首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since the first successful cord blood transplant was performed in 1988 there has been a gradual increase in the use of cord blood for hemopoietic stem cell transplantation. Worldwide, over 8,000 unrelated cord blood transplants have been performed with the majority being for children with hemopoietic malignancies. Transplantation for adults has increased but is limited by the low number of nucleated cells and CD34(+) cells within a single cord blood collection. Cord blood hemopoietic stem cells are more primitive than their adult counterparts and have high proliferative potential. Cord blood ex vivo expansion is designed to improve transplant outcomes by increasing the number of hemopoietic stem cells with long term repopulating potential and their differentiated progeny. However, despite a large amount of research activity during the last decade, this aim has not been realized. Herein we discuss the rationale for this approach; culture methods for ex vivo expansion, ways to assess the functional capacity of ex vivo generated hemopoietic stem cells and clinical outcomes following transplantation with ex vivo expanded cord blood.  相似文献   

2.
诱导多能干细胞(i PS细胞)在小鼠和人上的成功获取,使干细胞领域的研究进入了一个崭新的时代。干细胞研究是再生医学的重要组成部分,研究干细胞的最终目的是应用干细胞治疗疾病,其在疾病模型建立、药物筛选、细胞移植等方面具有极大的应用潜力。i PSCs是由体细胞诱导分化而成的"多能细胞",具备和胚胎干细胞类似的功能,既解决了ESCs的伦理障碍,又为ESCs的获得提供了一条全新的途径,具有重要的理论和应用价值。i PS细胞不仅打破了道德理论的束缚,而且在再生医学、组织工程和药物发现及评价等方面具有积极的价值。神经系统遗传性疾病发病率居各系统遗传病之首,但其发病的分子机制仍不完全清楚,运用体细胞重编程技术建立的疾病特异性诱导多能干细胞模型将有助于揭示神经系统遗传性疾病的发病机理。近几年i PS细胞最新研究成果表明,利用疾病患者i PS细胞模型已逐渐应用于帕金森氏病、老年性痴呆症、脊髓侧索硬化症、脊髓肌肉萎缩症及舞蹈症等5种常见神经性退行性疾病发病机理的研究。本文主要对i PSc的发展历程,避免病毒基因干扰诱导i PS细胞进行的优化,以及干细胞尤其是i PS细胞移植治疗帕金森病等神经系统疾病的现状及应用前景进行系统阐述与论证。  相似文献   

3.
Peripheral blood stem cell transplantation (PBSCT) offers an alternative to autologous bone marrow transplants (A-BMT), especially in malignant diseases with bone marrow contamination. The presence of hemopoietic precursors in peripheral blood has been documented in several animal models and in humans. While many of these precursors might be committed cells with finite renewal capacity, ample evidence suggests that true pluripotent stem cells are circulating in a number sufficient to enable sustained trilineage engraftment after transplantation. Stem cell mobilization is markedly increased in the early recovery phase after intensive chemotherapy and can be promoted by the administration of various cytokines or polyanionic substances. These effects are used to optimize stem cell harvesting by leukapheresis. Clinical trials of PBSCT have been performed in several hundred patients with various hematological and nonhematological malignancies. Recovery was generally more rapid than after A-BMT. However, the envisioned advantage concerning disease control has not been documented so far.  相似文献   

4.
Why clinicians should be interested in interleukin-3   总被引:2,自引:0,他引:2  
Interleukin-3 (IL-3), a product of activated immune cells has recently been cloned and introduced in preclinical and clinical trials. The biological target-cell spectrum of IL-3 is broad and includes progenitor cells of various hematopoietic lineages as well as multiple stages of stem cell differentiation. IL-3 also induces growth of most primitive hemopoietic progenitors (CFU-blast). Synergistic effects on growth of myeloid cells (i.e. macrophages, eosinophils and blood basophils) are obtained by sequential use of IL-3 and later-acting myelopoietic cytokines. In addition, IL-3 supports terminal maturation, prolongs survival and enhances the functional properties of myeloid cells through high-affinity binding sites. In vivo administration of IL-3 is followed by an increase in peripheral white blood cell counts as well as by an increase in the number of circulating progenitor cells giving rise to mature hemopoietic cells in response to more lineage-restricted growth factors. IL-3 also regulates growth of leukemic cells and primes them to become more sensitive to cell cycle specific cytotoxic drugs. IL-3 apparently represents a novel and unique hemopoietic growth factor. Its clinical use should offer new strategies in the treatment of cytopenia, leukemic disease and in stem cell transplantation.  相似文献   

