首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A probable mechanism of alteration of the isoenzyme composition of succinate dehydrogenase (SDH) due to differential expression of genes encoding subunit A was considered. The alteration of SDH activity during maize seed germination was investigated, and its maximal activity on day 4-5 of germination was found. The alteration of the sdh1-1 and sdh1-2 gene expression level during maize seed germination was evaluated using the quantitative polymerase chain reaction method. The presence of four forms of the studied enzymes, providing multiple SDH functions was found in maize inflorescence using electrophoresis in polyacrylamide gel.  相似文献   

3.
A potential mechanism of light regulation of the succinate dehydrogenase (SDH) expression in Arabidopsis thaliana leaves was studied. As was shown by dot-hybridization and polymerase chain reaction in real time (RT-PCR), the SDH mRNA level in wild-type Arabidopsis thaliana plants changed depending on light conditions. The level of SDH mRNA in darkness was higher than in the light. The analysis of Arabidopsis thaliana plants carrying the mutant genes of phytochromes A and B showed that phytochrome A was involved in the regulation of the SDH enzyme activity. The active form of phytochrome A suppressed the SDHI-2 gene expression, and that resulted in decreasing activity of SDH.  相似文献   

4.
Two repeated DNA sequences isolated from a partial genomic DNA library of Helianthus annuus, p HaS13 and p HaS211, were shown to represent portions of the int gene of a Ty3 /gypsy retroelement and of the RNase-Hgene of a Ty1 /copia retroelement, respectively. Southern blotting patterns obtained by hybridizing the two probes to BglII- or DraI-digested genomic DNA from different Helianthus species showed p HaS13 and p HaS211 were parts of dispersed repeats at least 8 and 7 kb in length, respectively, that were conserved in all species studied. Comparable hybridization patterns were obtained in all species with p HaS13. By contrast, the patterns obtained by hybridizing p HaS211 clearly differentiated annual species from perennials. The frequencies of p HaS13- and p HaS211-related sequences in different species were 4.3x10(4)-1.3x10(5) copies and 9.9x10(2)-8.1x10(3) copies per picogram of DNA, respectively. The frequency of p HaS13-related sequences varied widely within annual species, while no significant difference was observed among perennial species. Conversely, the frequency variation of p HaS211-related sequences was as large within annual species as within perennials. Sequences of both families were found to be dispersed along the length of all chromosomes in all species studied. However, Ty3 /gypsy-like sequences were localized preferentially at the centromeric regions, whereas Ty1/ copia-like sequences were less represented or absent around the centromeres and plentiful at the chromosome ends. These findings suggest that the two sequence families played a role in Helianthusgenome evolution and species divergence, evolved independently in the same genomic backgrounds and in annual or perennial species, and acquired different possible functions in the host genomes.  相似文献   

5.
6.
A somatic embryogenesis protocol for plant regeneration of northern red oak (Quercus rubra) was established from immature cotyledon explants. Embryogenic callus cultures were induced on Murashige and Skoog medium (MS) containing 3% sucrose, 0.24% Phytagel™, and various concentrations of 2,4-dichlorophenoxyacetic acid (2,4-d) after 4 weeks of culture in darkness. A higher response (66%) of embryogenic callus was induced on 0.45 μM 2,4-d. Higher numbers of globular- (31), heart- (17), torpedo- (12), and cotyledon-stage (8) embryos per explant were obtained by culturing embryogenic callus on MS with 3% sucrose, 0.24% Phytagel™, and devoid of growth regulators after 8 weeks culture in darkness. Continuous sub-culturing of embryogenic callus on medium containing 2,4-d yielded only compact callus. Desiccation of embryos for 3 days in darkness at 25 ± 2°C followed by cold storage at 4°C in darkness for 8 weeks favored embryo germination and development of plantlets. Cotyledon-stage embryos subjected to desiccation and chilling treatment cultured on MS with 3% sucrose, 0.24 Phytagel™, 0.44 μM 6-benzylaminopurine (BA), and 0.29 μM gibberellic acid germinated at a higher frequency (61%) than with 0.44 μM BA alone and control cultures. Germinated plantlets developed a shoot and root, were acclimatized successfully, and maintained in a growth room for plantlet development.  相似文献   

