首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

Metastasis is the primary cause of mortality in cancer patients. Therefore, elucidating the genetics and epigenetics of metastatic tumor cells and the mechanisms by which tumor cells acquire metastatic properties constitute significant challenges in cancer research.

Objective

To summarize the current understandings of the specific genotype and phenotype of the metastatic tumor cells.

Method and Result

In-depth genetic analysis of tumor cells, especially with advances in the next-generation sequencing, have revealed insights of the genotypes of metastatic tumor cells. Also, studies have shown that the cancer stem cell (CSC) and epithelial to mesenchymal transition (EMT) phenotypes are associated with the metastatic cascade.

Conclusion

In this review, we will discuss recent advances in the field by focusing on the genomic instability and phenotypic dynamics of metastatic tumor cells.
  相似文献   

2.

Objective

To investigate the roles of miR-145 in lung adenocarcinoma (LAC) and to clarify the regulation of N-cadherin by miR-145.

Results

In 57 paired clinical LAC tissues, diminished miR-145 was significantly correlated with the lymph node metastasis and was negatively correlated with N-cadherin mRNA level expression. Wound healing and transwell assays revealed a reduced capability of tumor metastasis induced by miR-145 in LAC. miR-145 negatively regulated the invasion of cell lines through targeting N-cadherin by directly binding to its 3′-untranslated region. Silencing of N-cadherin inhibited invasion and migration of LAC cell lines similar to miR-145 overexpression.

Conclusions

MiR-145 could inhibit invasion and migration of lung adenocarcinoma cell lines by directly targeting N-cadherin.
  相似文献   

3.

Objective

Methionine is a valid target for the treatment of cancer and to achieve in vivo imaging and early diagnosis of tumors, we have synthesized near-infrared (NIR) fluorochrome IR-822-labeled methionine (IR-822-Met).

Results

NIR fluorescent dye IR-822 was conjugated with methionine through its amide bond. It had low toxicity to normal cell/tissues. In vitro and in vivo studies demonstrated its high targeting capability to tumors. The results support the potential of using ligand-modified methionine probe for tumor diagnosis and targeted therapy. The probe also exhibited good photostability, and excellent cell membrane permeability.

Conclusion

IR-822-Met is a promising imaging agent for tumor diagnosis, especially in their early stage.
  相似文献   

4.

Background

The heterogeneity of response to treatment in patients with glioblastoma multiforme suggests that the optimal therapeutic approach incorporates an individualized assessment of expected lesion progression. In this work, we develop a novel computational model for the proliferation and necrosis of glioblastoma multiforme.

Methods

The model parameters are selected based on the magnetic resonance imaging features of each tumor, and the proposed technique accounts for intrinsic cell division, tumor cell migration along white matter tracts, as well as central tumor necrosis. As a validation of this approach, tumor growth is simulated in the brain of a healthy adult volunteer using parameters derived from the imaging of a patient with glioblastoma multiforme. A mutual information metric is calculated between the simulated tumor profile and observed tumor.

Results

The tumor progression profile generated by the proposed model is compared with those produced by existing models and with the actual observed tumor progression. Both qualitative and quantitative analyses show that the model introduced in this work replicates the observed progression of glioblastoma more accurately relative to prior techniques.

Conclusions

This image-driven model generates improved tumor progression profiles and may contribute to the development of more reliable prognostic estimates in patients with glioblastoma multiforme.
  相似文献   

5.

Introduction

Hypoxia commonly occurs in cancers and is highly related with the occurrence, development and metastasis of cancer. Treatment of triple negative breast cancer remains challenge. Knowledge about the metabolic status of triple negative breast cancer cell lines in hypoxia is valuable for the understanding of molecular mechanisms of this tumor subtype to develop effective therapeutics.

Objectives

Comprehensively characterize the metabolic profiles of triple negative breast cancer cell line MDA-MB-231 in normoxia and hypoxia and the pathways involved in metabolic changes in hypoxia.

Methods

Differences in metabolic profiles affected pathways of MDA-MB-231 cells in normoxia and hypoxia were characterized using GC–MS based untargeted and stable isotope assisted metabolomic techniques.