5.
Acute and chronic graft-versus-host disease (GVHD) remain the major complications limiting the efficacy of allogeneic hemopoietic stem cell transplantation. Chronic GVHD can evolve from acute GVHD, or in some cases may overlap with acute GVHD, but how acute GVHD evolves to chronic GVHD is unknown. In this study, in a classical CD8+ T cell-dependent mouse model, we found that pathogenic donor CD4+ T cells developed from engrafted hemopoietic stem cells (HSCs) in C57BL/6SJL(B6/SJL, H-2(b)) mice suffering from acute GVHD after receiving donor CD8+ T cells and HSCs from C3H.SW mice (H-2(b)). These CD4+ T cells were activated, infiltrated into GVHD target tissues, and produced high levels of IFN-gamma. These in vivo-generated CD4+ T cells caused lesions characteristic of chronic GVHD when adoptively transferred into secondary allogeneic recipients and also caused GVHD when administered into autologous C3H.SW recipients. The in vivo generation of pathogenic CD4+ T cells from engrafted donor HSCs was thymopoiesis dependent. Keratinocyte growth factor treatment improved the reconstitution of recipient thymic dendritic cells in CD8+ T cell-repleted allogeneic hemopoietic stem cell transplantation and prevented the development of pathogenic donor CD4+ T cells. These results suggest that de novo-generated donor CD4+ T cells, arising during acute graft-versus-host reactions, are key contributors to the evolution from acute to chronic GVHD. Preventing or limiting thymic damage may directly ameliorate chronic GVHD.  相似文献   

6.
Developments in modern hematology.   总被引:1,自引:0,他引:1  
In the past 40 years our concepts about hemopoiesis have been changed dramatically. The results of bone marrow transplantation into lethally irradiated mice since the mid-fifties suggested the existence of a hemopoietic stem cell, which was initially identified as a spleen colony forming cell (CFU-S). Later experiments showed that the stem cell compartment is rather heterogeneous and that the most primitive stem cell, unlike the CFU-S, has the ability for long-term engraftment of an irradiated recipient. Daughter cells of such primitive quiescent stem cells lose their capacity for self-generation gradually with each mitosis and become more and more committed to a specific differentiation lineage. In vitro culture techniques in a serum-free semi-solid medium enabled the establishment and analysis of specific hemopoietic growth factors. Such factors, which are essential for the maintenance, proliferation and differentiation of progenitor cells and the functional activity of mature cells can now be produced with recombinant DNA techniques in pure form and large quantities. Hemopoiesis requires an appropriate microenvironment, consisting of various stromal cell types and an extracellular matrix. Intercellular contacts, adhesion of cells and growth factors to the matrix molecules seem essential in the regulating action of this hemopoietic microenvironment. In long-term bone marrow cultures the development of a stromal hemopoietic microenvironment can facilitate long-term maintenance of stem cells and hemopoietic differentiation. For bone marrow transplantation and infusion of hemopoietic growth factors many clinical indications are well established and our possibilities to interfere in the regulation of hemopoiesis are still growing.  相似文献   

7.
Following syngeneic or autotransplantation of hemopoietic tissue to a heterotopic location, bone formation has been observed to occur in the implanted tissue. the characteristics of the cell residing in hemopoietic tissue with bone forming potential (preosteoblast) are unknown. to define some properties of this cell, its response to X-irradiation and cyclophosphamide (CTX) was compared to the response of the hemopoietic stem cell. Adult, male rats were exposed to 900 R whole body X-irradiation or 220 mg/kg of intraperitoneal CTX. With either treatment the dose was sufficient to kill the animals by bone marrow failure. At intervals following the X-irradiation or CTX, hemopoietic tissue was examined for the presence of viable hemopoietic stem cells and preosteoblasts. Following X-irradiation, viable hemopoietic stem cells and preosteoblasts could not be detected. Following CTX these cells could be detected. It is suggested that in the rat CTX at 220 mg/kg, although causing death by bone marrow failure, does not reduce the population of the preosteoblast or hemopoietic stem cell as effectively as 900 R X-irradiation.  相似文献   

