首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
2.
The replacement of tryptophan 59 of ribonuclease T1 by a tyrosine residue does not change the stability of the protein. However, it leads to a strong acceleration of a major, proline-limited reaction that is unusually slow in the refolding of the wild-type protein. The distribution of fast- and slow-folding species and the kinetic mechanism of slow folding are not changed by the mutation. Trp-59 is in close contact to Pro-39 in native RNase T1 and probably also in an intermediate that forms rapidly during folding. We suggest that this specific interaction interferes with the trans----cis reisomerization of the Tyr-38-Pro-39 bond at the stage of a native-like folding intermediate. The steric hindrance is abolished either by changing Trp-59 to a less bulky residue, such as tyrosine, or, by a destabilization of folding intermediates at increased concentrations of denaturant. Under such conditions folding of the wild-type protein and of the W59Y variant no longer differ. These results provide strong support for the proposal that trans----cis isomerization of Pro-39 is responsible for the major, very slow refolding reaction of RNase T1. They also indicate that specific tertiary interactions in folding intermediates do exist, but do not necessarily facilitate folding. They can have adverse effects and decelerate rate-limiting steps by trapping partially folded structures.  相似文献   

3.
Folding of tendamistat is a rapid two-state process for the majority of the unfolded molecules. In fluorescence-monitored refolding kinetics about 8% of the unfolded molecules fold slowly (lambda=0.083s(-1)), limited by peptidyl-prolyl cis-trans isomerization. This is significantly less than expected from the presence of three trans prolyl-peptide bonds in the native state. In interrupted refolding experiments we detected an additional very slow folding reaction (lambda=0.008s(-1) at pH 2) with an amplitude of about 12%. This reaction is caused by the interconversion of a highly structured intermediate to native tendamistat. The intermediate has essentially native spectroscopic properties and about 2% of it remain populated in equilibrium after folding is complete. Catalysis by human cyclophilin 18 identifies this very slow reaction as a prolyl isomerization reaction. This shows that prolyl-isomerases are able to efficiently catalyze native state isomerization reactions, which allows them to influence biologically important regulatory conformational transitions. Folding kinetics of the proline variants P7A, P9A, P50A and P7A/P9A show that the very slow reaction is due to isomerization of the Glu6-Pro7 and Ala8-Pro9 peptide bonds, which are located in a region that makes strong backbone and side-chain interactions to both beta-sheets. In the P50A variant the very slow isomerization reaction is still present but native state heterogeneity is not observed any more, indicating a long-range destabilizing effect on the alternative native state relative to N. These results enable us to include all prolyl and non-prolyl peptide bond isomerization reactions in the folding mechanism of tendamistat and to characterize the kinetic mechanism and the energetics of a native-state prolyl isomerization reaction.  相似文献   

4.
Energetics of protein structure and folding   总被引:7,自引:0,他引:7  
The available experimental date on the kinetics of unfolding and refolding of small proteins are reviewed. Excluding slow transitions in the unfolded protein due to cistrans isomerization of peptide bonds, the rate-limiting transition state in both unfolding and refolding is concluded to be a high-energy distortion of the fully folded state. Partially folded intermediates are undoubtedly important for folding, but their formation is normally not rate limiting. A simple model is used to illustrate some of the aspects of protein-folding energetics.  相似文献   

