP2Ac. The interactions of several candidate proteins, such as tuberous sclerosis complex 2, RhoB, R-Ras, and Nm23H2, with PP2Ac, were confirmed by in vitro binding analyses and/or coimmunoprecipitation experiments.  相似文献   

13.
Diverse functions of protein Ser/Thr phosphatases depend on the distribution of the catalytic subunits among multiple regulatory subunits. In cells protein phosphatase 2A catalytic subunit (PP2Ac) mostly binds to a scaffold subunit (A subunit or PR65); however, PP2Ac alternatively binds to alpha-4, a subunit related to yeast Tap42 protein, which also associates with phosphatases PP4 or PP6. We mapped alpha-4 binding to PP2Ac to the helical domain, residues 19-165. We mutated selected residues and transiently expressed epitope-tagged PP2Ac to assay for association with A and alpha-4 subunits by co-precipitation. The disabling H118N mutation at the active site or the presence of the active site inhibitor microcystin-LR did not interfere with binding of PP2Ac to either the A subunit or alpha-4, showing that these are allosteric regulators. Positively charged side chains Lys(41), Arg(49), and Lys(74) on the back surface of PP2Ac are unique to PP2Ac, compared with phosphatases PP4, PP6, and PP1. Substitution of one, two, or three of these residues with Ala produced a progressive loss of binding to the A subunit, with a corresponding increase in binding to alpha-4. Conversely, mutation of Glu(42) in PP2Ac essentially eliminated PP2Ac binding to alpha-4, with an increase in binding to the A subunit. Reciprocal changes in binding because of mutations indicate competitive distribution of PP2Ac between these regulatory subunits and demonstrate that the mutated catalytic subunits retained a native conformation. Furthermore, neither the Lys(41)-Arg(49)-Lys(74) nor Glu(42) mutations affected the phosphatase-specific activity or binding to microcystin-agarose. Binding of PP2Ac to microcystin and to alpha-4 increased with temperature, consistent with an activation energy barrier for these interactions. Our results reveal that the A subunit and alpha-4 (mTap42) require charged residues in separate but overlapping surface regions to associate with the back side of PP2Ac and modulate phosphatase activity.  相似文献   

14.
Protein phosphatase (PP)-2A, which regulates the phosphorylation of tau, is regulated by two endogenous inhibitor proteins, I(1)(PP2A) and I(2)(PP2A), in mammalian tissues. Here, we report the cloning of I(1)(PP2A) and I(2)(PP2A) from human brain, and show that in PC12 cells and in I(1)(PP2A)-GFP or I(2)(PP2A)-GFP transfected NIH3T3 and human neural progenitor cells, I(1)(PP2A) is localized mostly in the cell cytoplasm and I(2)(PP2A) mostly in the nucleus. The recombinant I(1)(PP-2A) and I(2)(PP-2A) inhibit PP-2A activity towards hyperphosphorylated tau in vitro; the dephosphorylation of the hyperphosphorylated tau at specific sites is selectively inhibited. Overexpression of I(1)(PP2A) as well as I(2)(PP2A) results in tau hyperphosphorylation and degeneration of PC 12 cells.  相似文献   

15.
Target of rapamycin complex 1 (TORC1) has a key role in cellular regulations in response to environmental conditions. In yeast, Tip41 downregulates TORC1 signaling via activation of PP2A phosphatase. We show here that overexpression of TIPRL, a mammalian Tip41, suppressed dephosphorylation of mechanistic TORC1 (mTORC1) substrates under amino acid withdrawal, and knockdown of TIPRL conversely attenuated phosphorylation of those substrates after amino acid refeeding. TIPRL associated with the catalytic subunit of PP2A (PP2Ac), which was required for the TIPRL action on mTORC1 signaling. Collectively, unlike yeast TIP41, TIPRL has a positive effect on mTORC1 signaling through the association with PP2Ac.  相似文献   