7.
8.
9.
Polyhydroxyalkanoates (PHAs) are hydroxyalkanoate polymers that are produced and accumulate by many kinds of bacteria. These polymers act as an energy store for bacteria. Polyhydroxybutyrate (PHB) is the most studied polymer in the PHA family. These polymers have awakened interest in the environmental and industrial research areas because they are biodegradable and have thermoplastic qualities, like polypropylene. In this work, we analyzed the PHB production in Bradyrhizobium sp., Rhizobium leguminosarum bv. phaseoli, and Rhizobium huautlense cultured with two different carbon sources. We did biochemical quantification of PHB production during the three phases of growth. Moreover, these samples were used for RNA extraction and phbC gene expression analysis via real-time PCR. The bacteria showed different manner of growth, PHB accumulation and phbC gene expression when different quantity and quality of carbon sources were used. These results showed that under different growth media conditions, the growth and metabolism of different species of bacteria were influenced. These differences reflect the increase or decrease in PHB accumulation.  相似文献   

10.
The gene encoding malate dehydrogenase (MDH) was overexpressed in a pflB ldhA double mutant of Escherichia coli, NZN111, for succinic acid production. With MDH overexpression, NZN111/pTrc99A-mdh restored the ability to metabolize glucose anaerobically and 0.55 g/L of succinic acid was produced from 3 g/L of glucose in shake flask culture. When supplied with 10 g/L of sodium bicarbonate (NaHCO3), the succinic acid yield of NZN111/pTrc99A-mdh reached 1.14 mol/mol glucose. Supply of NaHCO3 also improved succinic acid production by the control strain, NZN111/pTrc99A. Measurement of key enzymes activities revealed that phosphoenolpyruvate (PEP) carboxykinase and PEP carboxylase in addition to MDH played important roles. Two-stage culture of NZN111/pTrc99A-mdh was carried out in a 5-L bioreactor and 12.2 g/L of succinic acid were produced from 15.6 g/L of glucose. Fed-batch culture was also performed, and the succinic acid concentration reached 31.9 g/L with a yield of 1.19 mol/mol glucose.  相似文献   

11.
Jasinski S  Kaur H  Tattersall A  Tsiantis M 《Planta》2007,226(5):1255-1263
Leaves of seed plants can be described as simple, where the leaf blade is entire, or dissected, where the blade is divided into distinct leaflets. Both simple and dissected leaves are initiated at the flanks of a pluripotent structure termed the shoot apical meristem (SAM). In simple-leafed species, expression of class I KNOTTED1-like homeobox (KNOX) proteins is confined to the meristem while in many dissected leaf plants, including tomato, KNOX expression persists in leaf primordia. Elevation of KNOX expression in tomato leaves can result in increased leaflet number, indicating that tight regulation of KNOX expression may help define the degree of leaf dissection in this species. To test this hypothesis and understand the mechanisms controlling leaf dissection in tomato, we studied the clausa (clau) and tripinnate (tp) mutants both of which condition increased leaflet number phenotypes. We show that TRIPINNATE and CLAUSA act together, to restrict the expression level and domain of the KNOX genes Tkn1 and LeT6/Tkn2 during tomato leaf development. Because loss of CLAU or TP activity results in increased KNOX expression predominantly on the adaxial (upper) leaf domain, our observations indicate that CLAU and TP may participate in a domain-specific KNOX repressive system that delimits the ability of the tomato leaf to generate leaflets.  相似文献   

12.
Pathogenicity of Candida albicans is associated with its capacity switch from yeast-like to hyphal growth. The hyphal form is capable to penetrate the epithelial surfaces and to damage the host tissues. Therefore, many investigations have focused on mechanisms that control the morphological transitions of C. albicans. Recently, certain studies have showed that non-albicans Candida species can reduce the capacity of C. albicans to form biofilms and to develop candidiasis in animal models. Then, the objective of this study was to evaluate the effects of Candida krusei and Candida glabrata on the morphogenesis of C. albicans. Firstly, the capacity of reference and clinical strains of C. albicans in forming hyphae was tested in vitro. After that, the expression of HWP1 (hyphal wall protein 1) gene was determined by quantitative real-time PCR (polymerase chain reaction) assay. For both reference and clinical strains, a significant inhibition of the hyphae formation was observed when C. albicans was incubated in the presence of C. krusei or C. glabrata compared to the control group composed only by C. albicans. In addition, the culture mixed of C. albicans-C. krusei or C. albicans-C. glabrata reduced significantly the expression of HWP1 gene of C. albicans in relation to single cultures of this specie. In both filamentation and gene expression assays, C. krusei showed the higher inhibitory activity on the morphogenesis of C. albicans compared to C. glabrata. C. krusei and C. glabrata are capable to reduce the filamentation of C. albicans and consequently decrease the expression of the HWP1 gene.  相似文献   