5.
The propensity for peptide bonds to adopt the trans configuration in native and unfolded proteins, and the relatively slow rates of cis-trans isomerization reactions, imply that the formation of cis peptide bonds in native conformations are likely to limit folding reactions. The role of the conserved cis Gly95-Gly96 peptide bond in dihydrofolate reductase (DHFR) from Escherichia coli was examined by replacing Gly95 with alanine. The introduction of a beta carbon at position 95 is expected to increase the propensity for the trans isomer and perturb the isomerization reaction required to reach the native conformation. Although G95A DHFR is 1.30 kcal mol(-1) less stable than the wild-type protein, it adopts a well-folded structure that can be chemically denatured in a cooperative fashion. The mutant protein also retains the complex refolding kinetic pattern attributed to a parallel-channel mechanism in wild-type DHFR. The spectroscopic response upon refolding monitored by Trp fluorescence and the absence of a Trp/Trp exciton coupling apparent in the far-UV CD spectrum of the wild-type protein, however, indicated that the tertiary structure of the folded state for G95A DHFR is altered. The addition of methotrexate (MTX), a tight-binding inhibitor, to folded G95A DHFR restored the exciton coupling and the fluorescence properties through five slow kinetic events whose relaxation times are independent of the ligand and the denaturant concentrations. The results were interpreted to mean that MTX-binding drives the formation of the cis isomer of the peptide bond between Ala95 and Gly96 in five compact and stable but not wild-type-like conformations that contain the trans isomer. Folding studies in the presence of MTX for both wild-type and G95A DHFR support the notion that the cis peptide bond between Gly95 and Gly96 in the wild-type protein forms during four parallel rate-limiting steps, which are primarily controlled by folding reactions, and lead directly to a set of native, or native-like, conformers. The isomerization of the cis peptide bond is not a source of the parallel channels that characterize the complex folding mechanism for DHFR.  相似文献   

6.
A kinetic folding mechanism for the alpha subunit of tryptophan synthase (alphaTS) from Escherichia coli, involving four parallel channels with multiple native, intermediate and unfolded forms, has recently been proposed. The hypothesis that cis/trans isomerization of several Xaa-Pro peptide bonds is the source of the multiple folding channels was tested by measuring the sensitivity of the three rate-limiting phases (tau(1), tau(2), tau(3)) to catalysis by cyclophilin, a peptidyl-prolyl isomerase. Although the absence of catalysis for the tau(1) (fast) phase leaves its assignment ambiguous, our previous mutational analysis demonstrated its connection to the unique cis peptide bond preceding proline 28. The acceleration of the tau(2) (medium) and tau(3) (slow) refolding phases by cyclophilin demonstrated that cis/trans prolyl isomerization is also the source of these phases. A collection of proline mutants, which covered all of the remaining 18 trans proline residues of alphaTS, was constructed to obtain specific assignments for these phases. Almost all of the mutant proteins retained the complex equilibrium and kinetic folding properties of wild-type alphaTS; only the P217A, P217G and P261A mutations caused significant changes in the equilibrium free energy surface. Both the P78A and P96A mutations selectively eliminated the tau(1) folding phase, while the P217M and P261A mutations eliminated the tau(2) and tau(3) folding phases, respectively. The redundant assignment of the tau(1) phase to Pro28, Pro78 and Pro96 may reflect their mutual interactions in non-random structure in the unfolded state. The non-native cis isomers for Pro217 and Pro261 may destabilize an autonomous C-terminal folding unit, thereby giving rise to kinetically distinct unfolded forms. The nature of the preceding amino acid, the solvent exposure, or the participation in specific elements of secondary structure in the native state, in general, are not determinative of the proline residues whose isomerization reactions can limit folding.  相似文献   

7.
Studies on the folding kinetics of the Notch ankyrin domain have demonstrated that the major refolding phase is slow, the minor refolding phase is limited by the isomerization of prolyl peptide bonds, and that unfolding is multiexponential. Here, we explore the relationship between prolyl isomerization and folding heterogeneity using a combination of experiment and simulation. Proline residues were replaced with alanine, both singly and in various combinations. These destabilizing substitutions combine to eliminate the minor refolding phase, although unfolding heterogeneity persists even when all seven proline residues are replaced. To test whether prolyl isomerization influences the major refolding phase, we modeled folding and prolyl isomerization as a system of sequential reactions. Simulations that use rate constants of the major folding phase of the Notch ankyrin domain to represent intrinsic folding indicate that even with seven prolyl isomerization reactions, only two significant phases should be observed, and that the fast observed phase provides a good approximation of the intrinsic folding in the absence of prolyl isomerization. These results indicate that the major refolding phase of the Notch ankyrin domain reflects an intrinsically slow folding transition, rather than coupling of fast folding events with slow prolyl isomerization steps. This is consistent with the observation that the single observed refolding phase of a construct in which all proline residues are replaced remains slow. Finally, the simulation fails to produce a second unfolding phase at high urea concentrations, indicating that prolyl isomerization does not play a role in the three-state mechanism that leads to this heterogeneity.  相似文献   