8.
Duchenne muscular dystrophy (DMD) is a devastating X-linked muscle disease characterized by progressive muscle weakness caused by the lack of dystrophin expression at the sarcolemma of muscle fibers. Although various approaches to delivering dystrophin in dystrophic muscle have been investigated extensively (e.g., cell and gene therapy), there is still no treatment that alleviates the muscle weakness in this common inherited muscle disease. The transplantation of myoblasts can enable transient delivery of dystrophin and improve the strength of injected dystrophic muscle, but this approach has various limitations, including immune rejection, poor cellular survival rates, and the limited spread of the injected cells. The isolation of muscle cells that can overcome these limitations would enhance the success of myoblast transplantation significantly. The efficiency of cell transplantation might be improved through the use of stem cells, which display unique features, including (1) self-renewal with production of progeny, (2) appearance early in development and persistence throughout life, and (3) long-term proliferation and multipotency. For these reasons, the development of muscle stem cells for use in transplantation or gene transfer (ex vivo approach) as treatment for patients with muscle disorders has become more attractive in the past few years. In this paper, we review the current knowledge regarding the isolation and characterization of stem cells isolated from skeletal muscle by highlighting their biological features and their relationship to satellite cells as well as other populations of stem cells derived from other tissues. We also describe the remarkable ability of stem cells to regenerate skeletal muscle and their potential use to alleviate the muscle weakness associated with DMD.  相似文献   

9.
Mesenchymal stem cells have shown regenerative properties in many tissues. This feature had originally been ascribed to their multipotency and thus their ability to differentiate into tissue-specific cells. However, many researchers consider the secretome of mesenchymal stem cells the most important player in the observed reparative effects of these cells. In this review, we specifically focus on the potential neuroregenerative effect of mesenchymal stem cells, summarize several possible mechanisms of neuroregeneration and list key factors mediating this effect. We illustrate examples of mesenchymal stem cell treatment in central nervous system disorders including stroke, neurodegenerative disorders (such as Parkinson's disease, Huntington's disease, multiple system atrophy and cerebellar ataxia) and inflammatory disease (such as multiple sclerosis). We specifically highlight studies where mesenchymal stem cells have entered clinical trials.  相似文献   

10.
BACKGROUND: Accumulating evidence has demonstrated that the NT2 embryonal carcinoma cell line and multipotential stem cells found in BM, mesenchymal stromal cells (MSC), have the ability to differentiate into a wide variety of cell types. This study was designed to explore the efficacy of these two human stem cell types as a graft source for the treatment of demyelinating disorders such as Krabbe's disease and multiple sclerosis (MS). METHODS: We examined the engraftment and in vivo differentiation of adult MSC and NT2 cells after transplantation into two demyelinating environments, the neonatal and postnatal twitcher mouse brain. RESULTS: Both types of xenografts led to anatomical integration, without tumor formation, and remained viable in the normal and twitcher mouse brain, showing differentiation into neurons, astrocytes and oligodendrocytes. DISCUSSION: This study represents a platform for further stem cell transplantation studies in the twitcher model and potentially has important therapeutic implications.  相似文献   

11.
In the last 30 years, allogeneic bone marrow transplantation has become the treatment of choice for many hematologic malignancies or inherited disorders and a number of changes have been registered in terms of long-term survival rate of transplanted patients as well as of available sources of hematopoietic stem cell (HSC). In parallel to the publication of better results in HSC transplantation, several recent discoveries have opened a scientific and ethical debate on the therapeutical potential of stem cells isolated from adult or embryonic tissues. One of the major discoveries in this field is the capacity of bone marrow-derived stem cells to treat a genetic liver disease in a mouse model, thus justifying the concept of transdifferentiation of adult stem cell and raising hopes on its possible therapeutical applications. We have tried here to summarise the advances in this field and to discuss the limits of these biological data.  相似文献   

12.
The adult central nervous system (CNS) contains a population of neural stem cells, yet unlike many other tissues, has a very limited capacity for self-repair. Promoting tissue repair and functional recovery following CNS injury or disease is a high priority as there are currently no effective treatments towards this end for the treatment of disorders such as stroke, traumatic brain injury and spinal cord injury. Recent advances in stem cell biology have offered a number of enticing potential avenues and we will discuss these possibilities along with the associated challenges as they pertain to stroke. We will consider exogenous therapies involving the transplantation of adult stem cells, and the mobilization of endogenous stem cells, as well as drug delivery and tissue engineering strategies that enhance and complement the cell based strategies.  相似文献   