13.
A genetic transformation system has been developed for callus cells of Crataegus aronia using Agrobacterium tumefaciens. Callus culture was established from internodal stem segments incubated on Murashige and Skoog (MS) medium supplemented with 5 mg l−1 Indole-3-butyric acid (IBA) and 0.5 mg l−1 6-benzyladenine (BA). In order to optimize the callus culture system with respect to callus growth and coloration, different types and concentrations of plant growth regulators were tested. Results indicated that the best average fresh weight of red colored callus was obtained on MS medium supplemented with 2 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.5 mg l−1 kinetin (Kin) (callus maintenance medium). Callus cells were co-cultivated with Agrobacterium harboring the binary plasmid pCAMBIA1302 carrying the mgfp5 and hygromycin phosphotransferase (hptII) genes conferring green fluorescent protein (GFP) activity and hygromycin resistance, respectively. Putative transgenic calli were obtained 4 weeks after incubation of the co-cultivated explants onto maintenance medium supplemented with 50 mg l−1 hygromycin. Molecular analysis confirmed the integration of the transgenes in transformed callus. To our knowledge, this is the first time to report an Agrobacterium-mediated transformation system in Crataegus aronia.  相似文献   

14.
15.
16.
17.
Ruan L  He W  He J  Sun M  Yu Z 《Antonie van Leeuwenhoek》2005,87(4):283-288
Previous work from our laboratory has shown that most of Bacillus thuringiensis strains possess the ability to produce melanin in the presence of l-tyrosine at elevated temperatures (42 °C). Furthermore, it was shown that the melanin produced by B. thuringiensis was synthesized by the action of tyrosinase, which catalyzed the conversion of l-tyrosine, via l-DOPA, to melanin. In this study, the tyrosinase-encoding gene (mel) from B. thuringiensis 4D11 was cloned using PCR techniques and expressed in Escherichia coli DH5 . A DNA fragment with 1179 bp which contained the intact mel gene in the recombinant plasmid pGEM1179 imparted the ability to synthesize melanin to the E. coli recipient strain. The nucleotide sequence of this DNA fragment revealed an open reading frame of 744 bp, encoding a protein of 248 amino acids. The novel mel gene from B.thuringiensis expressed in E. coli DH5 conferred UV protection on the recipient strain.  相似文献   

18.
19.
Xanthine dehydrogenase (EC1.1.1.204; XDH) plays an important role in purine catabolism that catalyzes the oxidative hydroxylation of hypoxanthine to xanthine and of xanthine to uric acid. Long attributed to its role in recycling and remobilization of nitrogen, recently, XDH is implicated in plant stress responses and acclimation, such research efforts, however, have thus far been restricted to Arabidopsis XDH-knockdown/knockout studies. This study, using an ectopic overexpression approach, is expected to provide novel findings. In this study, a XDH gene from Vitis vinifera, named VvXDH, was synthesized and overexpressed in Arabidopsis, the transgenic Arabidopsis showed enhanced salt tolerance. The VvXDH gene was investigated and the results demonstrated the explicit role of VvXDH in conferring salt stress by increasing allantoin accumulation and activating ABA signaling pathway, enhancing ROS scavenging in transgenic Arabidopsis. In addition, the water loss and chlorophyll content loss were reduced in transgenic plants; the transgenic plants showed higher proline level and lower MDA content than that of wild-type Arabidopsis, respectively. In conclusion, the VvXDH gene has the potential to be applied in increasing allantoin accumulation and enhancing the tolerance to abiotic stresses in Arabidopsis and other plants.  相似文献   

20.
A revision of Penstemon sect. Saccanthera subsect. Serrulati includes a new species (P. salmonensis), a new variety (P. triphyllus var. infernalis), and the elevation of a subspecies to species (P. curtiflorus), bringing the total number of species to eight, which are keyed and described, complete with nomenclature and type citations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号