首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Pre-mRNAs associate in the nucleus with specific RNA-binding proteins to form heterogeneous nuclear ribonucleoprotein (hnRNP) complexes. The hnRNP proteins participate directly or indirectly in the processing of pre-mRNAs into mature mRNAs. Recent studies have shown that some hnRNP proteins shuttle continuously between the nucleus and the cytoplasm. The export of shuttling hnRNP proteins from the nucleus is mediated by specific nuclear export sequences (NESs) within the proteins. In addition, shuttling hnRNP proteins appear to remain bound to exported mRNAs in transit through nuclear pores. As discussed in this review, the picture that is emerging is that nuclear export of mRNAs is mediated by the export of NES-containing hnRNP proteins to which they are bound.  相似文献   

3.
4.
Precursor mRNA is complexed with proteins in the cell nucleus to form heterogeneous nuclear ribonucleoprotein (hnRNP), and these hnRNPs are found associated in vivo with small nuclear RNPs (snRNPs) for the processing of pre-mRNA. In order to better characterize the ATP-independent initial association of U1 snRNP with hnRNP, an important early event in assembly of the spliceosome complex, we have determined some of the components essential to an in vitro reassociation of U1 snRNP with hnRNP. U1 snRNP reassociated in vitro with 40S hnRNP particles from HeLa cells and, similar to the in vivo hnRNP/U1 snRNP association, the in vitro interaction was sensitive to high salt concentrations. U1 snRNP also associated with in vitro reconstituted hnRNP in which bacteriophage MS2 RNA, which lacks introns, was used as the RNA component. Purified snRNA alone would not associate with the MS2 RNA-reconstituted hnRNP, however, intact U1 snRNP did interact with protein-free MS2 RNA. This indicates that the U1 snRNP proteins are required for the hnRNP/U1 snRNP association, but hnRNP proteins are not. Thus, the initial, ATP-independent association of U1 snRNP with hnRNP seems to be mediated by U1 snRNP protein(s) associating with hnRNA without requiring a splice-site sequence. This complex may then be further stabilized by intron-specific interactions and hnRNP proteins, as well as by other snRNPs.  相似文献   

5.
6.
SR proteins function in coupling RNAP II transcription to pre-mRNA splicing   总被引:2,自引:0,他引:2  
Das R  Yu J  Zhang Z  Gygi MP  Krainer AR  Gygi SP  Reed R 《Molecular cell》2007,26(6):867-881
  相似文献   

7.
To better understand the role(s) of hnRNP proteins in the process of mRNA formation, we have identified and characterized the major nuclear proteins that interact with hnRNAs in Drosophila melanogaster. cDNA clones of several D. melanogaster hnRNP proteins have been isolated and sequenced, and the genes encoding these proteins have been mapped cytologically on polytene chromosomes. These include the hnRNP proteins hrp36, hrp40, and hrp48, which together account for the major proteins of hnRNP complexes in D. melanogaster (Matunis et al., 1992, accompanying paper). All of the proteins described here contain two amino-terminal RNP consensus sequence RNA-binding domains and a carboxyl-terminal glycine-rich domain. We refer to this configuration, which is also found in the hnRNP A/B proteins of vertebrates, as 2 x RBD-Gly. The sequences of the D. melanogaster hnRNP proteins help define both highly conserved and variable amino acids within each RBD and support the suggestion that each RBD in multiple RBD-containing proteins has been conserved independently and has a different function. Although 2 x RBD-Gly proteins from evolutionarily distant organisms are conserved in their general structure, we find a surprising diversity among the members of this family of proteins. A mAb to the hrp40 proteins crossreacts with the human A/B and G hnRNP proteins and detects immunologically related proteins in divergent organisms from yeast to man. These data establish 2 x RBD-Gly as a prevalent hnRNP protein structure across eukaryotes. This information about the composition of hnRNP complexes and about the structure of hnRNA-binding proteins will facilitate studies of the functions of these proteins.  相似文献   