8.
Escherichia coli cyclophilin A, a 164 residue globular protein, shows fast and slow phases of refolding kinetics from the urea-induced unfolded state at pH 7.0. Given that the slow phases are independent of the denaturant concentration and may be rate-limited by cis/trans isomerizations of prolyl peptide bonds, the fast phase represents the true folding reaction. The extrapolation of the fast-phase rate constant to 0 M urea indicates that the folding reaction of cyclophilin A is extraordinarily fast and has about 700 s(-1) of the rate constant. Interrupted refolding experiments showed that the protein molecules formed in the fast phase had already been fully folded to the native state. This finding overthrows the accepted view that the fast folding is observed only in small proteins of fewer than 100 amino acid residues. Examination of the X-ray structure of cyclophilin A has shown that this protein has only one unique hydrophobic core (phenylalanine cluster) formed by evolutionarily conserved phenylalanine residues, and suggests that this architecture of the molecule may be responsible for the fast folding behavior.  相似文献   

9.
Eclosion hormone is an insect neuropeptide that consists of 62 amino acid residues including three disulfide bonds. We have previously reported its hypothetical 3D structure consisting mainly of three alpha-helices. In this paper, we report the effects of chaperone proteins on the refolding of denatured eclosion hormone in a redox buffer containing reduced and oxidized glutathione. Urea-denatured eclosion hormone was spontaneously reactivated within 1 min with a yield of more than 90%, while beta-mercaptoethanol-denatured eclosion hormone was reactivated in a few minutes with a yield of 75%. Under the same experimental conditions, eclosion hormone treated with beta-mercaptoethanol and urea was reactivated slowly with a yield of 47% over a period of 2 h. Protein disulfide isomerase, a eucaryotic chaperone protein, markedly increased the reactivation yield and rate of the totally denatured hormone. GroE oligomers slightly improved the reactivation yield but peptidyl prolyl isomerase had no influence on yield or rate. We propose that the folding pathway of eclosion hormone involves at least two rate-limiting steps, and that protein disulfide isomerase is likely to be involved in the folding in insect neuronal cells.  相似文献   

10.
The refolding reaction of S54G/P55N ribonuclease T1 is a two-step process, where fast formation of a partly folded intermediate is followed by the slow reaction to the native state, limited by a trans --> cis isomerization of Pro39. The hydrodynamic radius of this kinetic folding intermediate was determined by real-time diffusion NMR spectroscopy. Its folding to the native state was monitored by a series of 128 very fast 2D (15)N-HMQC spectra, to observe the kinetics of 66 individual backbone amide probes. We find that the intermediate is as compact as the native protein with many native chemical shifts. All 66 analyzed amide probes follow the rate-limiting prolyl isomerization, which indicates that this cooperative refolding reaction is fully synchronized. The stability of the folding intermediate was determined from the protection factors of 45 amide protons derived from a competition between refolding and H/D exchange. The intermediate has already gained 40% of the Gibbs free energy of refolding with many protected amides in not-yet-native regions.  相似文献   

11.
Peptidyl-prolyl cis-trans isomerases: structure and functions.   总被引:1,自引:0,他引:1  
Peptidyl-prolyl cis-trans isomerases (PPI) catalyze cis-trans isomerization of imide bonds in peptides and proteins. This review summarizes the literature on the structure and functions of PPIs, their involvement in protein folding, and organization of PPI-containing receptors and membrane channels. A possible role of several PPIs in distant interactions between cells is discussed.  相似文献   

