首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhu HL  Atkinson D 《Biochemistry》2004,43(41):13156-13164
Because of its role in reverse cholesterol transport, human apolipoprotein A-I is the most widely studied exchangeable apolipoprotein. Residues 1-43 of human apoA-I, encoded by exon 3 of the gene, are highly conserved and less well understood than residues 44-243, encoded by exon 4. In contrast to residues 44-243, residues 1-43 do not contain the 22 amino acid tandem repeats thought to form lipid binding amphipathic helices. To understand the structural and functional roles of the N-terminal region, we studied a synthetic peptide representing the first 44 residues of human apoA-I ([1-44]apoA-I). Far-ultraviolet circular dichroism spectra showed that [1-44]apoA-I is unfolded in aqueous solution. However, in the presence of n-octyl beta-d-glucopyranoside, a nonionic lipid mimicking detergent, above its critical micelle concentration ( approximately 0.7% at 25 degrees C), sodium dodecyl sulfate, an ionic detergent, above its CMC ( approximately 0.2%), trimethylamine N-oxide, a folding inducing organic osmolyte, or trifluoroethanol, an alpha-helix inducer, alpha-helical structure was formed in [1-44]apoA-I up to approximately 45%. Characterization by density gradient ultracentrifugation and visualization by negative staining electron microscopy demonstrated that [1-44]apoA-I interacts with dimyristoylphosphatidylcholine (DMPC) over a wide range of lipid:peptide ratios from 1:1 to 12:1 (w/w). At 1:1 DMPC:[1-44]apoA-I (w/w) ratio, discoidal complexes with composition approximately 4:1 (w/w) and approximately 100 A diameter were formed in equilibrium with free peptide. At higher ratios, discoidal complexes were shown to exist together with a heterogeneous population of lipid vesicles with peptide bound also in equilibrium with free peptide. When bound to DMPC, [1-44]apoA-I has approximately 60% helical structure, independent of whether it forms discoidal or vesicular complexes. This helical content is consistent with that of the predicted G helix (residues 8-33). Our data provide the first strong and direct evidence that the N-terminal region of apoA-I binds lipid and can form discoidal structures and a heterogeneous population of vesicles. In doing so, approximately 60% of this region folds into alpha-helix from random coil. The composition of the 100 A discoidal complex is approximately 5 [1-44]apoA-I and approximately 150 DMPC molecules per disk. The helix length of 5 [1-44]apoA-I molecules in lipid-bound form is just long enough to wrap around the DMPC bilayer disk once.  相似文献   

2.
To study the lipid-protein interaction in a reductionistic fashion, it is necessary to incorporate the membrane proteins into membranes of well-defined lipid composition. We are studying the lipid-dependent gating effects in a prototype voltage-gated potassium (Kv) channel, and have worked out detailed procedures to reconstitute the channels into different membrane systems. Our reconstitution procedures take consideration of both detergent-induced fusion of vesicles and the fusion of protein/detergent micelles with the lipid/detergent mixed micelles as well as the importance of reaching an equilibrium distribution of lipids among the protein/detergent/lipid and the detergent/lipid mixed micelles. Our data suggested that the insertion of the channels in the lipid vesicles is relatively random in orientations, and the reconstitution efficiency is so high that no detectable protein aggregates were seen in fractionation experiments. We have utilized the reconstituted channels to determine the conformational states of the channels in different lipids, record electrical activities of a small number of channels incorporated in planar lipid bilayers, screen for conformation-specific ligands from a phage-displayed peptide library, and support the growth of 2D crystals of the channels in membranes. The reconstitution procedures described here may be adapted for studying other membrane proteins in lipid bilayers, especially for the investigation of the lipid effects on the eukaryotic voltage-gated ion channels.  相似文献   