13.
The loss of sight affects approximately 3.4 million people in the United States and is expected to increase in the upcoming years.1 Recently, gene therapy and stem cell transplantations have become key therapeutic tools for treating blindness resulting from retinal degenerative diseases. Several forms of autologous transplantation for age-related macular degeneration (AMD), such as iris pigment epithelial cell transplantation, have generated encouraging results, and human clinical trials have begun for other forms of gene and stem cell therapies.2 These include RPE65 gene replacement therapy in patients with Leber''s congenital amaurosis and an RPE cell transplantation using human embryonic stem (ES) cells in Stargardt''s disease.3-4 Now that there are gene therapy vectors and stem cells available for treating patients with retinal diseases, it is important to verify these potential therapies in animal models before applying them in human studies. The mouse has become an important scientific model for testing the therapeutic efficacy of gene therapy vectors and stem cell transplantation in the eye.5-8 In this video article, we present a technique to inject gene therapy vectors or stem cells into the subretinal space of the mouse eye while minimizing damage to the surrounding tissue.  相似文献   

14.
In utero stem cell transplantation,which promises treatment for a host of genetic disorders early in gestationbefore disease effect stems from Ray Owen’s seminalobservation that self-tolerance,is acquired duringgestation.To date,in utero transplantation(IUT)hasproved useful in characterizing the hematopoietic stemcell.Recent observations support its use as an in vivomethod to further understanding of self-tolerance.Preclinical development continues for its application asa treatment for childhood hematolymphoid diseases.In addition,IUT may offer therapeutic options in thetreatment of diabetes among other diseases.ThusIUT serves as a technique or system important in botha basic and applied format.This review summarizesthese findings.  相似文献   

15.
Adult stem cell therapy is being used extensively to rejuvenate damaged tissue. One important tissue source to obtain these cells is adipose, which contains cells called adipose-derived stem cells (ADSCs). These cells have a great therapeutic potential not only for their multipotent properties as well as for immunomodulatory effects on the immune system. Parkinson's disease is characterized as neurodegenerative disorder which etiology is undoubtedly related to neuroinflammation process. The properties of ADSCs can be used as a new tool in stem cells therapy to treat neurodegenerative disorders. However, their efficacies are still controversial. Some authors have reported neuroprotection effects, while others did not find differences or stem cells increased the damage. Our previous study showed that ADSCs can survive long time after transplantation, suggesting us some biological effects could need more time to be repaired. In this study, we assessed the neuroprotection 6 months after transplantation. Our results suggest ADSCs can protect the dopaminergic loss after lipopolysaccharide (LPS) injection both reducing the microglia activation and differentiating into dopaminergic cells.  相似文献   

16.
Killer Ig-like receptors (KIR) and HLA class I ligands were studied in unrelated hemopoietic stem cell transplantation for chronic myeloid leukemia (n = 108). Significantly improved overall survival was observed in patients, which were homozygous for HLA-C-encoded group 1 (C1) ligands compared with those with group 2 (C2) ligands. Favorable outcome in the former patient group was an early effect that was highly significant in patients transplanted with G-CSF-mobilized peripheral blood and patients with advanced disease stages. In contrast, presence of C1 ligands in the donor was associated with significantly reduced patient survival. The differential roles of the two HLA-C ligands are explained in the context of a biased NK cell reconstitution, which is generally dominated by the presence of C1- but absence of C2-specific NK cells. The clinical observations are corroborated by in vitro experiments showing that NK cells derived from hemopoietic progenitor cells generally acquire the C1-specific inhibitory KIR2DL2/3 at earlier time points and with higher frequency than the C2-specific KIR2DL1. These findings define a novel determinant for understanding the role of NK cells in clinical hemopoietic stem cell transplantation.  相似文献   

17.
目的:探讨细胞因子IL-21、SIL-2R在异基因造血干细胞移植(allo-HSCT)后急性移植物抗宿主病(aGVHD)发病机理中的作用。方法:观察20例Allo-HSCT患者aGVHD的发病情况,移植前后定期采集20例患者的外周血,采用双夹心酶联免疫吸附法(ELISA)检测其细胞因子IL-21、SIL-2R的浓度。结果:1.异基因造血干细胞移植后20例患者全部获得造血功能重建,中性粒细胞恢复到0.5×109/L及血小板恢复到20×109/L的中位时间分别为移植后13.5天及18天。2.发生aGVHD的患者,IL-21、SIL-2R浓度较移植前明显升高,IL-21、SIL-2R浓度在aGVHD阳性组明显高于aGVHD阴性组(P0.01)。结论:1.细胞因子IL-21、SIL-2R在aGVHD的发病中起重要的正向调节作用,检测异基因造血干细胞移植后患者血清的IL-21、SIL-2R水平有助于预测aGVHD的发生。2.IL-21、SIL-2R与感染无相关性。  相似文献   