12.
Thermal and GdmCl-induced unfolding transitions of aldolase from Staphylococcus aureus are reversible under a variety of solvent conditions. Analysis of the transitions reveals that no partially folded intermediates can be detected under equilibrium conditions. The stability of the enzyme is very low with a delta G0 value of -9 +/- 2 kJ/mol at 20 degrees C. The kinetics of unfolding and refolding of aldolase are complex and comprise at least one fast and two slow reactions. This complexity arises from prolyl isomerization reactions in the unfolded chain, which are kinetically coupled to the actual folding reaction. Comparison with model calculations shows that at least two prolyl peptide bonds give rise to the observed slow folding reactions of aldolase and that all of the involved bonds are presumably in the trans conformation in the native state. The rate constant of the actual folding reaction is fast with a relaxation time of about 15 s at the midpoint of the folding transition at 15 degrees C. The data presented on the folding and stability of aldolase are comparable to the properties of much smaller proteins. This might be connected with the simple and highly repetitive tertiary structure pattern of the enzyme, which belongs to the group of alpha/beta barrel proteins.  相似文献   

13.
Kinetic intermediates in protein folding are short-lived and therefore difficult to detect and to characterize. In the folding of polypeptide chains with incorrect isomers of Xaa-Pro peptide bonds the final rate-limiting transition to the native state is slow, since it is coupled to prolyl isomerization. Incorrect prolyl isomers thus act as effective traps for folding intermediates and allow their properties to be studied more easily. We employed this strategy to investigate the mechanism of slow folding of ribonuclease T1. In our experiments we use a mutant form of this protein with a single cis peptide bond at proline 39. During refolding, protein chains with an incorrect trans proline 39 can rapidly form extensive secondary structure. The CD signal in the amide region is regained within the dead-time of stopped-flow mixing (15 ms), indicating a fast formation of the single alpha-helix of ribonuclease T1. This step is correlated with partial formation of a hydrophobic core, because the fluorescence emission maximum of tryptophan 59 is shifted from 349 nm to 325 nm within less than a second. After about 20 s of refolding an intermediate is present that shows about 40% enzymatic activity compared to the completely refolded protein. In addition, the solvent accessibility of tryptophan 59 is drastically reduced in this intermediate and comparable to that of the native state as determined by acrylamide quenching of the tryptophan fluorescence. Activity and quenching measurements have long dead-times and therefore we do not know whether enzymatic activity and solvent accessibility also change in the time range of milliseconds. At this stage of folding at least part of the beta-sheet structure is already present, since it hosts the active site of the enzyme. The trans to cis isomerization of the tyrosine 38-proline 39 peptide bond in the intermediate and consequently the formation of native protein is very slow (tau = 6,500 s at pH 5.0 and 10 degrees C). It is accompanied by an additional increase in tryptophan fluorescence, by the development of the fine structure of the tryptophan emission spectrum, and by the regain of the full enzymatic activity. This indicates that the packing of the hydrophobic core, which involves both tryptophan 59 and proline 39, is optimized in this step. Apparently, refolding polypeptide chains with an incorrect prolyl isomer can very rapidly form partially folded intermediates with native-like properties.  相似文献   

14.
Proteins constructed from linear arrays of tandem repeats provide a simplified architecture for understanding protein folding. Here, we examine the folding kinetics of the ankyrin repeat domain from the Drosophila Notch receptor, which consists of six folded ankyrin modules and a seventh partly disordered N-terminal ankyrin repeat sequence. Both the refolding and unfolding kinetics are best described as a sum of two exponential phases. The slow, minor refolding phase is limited by prolyl isomerization in the denatured state (D). The minor unfolding phase, which appears as a lag during fluorescence-detected unfolding, is consistent with an on-pathway intermediate (I). This intermediate, although not directly detected during refolding, is shown to be populated by interrupted refolding experiments. When plotted against urea, the rate constants for the major unfolding and refolding phases define a single non-linear v-shaped chevron, as does the minor unfolding phase. These two chevrons, along with unfolding amplitudes, are well-fitted by a sequential three-state model, which yields rate constants for the individual steps in folding and unfolding. Based on these fitted parameters, the D to I step is rate-limiting, and closely matches the major observed refolding phase at low denaturant concentrations. I appears to be midway between N and D in folding free energy and denaturant sensitivity, but has Trp fluorescence properties close to N. Although the Notch ankyrin domain has a simple architecture, folding is slow, with the limiting refolding rate constant as much as seven orders of magnitude smaller than expected from topological predictions.  相似文献   