3.
Micelle-vesicle transition of egg phosphatidylcholine and octyl glucoside   总被引:6,自引:0,他引:6  
The dissolution and formation of egg phosphatidylcholine (PC) vesicles by the detergent octyl glucoside were examined systematically by using resonance energy transfer between fluorescent lipid probes, turbidity, and gel filtration chromatography. Resonance energy transfer was exquisitely sensitive to the intermolecular distance when the lipids were in the lamellar phase and to the transitions leading to mixed micelles. Turbidity measurements provided information about the aggregation of lipid and detergent. Several reversible discrete transitions between states of the PC-octyl glucoside system were observed by both methods during dissolution and vesicle formation. These states could be described as a series of equilibrium structures that took the forms of vesicles, open lamellar sheets, and mixed micelles. As detergent was added to an aqueous suspension of vesicles, the octyl glucoside partitioned into the vesicles with a partition coefficient of 63. This was accompanied by leakage of small molecules and vesicle swelling until the mole fraction of detergent in the vesicles was just under 50% (detergent:lipid ratio of 1:1). Near this point, a transition was observed by an increase in turbidity and release of large molecules like inulin, consistent with the opening of vesicles. Both a turbidity maximum and a sharp increase in fluorescence were observed at a detergent to lipid mole ratio of 2.1:1. This was interpreted as the lower boundary of a region where both lamellar sheets and micelles are at equilibrium. At a detergent:lipid ratio of 3.0:1, another sharp change in resonance energy transfer and clarification of the suspension were observed, demarcating the upper boundary of this two-phase region. This latter transition is commonly referred to as solubilization.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
We have used cryo-transmission electron microscopy (cryo-TEM) for inspection of aggregates formed by dimyristoylphosphatidylcholine (DMPC) and dihexanoylphosphatidylcholine (DHPC) in aqueous solution at total phospholipid concentrations cL < or = 5% and DMPC/DHPC ratios q < or = 4.0. In combination with ocular inspections, we are able to sketch out this part of phase-diagram at T = 14-80 degrees C. The temperature and the ratio q are the dominating variables for changing sample morphology, while cL to a lesser extent affects the aggregate structure. At q = 0.5, small, possibly disc-shaped, aggregates with a diameter of approximately 6 nm are formed. At higher q-values, distorted discoidal micelles that tend to short cylindrical micelles are observed. The more well-shaped discs have a diameter of around 20 nm. Upon increasing q or the temperature, long slightly flattened cylindrical micelles that eventually branch are formed. A holey lamellar phase finally appears upon further elevation of q or temperature. The implications for biological NMR work are two. First, discs prepared as membrane mimics are frequently much smaller than predicted by current "ideal bicelle" models. Second, the q approximately 3 preparations used for aligning water-soluble biomolecules in magnetic fields consist of perforated lamellar sheets. Furthermore, the discovered sequence of morphological transitions may have important implications for the development of bicelle-based membrane protein crystallization methods.  相似文献   

5.
M A Long  E W Kaler    S P Lee 《Biophysical journal》1994,67(4):1733-1742
Small-angle neutron scattering (SANS) and dynamic light scattering (QLS) are used to characterize the aggregates found upon dilution of mixed lecithin-bile salt micelles. Molar ratios of lecithin (L) to taurocholate (TC) studied varied from 0.1 to 1, and one series contained cholesterol (Ch). Mixed aggregates of L and taurodeoxycholate (TDC) at ratios of 0.4 and 1 were also examined. In all cases the micelles are cylindrical or globular and elongate upon dilution. The radius of the mixed micelles varies only slightly with the overall composition of lecithin and bile salt which indicates that the composition of the cylindrical micelle body is nearly constant. The transition from micelles to vesicles is a smooth transformation involving a region where micelles and vesicles coexist. SANS measurements are more sensitive to the presence of two aggregate populations than QLS. Beyond the coexistence region the vesicle size and degree of polydispersity decrease with dilution. Incorporation of a small amount of cholesterol in the lipid mixture does not affect the sequence of observed aggregate structures.  相似文献   

6.
Effective detergent:lipid ratios (i.e. molar ratios in the mixed aggregates, vesicles or micelles) have been estimated for the solubilization of phosphatidylcholine vesicles by Triton X-100. Effective molar ratios are given for both the onset and the completion of bilayer solubilization; small unilamellar, large unilamellar and multilamellar vesicles have been used. Effective detergent:lipid ratios are independent of phospholipid concentration, and their use allows a deeper understanding of membrane-surfactant interactions.  相似文献   