18.
CD26/dipeptidylpeptidase IV (DPPIV) is a membrane-bound extracellular peptidase that cleaves dipeptides from the N terminus of polypeptide chains. The N terminus of chemokines is known to interact with the extracellular portion of chemokine receptors, and removal of these amino acids in many instances results in significant changes in functional activity. CD26/DPPIV has the ability to cleave the chemokine CXCL12/stromal cell-derived factor 1alpha (SDF-1alpha) at its position two proline. CXCL12/SDF-1alpha induces migration of hemopoietic stem and progenitor cells, and it is thought that CXCL12 plays a crucial role in homing/mobilization of these cells to/from the bone marrow. We found that CD26/DPPIV is expressed by a subpopulation of CD34(+) hemopoietic cells isolated from cord blood and that these cells have DPPIV activity. The involvement of CD26/DPPIV in CD34(+) hemopoietic stem and progenitor cell migration has not been previously examined. Functional studies show that the N-terminal-truncated CXCL12/SDF-1alpha lacks the ability to induce the migration of CD34(+) cord blood cells and acts to inhibit normal CXCL12/SDF-1alpha-induced migration. Finally, inhibiting the endogenous CD26/DPPIV activity on CD34(+) cells enhances the migratory response of these cells to CXCL12/SDF-1alpha. This process of CXCL12/SDF-1alpha cleavage by CD26/DPPIV on a subpopulation of CD34(+) cells may represent a novel regulatory mechanism in hemopoietic stem and progenitor cells for the migration, homing, and mobilization of these cells. Inhibition of the CD26/DPPIV peptidase activity may therefore represent an innovative approach to increasing homing and engraftment during cord blood transplantation.  相似文献   

19.
Deficient thymopoiesis and retarded recovery of newly developed CD4(+) T cells is one of the most important determinants of impaired immunocompetence after hemopoietic stem cell transplantation. Here we evaluated whether Fms-like tyrosine kinase 3 (Flt3) ligand (FL) alone or combined with IL-7 affects T cell recovery, thymopoiesis, and lymphoid progenitor expansion following bone marrow transplantation in immunodeficient mice. FL strongly accelerated and enhanced the recovery of peripheral T cells after transplantation of a low number of bone marrow cells. An additive effect on T cell recovery was not observed after coadministration of IL-7. Lineage(-)sca-1(+)c-kit(+)flt3(+) lymphoid progenitor cell numbers were significantly increased in bone marrow of FL-treated mice before recovery of thymopoiesis. Thymocyte differentiation was advanced to more mature stages after FL treatment. Improved T cell recovery resulted in better immunocompetence against a post-bone marrow transplantation murine CMV infection. Collectively, our data suggest that FL promotes T cell recovery by enhanced thymopoiesis and by expansion of lymphoid progenitors.  相似文献   

20.
Although stem cell-mediated treatment of ischemic diseases offers significant therapeutic promise, the limitation in the therapeutic efficacy of transplanted stem cells in vivo because of poor engraftment remains a challenge. Several strategies aimed at improving survival and engraftment of stem cells in the ischemic myocardium have been developed, such as cell transplantation in combination with growth factor delivery, genetic modification of stem cells, and/or cell therapy using scaffolds. To improve therapeutic efficacy, we investigated the effects of genistein on the engraftment of transplanted ECFCs in an acute myocardial ischemia model. Results: We found that genistein treatment enhanced ECFCs'' migration and proliferation, which was accompanied by increases in the expression of ILK, α-parvin, F-actin, and phospholylation of ERK 1/2 signaling. Transplantation of genistein-stimulates ECFCs (GS-ECFCs) into myocardial ischemic sites in vivo induced cellular proliferation and secretion of angiogenic cytokines at the ischemic sites and thereby enhanced neovascularization and decreased myocardial fibrosis as well as improved cardiac function, as shown by echocardiography. Taken together, these data suggest that pretreatment of ECFCs with genistein prior to transplantation can improve the regenerative potential in ischemic tissues, providing a novel strategy in adult stem cell therapy for ischemic diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号