Results

Thirty-three metabolites were significantly changed in hypoxia and nine pathways were involved. Hypoxia increased glycolysis, inhibited TCA cycle, pentose phosphate pathway and pyruvate carboxylation, while increased glutaminolysis in MDA-MB-231 cells.

Conclusion

The current results provide metabolic differences of MDA-MB-231 cells in normoxia and hypoxia conditions as well as the involved metabolic pathways, demonstrating the power of combined use of untargeted and stable isotope-assisted metabolomic methods in comprehensive metabolomic analysis.
  相似文献   

6.

Background

Different cells and mediators in the tumor microenvironment play important roles in the progression of breast cancer. The aim of this study was to determine the composition of the microenvironment during tumor progression in order to discover new related biomarkers and potentials for targeted therapy.

Methods

In this study, breast cancer biopsies from four different stages, and control breast biopsies were collected. Then, the mRNA expression of several markers related to different CD4+ T cell subsets including regulatory T cells (Treg), T helper (Th) type 1, 2 and 17 were determined. In addition, we investigated the expression of two inflammatory cytokines (TNF-α and IL-6) and inflammatory mediators including FASL, IDO, SOCS1, VEGF, and CCR7.

Results

The results showed that the expression of Th1 and Th17 genes was decreased in tumor tissues compared to control tissues. In addition, we found that the gene expression related to these two cell subsets decreased during cancer progression. Moreover, the expression level of TNF-α increased with tumor progression.

Conclusion

We conclude that the expression of genes related to immune response and inflammation is different between tumor tissues and control tissues. In addition, this difference was perpetuated through the different stages of cancer.
  相似文献   

7.

Objectives

Copper oxide nanoparticles (CuO NPs) promoting anticancer activity may be due to the regulation of various classes of histone deacetylases (HDACs).

Results

Green-synthesized CuO NPs significantly arrested total HDAC level and also suppressed class I, II and IV HDACs mRNA expression in A549 cells. A549 cells treated with CuO NPs downregulated oncogenes and upregulated tumor suppressor protein expression. CuO NPs positively regulated both mitochondrial and death receptor-mediated apoptosis caspase cascade pathway in A549 cells.

Conclusion

Green-synthesized CuO NPs inhibited HDAC and therefore shown apoptosis mediated anticancer activity in A549 lung cancer cell line.
  相似文献   

8.

Background

In previous research, we found that cell secretion from the adult lamprey supraneural body tissues possesses cytocidal activity against tumor cells, but the protein with cytocidal activity was unidentified.

Methods

A novel lamprey immune protein (LIP) as defense molecule was first purified and identified in jawless vertebrates (cyclostomes) using hydroxyapatite column and Q Sepharose Fast Flow column. After LIP stimulation, morphological changes of tumor cells were analysed and measured whether in vivo or in vitro.

Results

LIP induces remarkable morphological changes in tumor cells, including cell blebbing, cytoskeletal alterations, mitochondrial fragmentation and endoplasmic reticulum vacuolation, and most of the cytoplasmic and organelle proteins are released following treatment with LIP. LIP evokes an elevation of intracellular calcium and inflammatory molecule levels. Our analysis of the cytotoxic mechanism suggests that LIP can upregulate the expression of caspase 1, RIPK1, RIP3 to trigger pyroptosis and necroptosis. To examine the effect of LIP in vivo, tumor xenograft experiments were performed, and the results indicated that LIP inhibits tumor growth without damage to mice. In addition, the cytotoxic action of LIP depended on the phosphatidylserine (PS) content of the cell membrane.

Conclusions

These observations suggest that LIP plays a crucial role in tumor cell survival and growth. The findings will also help to elucidate the mechanisms of host defense in lamprey.
  相似文献   

9.

Background

Secreting interstitial cell (Leydig cell) tumors are rare. In adults, the clinical picture and steroid levels are variable.