7.
Formation of discoidal high density lipoproteins (rHDL) by apolipoprotein A-I (apoA-I) mediated solubilization of dimyristoyl phosphatidylcholine (DMPC) multilamellar vesicles (MLV) was dramatically affected by bilayer cholesterol concentration. At a low ratio of DMPC/apoA-I (2 mg DMPC/mg apoA-I, 84/1 mol/mol), sterols (cholesterol, lathosterol, and beta-sitosterol) that form ordered lipid phases increase the rate of solubilization similarly, yielding rHDL with similar structures. By changing the temperature and sterol concentration, the rates of solubilization varied almost 3 orders of magnitude; however, the sizes of the rHDL were independent of the rate of their formation and dependent upon the bilayer sterol concentration. At a high ratio of DMPC/apoA-I (10/1 mg DMPC/mg apoA-I, 420/1 mol/mol), changing the temperature and cholesterol concentration yielded rHDL that varied greatly in size, phospholipid/protein ratio, mol% cholesterol, and number of apoA-I molecules per particle. rHDL were isolated that had 2, 4, 6, and 8 molecules of apoA-I per particle, mean diameters of 117, 200, 303, and 396 A, and a mol% cholesterol that was similar to the original MLV. Kinetic studies demonstrated that the different sized rHDL are formed independently and concurrently. The rate of formation, lipid composition, and three-dimensional structures of cholesterol-rich rHDL is dictated primarily by the original membrane phase properties and cholesterol content. The size speciation of rHDL and probably nascent HDL formed via the activity of the ABCA1 lipid transporter is mechanistically linked to the cholesterol content of the membranes from which they were formed.  相似文献   

8.
Mixtures of lysolecithin with various phospholipids were studied by electron microscopy using negative staining. Mixtures of dipalmitoyllecithin and lysolecithin produced disc-shaped structures which were stacked in aggregates with a 6.0--6.4 nm repeat. The disc were 10--50 nm in diameter. The disc-shaped structures were best observed in equimolar mixtures of dipalmitoyllecithin and lysolecithin. When dipalmitoyllecithin was replaced by dimyristoyllecithin, the structures were rather different from those observed in the system containing dipalmitoyllecithin; a cylindrical micellar phase was predominant. Equimolar mixtures of egg lecithin and lysolecithin formed the more usual smectic, concentric lamellae (liposomes) and elongated rod-like micelles which might be bimolecular fragments of spherules. The radius of the rod-like micelles was about 6 nm. Structures of rod-like micelles were observed more frequently in the samples after incubation at room temperature and then further incubation at 0 degrees C. Equimolar mixtures of didecanoyllecithin and lysolecithin produced large amounts of elongated rod-like micelles. Beef brain sphingoymyelin showed disc-shaped structures when mixed with lysolecithin. Incorporation of cholesterol into the mixtures of dipalmitoyllecithin and lysolecithin changed the morphological structure; the size of the disc became larger and eventually liposomes were formed with an increase of cholesterol content. The structures observed in mixtures of dipalmitoyllecithin or sphingomyelin and lysolecithin closely resembled those observed in complexes of apolipoprotein and lipid.  相似文献   