15.
The folding of apo-pseudoazurin, a 123-residue, predominantly beta-sheet protein with a complex Greek key topology, has been investigated using several biophysical techniques. Kinetic analysis of refolding using far- and near-ultraviolet circular dichroism (UV CD) shows that the protein folds slowly to the native state with rate constants of 0.04 and 0.03 min(-1), respectively, at pH 7.0 and at 15 degrees C. This process has an activation enthalpy of approximately 90 kJ/mole and is catalyzed by cyclophilin A, indicating that folding is limited by trans-cis proline isomerization, presumably around the Xaa-Pro 20 bond that is in the cis isomer in the native state. Before proline isomerization, an intermediate accumulates during folding. This species has a substantial signal in the far-UV CD, a nonnative signal in the near-UV CD, exposed hydrophobic surfaces (judged by 1-anilino naphthalenesulphonate binding), a noncooperative denaturation transition, and a dynamic structure (revealed by line broadening on the nuclear magnetic resonance time scale). We compare the properties of this intermediate with partially folded states of other proteins and discuss its role in folding of this complex Greek key protein.  相似文献   

16.
Kim DH  Jang DS  Nam GH  Choi KY 《Biochemistry》2001,40(16):5011-5017
Ketosteroid isomerase (KSI) from Comamonas testosteroni is a homodimeric enzyme with 125 amino acids in each monomer catalyzing the allylic isomerization reaction at rates comparable to the diffusion limit. Kinetic analysis of KSI refolding has been carried out to understand its folding mechanism. The refolding process as monitored by fluorescence change revealed that the process consists of three steps with a unimolecular fast, a bimolecular intermediate, and most likely unimolecular slow phases. The fast refolding step might involve the formation of structured monomers with hydrophobic surfaces that seem to have a high binding capacity for the amphipathic dye 8-anilino-1-naphthalenesulfonate. During the refolding process, KSI also generated a state that can bind equilenin, a reaction intermediate analogue, at a very early stage. These observations suggest that the KSI folding might be driven by the formation of the apolar active-site cavity while exposing hydrophobic surfaces. Since the monomeric folding intermediate may contain more than 83% of the native secondary structures as revealed previously, it is nativelike taking on most of the properties of the native protein. Urea-dependence analysis of refolding revealed the existence of folding intermediates for both the intermediate and slow steps. These steps were accelerated by cyclophilin A, a prolyl isomerase, suggesting the involvement of a cis-trans isomerization as a rate-limiting step. Taken together, we suggest that KSI folds into a monomeric intermediate, which has nativelike secondary structure, an apolar active site, and exposed hydrophobic surface, followed by dimerization and prolyl isomerizations to complete the folding.  相似文献   

17.
The cis/trans isomerization of prolyl peptide bonds has been suggested to dominate the folding of the alpha subunit of tryptophan synthase from Escherichia coli (alphaTS). To test the role of the unique cis isomer between Asp27 and Pro28, the folding properties of P28A, P28G and G(3)P28G, a three-glycine insertion mutant between Asp27 and Gly28, were investigated using urea as a denaturant. Circular dichroism analysis demonstrated that none of the mutations perturb the secondary structure significantly, although the aromatic side-chain packing is altered for P28A and P28G. All three mutant proteins inherited the three-state thermodynamic behavior observed in wild-type alphaTS, ensuring that the fundamental features of the energy surface are intact. Kinetic studies showed that neither alanine nor glycine substitutions at Pro28 results in the elimination of any slow-refolding phases. By contrast, the G(3)P28G mutant eliminates the fastest of the slow-refolding phases and one of the two unfolding phases. Double-jump experiments on G(3)P28G confirm the assignment of the missing refolding phase to the isomerization of the Asp27-Pro28 peptide bond. These results imply that the local stability conveyed by the tight, overlapping turns containing the cis peptide bond is sufficient to favor the cis isomer for several non-prolyl residues. The free energy required to drive the isomerization reaction is provided by the formation of the stable intermediate, demonstrating that the acquisition of structure and stability is required to induce subsequent rate-limiting steps in the folding of alphaTS.  相似文献   