Case presentation

This paper presents a case of left testicular tumor, showing azoospermia with normal serum level of total testosterone, collapsed FSH and LH, and high delta4 androstenedione. Histopathological investigation revealed a Leydig cell tumor. TESE allowed spermatozoa extraction and freezing. Testicular histology found hypospermatogenesis and germ-cell aplasia with interstitial fibrosis. Surgical resection of the tumor resulted in normalization of gonadotropins and fall in serum delta4 androstenedione to subnormal levels in the postoperative period confirming that the tumor was secreting delta4 androstenedione. It was hypothesized that high delta4 androstenedione resulted in intra tumoral 17 β-HSD overtaken by delta4 androstenedione or that 17 β-HSD activity in the tumor was different from that of normal Leydig cells. Three months after surgery sperm analysis found a complete recovery of spermatogenesis. A spontaneous pregnancy occurred 3 months after surgery and a girl was born.

Conclusions

In this case, the diagnosis of testicular Leydig cell tumor secreting delta4 androstenedione was made in a context of azoospermia.
  相似文献   

10.

Objectives

To investigate the biological functions of microRNA-144-3p with respect to proliferation and apoptosis of human salivary adenoid carcinoma cell lines via mTOR.

Results

After transfection of microRNA-144-3p agomir, cell viability assays confirmed that the salivary adenoid carcinoma cell (SACC) proliferation was inhibited and apoptosis was induced. Dual luciferase reporter assay validated that the mammalian target of rapamycin (mTOR) was a direct target of miR-144-3p. Western blot, immunofluorescent analysis and a xenograft mouse model of adenoid cystic carcinoma indicated that miR-144-3p was a tumor suppressor and repressed mTOR expression and signaling in SACCs.

Conclusions

MicroRNA-144-3p inhibits proliferation and induces apoptosis of human salivary adenoid carcinoma cells by downregulating mTOR expression in vitro and in vivo.
  相似文献   

11.

Background

Cancer-associated fibroblasts (CAFs) are one of the most important components of tumor stroma and play a key role in modulating tumor growth. However, a mechanistic understanding of how CAFs communicate with tumor cells to promote their proliferation and invasion is far from complete. A major reason for this is that most current techniques and model systems do not capture the complexity of signal transduction that occurs between CAFs and tumor cells.

Methods

In this study, we employed a stable isotope labeling with amino acids in cell culture (SILAC) strategy to label invasive breast cancer cells, MDA-MB-231, and breast cancer patient-derived CAF cells. We used an antibody-based phosphotyrosine peptide enrichment method coupled to LC–MS/MS to catalog and quantify tyrosine phosphorylation-mediated signal transduction events induced by the bidirectional communication between patient-derived CAFs and tumor cells.

Results

We discovered that distinct signaling events were activated in CAFs and in tumor epithelial cells during the crosstalk between these two cell types. We identified reciprocal activation of a number of receptor tyrosine kinases including EGFR, FGFR1 and EPHA2 induced by this bidirectional communication.

Conclusions

Our study not only provides insights into the mechanisms of the interaction between CAFs and tumor cells, but the model system described here could be used as a prototype for analysis of intercellular communication in many different tumor microenvironments.
  相似文献   

12.

Background

Malignant ovarian germ cell tumor is a rare type of disease, which generally has a good prognosis due to the high chemosensitivity of this type of tumor.Fertility preservation is an important issue because malignant ovarian germ cell tumor commonly affects young women. Although conservation is the standard for early stage, it becomes more debatable as the disease progresses to more advanced stages.Aim: Report the case of a patient with an International Federation of Gynecology and Obstetrics Stage IIIc malignant ovarian germ cell tumor, who had conservative surgery and chemotherapy with a good fertility outcome.

Case presentation

A 23-year-old North African woman with a left malignant ovarian germ cell tumor stage IIIc was treated by left adnexectomy and omentectomy followed by chemotherapy. A 15-year follow-up showed no signs of relapse, and she completed three full-term natural pregnancies.

Conclusions

Malignant ovarian germ cell tumor is a rare ovarian tumor with a good prognosis. It is usually associated with a good fertility outcome in early stages. However, due to the rarity of the disease in advanced stages, the fertility outcome for this group of patients is not clear. This lack of data surrounding advanced stages points to the need for a meta-analysis of all published cases.
  相似文献   

13.

Introduction

Collecting feces is easy. It offers direct outcome to endogenous and microbial metabolites.