9.
The proteins and lipids of the scallop gill ciliary membrane may be reassociated through several cycles of detergent solubilization, detergent removal, and freeze-thaw, without significant change in overall protein composition. Membrane proteins and lipids reassociate to form vesicles of uniform, discrete density classes under a variety of reassociation conditions involving detergent removal and concentration. Freed of the solubilizing detergent during equilibrium centrifugation, a protein-lipid complex equilibrates to a position on a sucrose density gradient characteristic of the original membrane density. When axonemal tubulin is solubilized by dialysis, mixed with 2:1 lecithin/cholesterol dissolved in Nonidet P-40, freed of detergent, and reconstituted by freeze-thaw, vesicles of a density essentially equal to pure lipid result. If the lipid fraction is derived through chloroform-methanol extraction of natural ciliary membranes, a moderate increase in density occurs upon reconstitution, but the protein is adsorbed and most is removed by a simple low ionic strength wash, in contrast to vesicles reconstituted from membrane proteins where even high salt extraction causes no loss of protein. The proteins of the ciliary membrane dissolve with constant composition, regardless of the type, concentration, or efficiency of detergent. Analytical ultracentrifugation demonstrates that monodisperse mixed micelles form at high detergent concentrations, but that membranes are dispersed to large sedimentable aggregates by Nonidet P-40 even at several times the critical micelle concentration, which suggests reasons for the efficacy of certain detergent for the production of ATP-reactivatable cell models. In extracts freed of detergent, structured polydisperse particles, but not membrane vesicles, are seen in negative staining; vesicles form upon concentration of the extract. Membrane tubulin is not in a form that will freely undergo electrophoresis, even in the presence of detergent above the critical micelle concentration. All chromatographic attempts to separate membrane tubulin from other membrane proteins have failed; lipid and protein are excluded together by gel filtration in the presence of high concentrations of detergent. These observations support the idea that a relatively stable lipid-protein complex exists in the ciliary membrane and that in this complex membrane tubulin is tightly associated with lipids and with a number of other proteins.  相似文献   

10.
Characterization of the solubilization of lipid bilayers by surfactants   总被引:11,自引:0,他引:11  
This communication addresses the state of aggregation of lipid-detergent mixed dispersions. Analysis of recently published data suggest that for any given detergent-lipid mixture the most important factor in determining the type of aggregates (mixed vesicles or mixed micelles) and the size of the aggregate is the detergent to lipid molar ratio in these aggregates, herein denoted the effective ratio, Re. For mixed bilayers this effective ratio has been previously shown to be a function of the lipid and detergent concentrations and of an equilibrium partition coefficient, K, which describes the distribution of the detergent between the bilayers and the aqueous phase. We show that, similar to mixed bilayers, the size of mixed micelles is also a function of the effective ratio, but for these dispersions the distribution of detergent between the mixed micelles and the aqueous medium obeys a much higher partition coefficient. In practical terms, the detergent concentration in the mixed micelles is equal to the difference between the total detergent concentration and the critical micelle concentration (cmc). Thus, the effective ratio is equal to this difference divided by the lipid concentration. Transformation of mixed bilayers to mixed micelles, commonly denoted solubilization, occurs when the surfactant to lipid effective ratio reaches a critical value. Experimental evaluation of this critical ratio can be based on the linear dependence of detergent concentration, required for solubilization, on the lipid concentration. According to the 'equilibrium partition model', the dependence of the 'solubilizing detergent concentration' on the lipid concentration intersects with the lipid axis at -1/K, while the slope of this dependence is the critical effective ratio. On the other hand, assuming that when solubilization occurs the detergent concentration in the aqueous phase is approximately equal to the critical micelle concentration, implies that the above dependence intersects with the detergent axis at the critical micelle concentration, while its slope, again, is equal to the critical effective ratio. Analysis of existing data suggests that within experimental error both these distinctively different approaches are valid, indicating that the critical effective ratio at which solubilization occurs is approximately equal to the product of the critical micelle concentration and the distribution coefficient K. Since the nature of detergent affects K and the critical micelle concentration in opposite directions, the critical ('solubilizing') effective ratio depends upon the nature of detergent less than any of these two factors.  相似文献   

11.
The solubilization of lipid bilayers by surfactants is accompanied by morphological changes of the bilayer and the emergence of mixed micelles. From a phase equilibrium perspective, the lipid/surfactant/water system is in a two-phase area during the solubilization: a phase containing mixed micelles is in equilibrium with bilayer structures of the lamellar phase. In some cases three phases are present, the single micelle phase replaced by a concentrated and a dilute solution phase. In the case of non-ionic surfactants, the lipid bilayers reach saturation when mixed micelles, often flexible rod-like or thread-like, start to form in the aqueous solution, at a constant chemical potential of the surfactant. The composition of the bilayers also remains fixed during the dissolution. The phase behavior encountered with many charged surfactants is different. The lamellar phase becomes destabilized at a certain content of surfactant in the membrane, and then disintegrates, forming mixed micelles, or a hexagonal phase, or an intermediate phase. Defective bilayer intermediates, such as perforated vesicles, have been found in several systems, mainly with charged surfactants. The perforated membranes, in some systems, go over into thread-like micelles via lace-like structures, often without a clear two-phase region. Intermediates in the form of disks, either micelles or bilayer fragments, have been observed in several cases. Most noteworthy are the planar and circular disks found in systems containing a large fraction of cholesterol in the bilayer. Bile salts are a special class of surfactants that seem to break down the bilayer at low additions. Originally, disk-like mixed micelles were conjectured, with polar membrane lipids building the disk, and the bile salts covering the hydrophobic rim. Later work has shown that flexible cylinders are the dominant intermediates also in these systems, even if the disk-like structures have been re-established as transients in the transformation from mixed micelles to vesicles.  相似文献   