16.
Studies using in vitro cultured oocytes have indicated that the protein phosphatase 2A (PP2A), a major serine/threonine protein phosphatase, participates in multiple steps of meiosis. Details of oocyte maturation regulation by PP2A remain unclear and an in vivo model can provide more convincing information. Here, we inactivated PP2A by mutating genes encoding for its catalytic subunits (PP2Acs) in mouse oocytes. We found that eliminating both PP2Acs caused female infertility. Oocytes lacking PP2Acs failed to complete 1st meiotic division due to chromosome misalignment and abnormal spindle assembly. In mitosis, PP2A counteracts Aurora kinase B/C (AurkB/C) to facilitate correct kinetochore-microtubule (KT-MT) attachment. In meiosis I in oocyte, we found that PP2Ac deficiency destabilized KT-MT attachments. Chemical inhibition of AurkB/C in PP2Ac-null oocytes partly restored the formation of lateral/merotelic KT-MT attachments but not correct KT-MT attachments. Taken together, our findings demonstrate that PP2Acs are essential for chromosome alignments and regulate the formation of correct KT-MT attachments in meiosis I in oocytes.  相似文献   

17.
To gain insight into presenilin-1 (PS1) structural aspects, we explored the structure–function relationship of its N- and C-terminal (NTF and CTF, respectively) complexes. We demonstrated that both NTF and CTF act as independent but inter-changing binding units capable of binding each other (NTF/CTF) or their homologues (NTF/NTF; CTF/CTF). The Alzheimer’s disease-associated PS1 mutations Y115H and M146L do not affect their ability to hetero- and/or homodimerize, thus conserving their basic integrity and function(s). These results suggest that PS1 associates intra-molecularly to form higher order complexes, which may be needed for endoproteolytic cleavage and/or γ-secretase-associated activity.  相似文献   

18.
19.
Physiological functions of protein phosphatase 2A (PP2A) are determined via the association of its catalytic subunit (PP2Ac) with diverse regulatory subunits. The predominant form of PP2Ac assembles into a heterotrimer comprising the scaffolding PR65/A subunit together with a variable regulatory B subunit. A distinct population of PP2Ac associates with the Tap42/alpha4 subunit, an interaction mutually exclusive with that of PR65/A. Tap42/alpha4 is also an interacting subunit of the PP2Ac-related phosphatases, PP4 and PP6. Tap42/alpha4, an essential protein in yeast and suppressor of apoptosis in mammals, contributes to critical cellular functions including the Tor signaling pathway. Here, we describe the crystal structure of the PP2Ac-interaction domain of Saccharomyces cerevisiae Tap42. The structure reveals an all alpha-helical protein with striking similarity to 14-3-3 and tetratricopeptide repeat (TPR) proteins. Mutational analyses of structurally conserved regions of Tap42/alpha4 identified a positively charged region critical for its interactions with PP2Ac. We propose a scaffolding function for Tap42/alpha4 whereby the interaction of PP2Ac at its N-terminus promotes the dephosphorylation of substrates recruited to the C-terminal region of the molecule.  相似文献   

20.
The presenilin (PS) complex, including PS, nicastrin, APH-1 and PEN-2, is essential for gamma-secretase activity, which is required for amyloid beta-protein (Abeta) generation. However, the precise individual roles of the three cofactors in the PS complex in Abeta generation remain to be clarified. Here, to distinguish the roles of PS cofactors in gamma-secretase activity from those in PS endoproteolysis, we investigated their roles in the gamma-secretase activity reconstituted by the coexpression of PS N- and C-terminal fragments (NTF and CTF) in PS-null cells. We demonstrate that the coexpression of PS1 NTF and CTF forms the heterodimer and restores Abeta generation in PS-null cells. The generation of Abeta was saturable at a certain expression level of PS1 NTF/CTF, while the overexpression of PEN-2 alone resulted in a further increase in Abeta generation. Although PEN-2 did not enhance PS1 NTF/CTF heterodimer formation, PEN-2 expression reduced the IC50 of a specific gamma-secretase inhibitor, a transition state analogue, for Abeta generation, suggesting that PEN-2 expression enhances the affinity or the accessibility of the substrate to the catalytic site. Thus, our results strongly suggest that PEN-2 is not only an essential component of the gamma-secretase complex but also an enhancer of gamma-cleavage after PS heterodimer formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号