Objectives

In a context of lack of consensus about fecal sample preparation, especially in animal species, we developed a robust protocol allowing untargeted LC-HRMS fingerprinting.

Methods

The conditions of extraction (quantity, preparation, solvents, dilutions) were investigated in bovine feces.

Results

A rapid and simple protocol involving feces extraction with methanol (1/3, M/V) followed by centrifugation and a step filtration (10 kDa) was developed.

Conclusion

The workflow generated repeatable and informative fingerprints for robust metabolome characterization.
  相似文献   

14.

Background

Esophageal squamous cell carcinoma (ESCC) is the most common histological type of esophageal cancer, with a poor prognosis. Deregulation of WNT and NOTCH signaling pathways is important in ESCC progression, which can be due to either malfunction of their components or crosstalk with other pathways. Therefore, identification of new crosstalk between such pathways may be effective to introduce new strategies for targeted therapy of cancer. A correlation study was performed to assess the probable interaction between growth factor receptors and WNT/NOTCH pathways via the epidermal growth factor receptor (EGFR) and Musashi1 (MSI1), respectively.

Methods

Levels of MSI1/EGFR mRNA expression in tumor tissues from 48 ESCC patients were compared to their corresponding normal tissues using real-time polymerase chain reaction.

Results

There was a significant correlation between EGFR and MSI1 expression (p?=?0.05). Moreover, there was a significant correlation between EGFR/MSI1 expression and grade of tumor differentiation (p?=?0.02).

Conclusion

This study confirms a direct correlation between MSI1 and EGFR and may support the important role of MSI1 in activation of EGFR through NOTCH/WNT pathways in ESCC.
  相似文献   

15.

Background

PTEN is well known to function as a tumor suppressor that antagonizes oncogenic signaling and maintains genomic stability. The PTEN gene is frequently deleted or mutated in human cancers and the wide cancer spectrum associated with PTEN deficiency has been recapitulated in a variety of mouse models of Pten deletion or mutation. Pten mutations are highly penetrant in causing various types of spontaneous tumors that often exhibit resistance to anticancer therapies including immunotherapy. Recent studies demonstrate that PTEN also regulates immune functionality.

Objective

To understand the multifaceted functions of PTEN as both a tumor suppressor and an immune regulator.

Methods

This review will summarize the emerging knowledge of PTEN function in cancer immunoediting. In addition, the mechanisms underlying functional integration of various PTEN pathways in regulating cancer evolution and tumor immunity will be highlighted.

Results

Recent preclinical and clinical studies revealed the essential role of PTEN in maintaining immune homeostasis, which significantly expands the repertoire of PTEN functions. Mechanistically, aberrant PTEN signaling alters the interplay between the immune system and tumors, leading to immunosuppression and tumor escape.

Conclusion

Rational design of personalized anti-cancer treatment requires mechanistic understanding of diverse PTEN signaling pathways in modulation of the crosstalk between tumor and immune cells.
  相似文献   

16.

Objective

To promote targeting specificity of anti-CD47 agents, we have constructed a novel bispecific antibody fusion protein against EGFR and CD47, which may minimize the “off-target” effects caused by CD47 expression on red blood cells.

Results

The novel bispecific antibody fusion protein, denoted as Bi-SP could simultaneously bind to EGFR and CD47 and exhibited potent phagocytosis-stimulation effects in vitro. Bi-SP treatment with a low dose more effectively inhibited tumor growth than either EGFR-targeting antibody, Pan or the SIRPα variant-Fc (SIRPαV-Fc) in the A431 xenograft tumor model. In addition, the treatment with Bi-SP produced less red blood cell (RBC) losses than the SIRPαV-Fc treatment, suggesting its potential use for minimizing RBC toxicity in therapy.

Conclusions

Bi-SP with improved therapeutic index has the potential to treat CD47+ and EGFR+ cancers in clinics.
  相似文献   

17.

Objective

To measure clusterin expression in pancreatic cancer tissues and cell lines and to evaluate whether clusterin confers resistance to gmcitabine in pancreatic cancer cells.