12.
Aqueous dispersions of dimyristoyl phosphatidylglycerol (DMPG), at low ionic strength, display uncommon thermal behavior. Models for such behavior need to assign a form to the lipid aggregate. Although most studies accept the presence of lipid vesicles in the lipid gel and fluid phases, this is still controversial. With electron spin resonance (ESR) spectra of spin labels incorporated into DMPG aggregates, quantification of [(14)C]sucrose entrapped by the aggregates, and viscosity measurements, we demonstrate the existence of leaky vesicles in dispersions of DMPG at low ionic strength, in both gel and fluid phases of the lipid. As a control system, the ubiquitous lipid dimyristoyl phosphatidylcholine (DMPC) was used. For DMPG in the gel phase, spin labeling only indicated the presence of lipid bilayers, strongly suggesting that DMPG molecules are organized as vesicles and not micelles or bilayer fragments (bicelles), as the latter has a non-bilayer structure at the edges. Quantification of [(14)C]sucrose entrapping by DMPG aggregates revealed the presence of highly leaky vesicles. Due to the short hydrocarbon chains ((14)C atoms), DMPC vesicles were also found to be partially permeable to sucrose, but not as much as DMPG vesicles. Viscosity measurements, with the calculation of the intrinsic viscosity of the lipid aggregate, showed that DMPG vesicles are rather similar in the gel and fluid phases, and quite different from aggregates observed along the gel-fluid transition. Taken together, our data strongly supports that DMPG forms leaky vesicles at both gel and fluid phases.  相似文献   

13.
M Ueno  C Tanford  J A Reynolds 《Biochemistry》1984,23(13):3070-3076
The method developed previously for formation of unilamellar vesicles from mixed micelles of egg lecithin and octyl glucoside [Mimms, L. T., Zampighi, G., Nozaki, Y., Tanford, C., & Reynolds, J. A. (1981) Biochemistry 20, 833-840] has been extended to allow for (1) use of nonionic detergents with much lower critical micelle concentrations and (2) variation in the time course of detergent removal. The results demonstrate the importance of kinetic factors, especially in the determination of vesicle size: initially formed vesicles are small, but the size increases slowly thereafter if detergent is not removed too quickly. Vesicle size remains fixed when the molar detergent/lipid ratio falls below about 1/1, and detergent removal becomes increasingly difficult thereafter, presumably because flip-flop of detergent from the inner to the outer leaflet of the bilayer membrane is very slow. Residual detergent (to about 25 mol %) has surprisingly little effect on anion permeability but increases cation permeability to the point where the normal discrimination between anions and cations (in pure lipid vesicles) is lost. Detergent added to initially detergent-free vesicles readily partitions into vesicular membranes (presumably only into the outer leaflet) and has a qualitatively similar effect on permeability. Vesicles produced by this method, regardless of residual detergent level, were found to be predominantly unilamellar: no multilamellar liposomes or other lipid aggregates could be detected within the accuracy of the methods employed.  相似文献   

14.
A mixture of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) with the short-chain detergent n-dodecylphosphocholine (DPC) is introduced here as a new membrane-mimetic bicelle system for solid-state NMR structure analysis of membrane proteins in oriented samples. Magnetically aligned DMPC/DPC bicelles are stable over a range of concentrations, with an optimum lipid ratio of q=3:1, and they can be flipped with lanthanide ions. The advantage of DMPC/DPC over established bicelle systems lies in the possibility to use one and the same detergent for purification and NMR analysis of the membrane protein, without any need for detergent exchange. Furthermore, the same batch of protein can be studied in both micelles and bicelles, using liquid-state and solid-state NMR, respectively. The applicability of the DMPC/DPC bicelles is demonstrated here with the (15)N-labeled transmembrane protein TatA.  相似文献   