18.
The cold shock protein Bc-Csp folds very rapidly in a reaction that is well described by a kinetic two-state mechanism without intermediates. We measured the shortening of six intra-protein distances during folding by F?rster resonance energy transfer (FRET) in combination with stopped-flow experiments. Single tryptophan residues were engineered into the protein as the donors, and single 5-(((acetylamino)ethyl)amino)naphthalene-1-sulfonate (AEDANS) residues were placed as the acceptors at solvent-exposed sites of Bc-Csp. Their R0 value of about 22 A was well suited for following distance changes during the folding of this protein with a high sensitivity. The mutagenesis and the labeling did not alter the refolding kinetics. The changes in energy transfer during folding were monitored by both donor and acceptor emission and reciprocal effects were found. In two cases the donor-acceptor distances were similar in the unfolded and the folded state and, as a consequence, the kinetic changes in energy transfer upon folding were very small. For four donor/acceptor pairs we found that > or =50% of the increase in energy transfer upon folding occurred prior to the rate-limiting step of folding. This reveals that about half of the shortening of the intra-molecular distances upon folding has occurred already before the rate-limiting step and suggests that the fast two-state folding reaction of Bc-Csp is preceded by a very rapid collapse.  相似文献   

19.
In folded proteins, prolyl peptide bonds are usually thought to be either trans or cis because only one of the isomers can be accommodated in the native folded protein. For the N-terminal domain of the gene-3 protein of the filamentous phage fd (N2 domain), Pro161 resides at the tip of a beta hairpin and was found to be cis in the crystal structure of this protein. Here we show that Pro161 exists in both the cis and the trans conformations in the folded form of the N2 domain. We investigated how conformational folding and prolyl isomerization are coupled in the unfolding and refolding of N2 domain. A combination of single-mixing and double-mixing unfolding and refolding experiments showed that, in unfolded N2 domain, 7% of the molecules contain a cis-Pro161 and 93% of the molecules contain a trans-Pro161. During refolding, the fraction of molecules with a cis-Pro161 increases to 85%. This implies that 10.3 kJ mol(-1) of the folding free energy was used to drive this 75-fold change in the Pro161 cis/trans equilibrium constant during folding. The stabilities of the forms with the cis and the trans isomers of Pro161 and their folding kinetics could be determined separately because their conformational folding is much faster than the prolyl isomerization reactions in the native and the unfolded proteins. The energetic coupling between conformational folding and Pro161 isomerization is already fully established in the transition state of folding, and the two isomeric forms are thus truly native forms. The folding kinetics are well described by a four-species box model, in which the N2 molecules with either isomer of Pro161 can fold to the native state and in which cis/trans isomerization occurs in both the unfolded and the folded proteins.  相似文献   

20.
The renaturation of aspartokinase-homoserine dehydrogenase and of some of its smaller fragments has been investigated after complete unfolding by 6 M guanidine hydrochloride. Fluorescence measurements show that a major folding reaction occurs rapidly (in less than a few seconds) after the protein has been transferred to native conditions and results in the shielding of the tryptophan residues from the aqueous solvent; this step also takes place in the fragments and probably corresponds to the independent folding of different segments along the polypeptide chain. The reappearance of the kinase activity, which is an index of the formation of "native" structure within a single chain, is much slower (a few minutes) and has the following properties: it is involved in a kinetic competition with the formation of aggregates; it has an activation energy of 22 +/- 5 kcal/mol; it is not related to a slow reaction in unfolding and thus probably not controlled by the cis-trans isomerization of X-Pro peptide bonds; its rate is inversely proportional to the solvent viscosity. It seems as if this reaction is limited by the mutual arrangement of the regions that have folded rapidly and independently. It is proposed that the mechanism where a fast folding of domains is followed by a slow pairing of folded domains could be generalized to other long chains composed of several domains; such a slow pairing of folded domains would correspond to a rate-limiting process specific to the renaturation of large proteins. The reappearance of the dehydrogenase activity measures the formation of a dimeric species. The dimerization can occur only after each chain has reached its "native" conformation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号