8.
9.
10.
Nascent pre-mRNAs associate with hnRNP proteins in hnRNP complexes, the natural substrates for mRNA processing. Several lines of evidence indicate that hnRNP complexes undergo substantial remodeling during mRNA formation and export. Here we report the isolation of three distinct types of pre-mRNP and mRNP complexes from HeLa cells associated with hnRNP A1, a shuttling hnRNP protein. Based on their RNA and protein compositions, these complexes are likely to represent distinct stages in the nucleocytoplasmic shuttling pathway of hnRNP A1 with its bound RNAs. In the cytoplasm, A1 is associated with its nuclear import receptor (transportin), the cytoplasmic poly(A)-binding protein, and mRNA. In the nucleus, A1 is found in two distinct types of complexes that are differently associated with nuclear structures. One class contains pre-mRNA and mRNA and is identical to previously described hnRNP complexes. The other class behaves as freely diffusible nuclear mRNPs (nmRNPs) at late nuclear stages of maturation and possibly associated with nuclear mRNA export. These nmRNPs differ from hnRNPs in that while they contain shuttling hnRNP proteins, the mRNA export factor REF, and mRNA, they do not contain nonshuttling hnRNP proteins or pre-mRNA. Importantly, nmRNPs also contain proteins not found in hnRNP complexes. These include the alternatively spliced isoforms D01 and D02 of the hnRNP D proteins, the E0 isoform of the hnRNP E proteins, and LRP130, a previously reported protein with unknown function that appears to have a novel type of RNA-binding domain. The characteristics of these complexes indicate that they result from RNP remodeling associated with mRNA maturation and delineate specific changes in RNP protein composition during formation and transport of mRNA in vivo.  相似文献   

11.
12.
13.
14.
15.
The great majority of snRNP and hnRNP ribonucleoproteins have been shown to be confined to the nucleus except during periods of cell division. We have now determined the fine structure distribution of polypeptides associated with these RNP complexes during interphase and mitosis in mammalian tissue culture cells using immunoelectron microscopy. Many hnRNP antigens are found at the periphery of heterochromatin masses, known to be the sites of non-rRNP proteins initially surround areas of condensing chromatin and later become generally dispersed throughout the mitotic cell. The Sm protein antigens of snRNP complexes are found diffusely distributed in interphase nuclei as well as concentrated in fields of interchromatin granules (ICG). Proteins of snRNP complexes, unlike those of hnRNP, are associated with discernible cellular structures during mitosis. By prometaphase/metaphase, dense granular clusters are observed to contain a high concentration of snRNPs. These mitotic granule clusters (MGCs) are often in close proximity to chromosomal masses by late anaphase/telophase. The MGC structures are morphologically similar to interchromatin granule fields found in interphase nuclei. Furthermore, like interchromatin granules, they are sites of a high concentration of snRNP antigens and do not contain detectable hnRNP proteins or DNA.  相似文献   

16.
17.
18.
19.
20.
Heterogeneous nuclear ribonucleoprotein (hnRNP) complexes are major constituents of the spliceosome. They are composed of approximately 30 different proteins which can bind to nascent pre-mRNA. Among these, the hnRNP-A/B proteins form a subgroup of highly related proteins consisting of two adjacent RNA binding domains (RBD) within the N-terminal parts, whereas the C-terminal halves contain almost 50% glycine residues. These proteins, in particular A2/RA33, are targeted by autoantibodies from patients with rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and mixed connective tissue disease (MCTD). In SLE anti-hnRNP antibodies frequently occur together with antibodies to U1 small nuclear RNP (U1-snRNP) and Sm, other proteins of the spliceosome. Preliminary epitope mapping studies have revealed major antibody binding sites in the RNA binding regions for all three diseases. Nevertheless, there is some indication of disease specific epitope recognition. Studies in animal models have demonstrated anti-RA33/hnRNP-A/B antibodies in lupus-prone mouse strains.Thus, autoantibodies to the spliceosomal hnRNP-A/B proteins are a common feature of RA, SLE, and MCTD. However, these diseases differ in their reactivities to other spliceosomal proteins, especially anti-U1 snRNP and Sm. Therefore, anti-RA33/hnRNP-A/B autoantibodies are not only valuable diagnostic markers but may also allow additional insights into the pathogenesis of rheumatic autoimmune diseases.Abbreviations AS ankylosing spondylitis - hnRNP heterogeneous nuclear ribonucleoprotein - MCTD mixed connective tissue disease - PSA psoriatic arthropathy - RA rheumatoid arthritis - RBD RNA binding domain - SLE systemic lupus erythematosus - snRNP small nuclear ribonucleoprotein  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号