15.
Mixed dispersions of egg phosphatidylcholine (PC) and the bile salt sodium deoxycholate (DOC) were prepared by various methods, and their turbidities and proton magnetic resonance spectra were studied as a function of time. The spectra of dispersions prepared by dissolving both components in a common organic solvent and replacing the organic solvent by water did not change with time, indicating that the mixed aggregates formed represent "a state of equilibrium". In the 1H NMR spectra of these mixed aggregates, only signals from small mixed micellar structures were narrow enough to be observed. The dependence of the NMR line widths on the molar ratio of DOC to PC (R) is interpreted in terms of a model for the PC--DOC mixed micelles, according to which PC is arranged as a curved bilayer, the curvature of which increases with increasing R. Upon mixing PC with aqueous solutions of DOC, we found that the mixed aggregates formed are slowly reorganized and ultimately reach the same state of equilibrium. This reorganization was found to be a pseudo-first-order process, the rate constant of which depends linearly upon the detergent concentration. This process involves saturation of the outer bilayers of the multilamellar PC by detergent, followed by transformation of these bilayers into mixed micelles. It is concluded that the solubilization occurs through consecutive "peeling off" of lecithin bilayers.  相似文献   

16.
This communication addresses the state of aggregation of lipid-detergent mixed dispersions. Analysis of recently published data suggest that for any given detergent-lipid mixture the most important factor in determining the type of aggregates (mixed vesicles or mixed micelles) and the size of the aggregate is the detergent to lipid molar ratio in these aggregates, herein denoted the effective ratio, Re. For mixed bilayers this effective ratio has been previously shown to be a function of the lipid and detergent concentrations and of an equilibrium partition coefficient, K, which describes the distribution of the detergent between the bilayers and the aqueous phase. We show that, similar to mixed bilayers, the size of mixed micelles is also a function of the effective ratio, but for these dispersions the distribution of detergent between the mixed micelles and the aqueous medium obeys a much higher partition coefficient. In practical terms, the detergent concentration in the mixed micelles is equal to the difference between the total detergent concentration and the critical micelle concentration (cmc). Thus, the effective ratio is equal to this difference divided by the lipid concentration. Transformation of mixed bilayers to mixed micelles, commonly denoted solubilization, occurs when the surfactant to lipid effective ratio reaches a critical value. Experimental evaluation of this critical ratio can be based on the linear dependence of detergent concentration, required for solubilization, on the lipid concentration. According to the ‘equilibrium partition model’, the dependence of the ‘solubilizing detergent concentration’ on the lipid concentration intersects with the lipid axis at −1/K, while the slope of this dependence is the critical effective ratio. On the other hand, assuming that when solubilization occurs the detergent concentration in the aqueous phase is approximately equal to the critical micelle concentration, implies that the above dependence intersects with the detergent axis at the critical micelle concentration, while its slope, again, is equal to the critical effective ratio. Analysis of existing data suggests that within experimental error both these distinctively different approaches are valid, indicating that the critical effective ratio at which solubilization occurs is approximately equal to the product of the critical micelle concentration and the distribution coefficient K. Since the nature of detergent affects K and the critical micelle concentration in opposite directions, the critical (‘solubilizing’) effective ratio depends upon the nature of detergent less than any of these two factors.  相似文献   