Methods

Immunohistochemistry for clusterin was performed on 50 primary pancreatic cancer tissues and 25 matched backgrounds, and clusterin expression in 5 pancreatic cancer cell lines was quantified by Western blot and PT-PCR. The correlation between clusterin expression level and gmcitabine IC50 in pancreatic cancer cell lines was evaluated. The effect of an antisense oligonucleotide (ASO) against clusterin(OGX-011) on gmcitabine resistance was evaluated by MTT assays. Xenograft model was used to demonstrate tumor growth.

Results

Pancreatic cancer tissues expressed significantly higher levels of clusterin than did normal pancreatic tissues (P < 0.01). Clusterin expression levels were correlated with gmcitabine resistance in pancreatic cancer cell lines, and OGX-011 significantly decreased BxPc-3 cells resistance to gmcitabine (P < 0.01). In vivo systemic administration of AS clusterin and gmcitabine significantly decreased the s.c. BxPC-3 tumor volume compared with mismatch control ODN plus gmcitabine.

Conclusion

Our finding that clusterin expression was significantly higher in pancreatic cancer than in normal pancreatic tissues suggests that clusterin may confer gmcitabine resistance in pancreatic cancer cells.
  相似文献   

18.

Background

Sinonasal renal cell-like carcinoma (SRCLC) is an extremely rare low malignant tumor arising in the sinonasal tract, with histological mimicry of renal cell carcinoma.

Case presentation

We present a case of sinonasal renal cell-like carcinoma in a 63-year-old male patient. Computer tomography(CT) scanning revealed a soft tissue mass at the left nasal cavity and choana. Histologically, the predominant tumor architecture was follicular to glandular with intervening fibrous septa. The tumor cells were uniform cuboidal to polyhedral with abundant clear or eosinophilic cytoplasm. Immunohistochemically, the tumor cells were strongly positive for CK7, EMA, vimentin, SOX10, S-100, and focally positive for CA9. During 6 months of follow-up, there was no clinical or radiological evidence of recurrence or metastasis.

Conclusion

SRCLC has microscopic features which overlap with tumors that contain clear cells. Thus, several other tumors must be considered in the differential diagnosis of a tumor of the sinonasal region with clear cells, especially metastatic renal clear cell carcinoma. SRCLC is an indolent tumor and none of the reported SRCLC patients had metastatic disease.
  相似文献   

19.

Background

Centrifugation is an indispensable procedure for plasma sample preparation, but applied conditions can vary between labs.

Aim

Determine whether routinely used plasma centrifugation protocols (1500×g 10 min; 3000×g 5 min) influence non-targeted metabolomic analyses.

Methods

Nuclear magnetic resonance spectroscopy (NMR) and High Resolution Mass Spectrometry (HRMS) data were evaluated with sparse partial least squares discriminant analyses and compared with cell count measurements.

Results

Besides significant differences in platelet count, we identified substantial alterations in NMR and HRMS data related to the different centrifugation protocols.

Conclusion

Already minor differences in plasma centrifugation can significantly influence metabolomic patterns and potentially bias metabolomics studies.
  相似文献   

20.

Background

Gliomas are commonly malignant tumors that arise in the human central nervous system and have a low overall five-year survival rate. Previous studies reported that several members of Rab GTPase family are involved in the development of glioma, and abnormal expression of Rab small GTPases is known to cause aberrant tumor cell behavior. In this study, we characterized the roles of Rab21 (Rab GTPase 21), a member of Rab GTPase family, in glioma cells.

Methods

The study involved downregulation of Rab21 in two glioma cell lines (T98G and U87) through transfection with specific-siRNA. Experiments using the MTT assay, cell cycle analysis, apoptosis assay, real-time PCR and western blot were performed to establish the expression levels of related genes.

Results

The results show that downregulation of Rab21 can significantly inhibit cell growth and remarkably induce cell apoptosis in T98G and U87 cell lines. Silencing Rab21 resulted in significantly increased expression of apoptosis-related proteins (caspase7, Bim and Bax) in glioma cells.

Conclusions

We inferred that Rab21 silencing can induce apoptosis and inhibit proliferation in human glioma cells, indicating that Rab21 might act as an oncogene and serve as a novel target for glioma therapy.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号