17.
1. The intermediate structures formed during dialysis of mixtures of cholate, phospholipid and cytochrome c oxidase were analysed by gel chromatography and electron microscopy. Measurements of trapped phosphate and the degree of respiratory control were used to assess the integrity of the vesicular structures formed. Protein orientation in the bilayer was monitored by the accessibility of cytochrome c to cytochrome c oxidase. 2. The results indicate that proteoliposome formation by the detergent-dialysis procedure takes place in three distinct stages. In the first stage, cholate/phospholipid and cholate/phospholipid/protein micelles coexist in solution and grow in size as the detergent is slowly removed. At a detergent/phospholipid molar ratio of about 0.2, micelle fusion results in the formation of large bilayer aggregates permeable to both phosphate and cytochrome c. It is at this stage that cytochrome c oxidase is incorporated into the bilayer. In the final stage of dialysis the bilayer sheets fragment into small unilamellar vesicles. 3. The orientation of membrane protein in the final vesicles appears to be determined by the effect of protein conformation on the initial curvature of the bilayer sheets during the fragmentation process.  相似文献   

18.
The structure and flexibility of the outer membrane protein X (OmpX) in a water-detergent solution and in pure water are investigated by molecular dynamics simulations on the 100-ns timescale and compared with NMR data. The simulations allow for an unbiased determination of the structure of detergent micelles and the protein-detergent mixed micelle. The short-chain lipid dihexanoylphosphatidylcholine, as a detergent, aggregates into pure micelles of approximately 18 molecules, or alternatively, it binds to the protein surface. The detergent binds in the form of a monolayer ring around the hydrophobic beta-barrel of OmpX rather than in a micellar-like oblate; approximately 40 dihexanoylphosphatidylcholine lipids are sufficient for an effective suppression of water from the surface of the beta-barrel region. The phospholipids bind also on the extracellular, protruding beta-sheet. Here, polar interactions between charged amino acids and phosphatidylcholine headgroups act as condensation seed for detergent micelle formation. The polar protein surface remains accessible to water molecules. In total, approximately 90-100 detergent molecules associate within the protein-detergent mixed micelle, in agreement with experimental estimates. The simulation results indicate that OmpX is not a water pore and support the proposed role of the protruding beta-sheet as a "fishing rod".  相似文献   

19.
In a recent study we showed that the surfactant 1,2-distearoyl-sn-glycero-3-phosphatidylethanolamine-N-[methoxy(polyethylene glycol)-2000 (DSPE-PEG(2000)) induce mixed micelles of either threadlike or discoidal shape when mixed with different types of lipids. In certain lipid systems the discoidal micelles adapt sizes large enough to be characterized as bilayer discs. The discs hold great potential for use in various biotechnical applications and may e.g. be used as model membranes in drug/membrane partition studies. Depending on the application, discs with certain characteristics, such as a particular size or size homogeneity, may be required. These factors can in our experience be influenced by the preparation method. In this study we systematically investigated three different PEG-lipid/lipid mixtures prepared by four commonly used preparation techniques. The techniques used were simple hydration, freeze-thawing, sonication and detergent depletion, and the aggregate size and structure was analyzed by cryo transmission electron microscopy (cryo-TEM) and dynamic light scattering (DLS). Our results show that the type and size of the micellar structure found, as well as the structure homogeneity of the preparation, can be modified by the choice of preparation path.  相似文献   

20.
We have used cryo-transmission electron microscopy (cryo-TEM) for inspection of aggregates formed by dimyristoylphosphatidylcholine (DMPC) and dihexanoylphosphatidylcholine (DHPC) in aqueous solution at total phospholipid concentrations cL≤5% and DMPC/DHPC ratios q≤4.0. In combination with ocular inspections, we are able to sketch out this part of phase-diagram at T=14-80 °C. The temperature and the ratio q are the dominating variables for changing sample morphology, while cL to a lesser extent affects the aggregate structure. At q=0.5, small, possibly disc-shaped, aggregates with a diameter of ∼6 nm are formed. At higher q-values, distorted discoidal micelles that tend to short cylindrical micelles are observed. The more well-shaped discs have a diameter of around 20 nm. Upon increasing q or the temperature, long slightly flattened cylindrical micelles that eventually branch are formed. A holey lamellar phase finally appears upon further elevation of q or temperature. The implications for biological NMR work are two. First, discs prepared as membrane mimics are frequently much smaller than predicted by current “ideal bicelle” models. Second, the q≈3 preparations used for aligning water-soluble biomolecules in magnetic fields consist of perforated lamellar sheets. Furthermore, the discovered sequence of morphological transitions may have important implications for the development of bicelle-based membrane protein crystallization methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号