首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Biology of DNA restriction.   总被引:1,自引:0,他引:1       下载免费PDF全文
Our understanding of the evolution of DNA restriction and modification systems, the control of the expression of the structural genes for the enzymes, and the importance of DNA restriction in the cellular economy has advanced by leaps and bounds in recent years. This review documents these advances for the three major classes of classical restriction and modification systems, describes the discovery of a new class of restriction systems that specifically cut DNA carrying the modification signature of foreign cells, and deals with the mechanisms developed by phages to avoid the restriction systems of their hosts.  相似文献   

2.
Molecular analysis of isolates of the rumen bacterium Selenomonas ruminantium revealed a high variety and frequency of site-specific (restriction) endonucleases. While all known S. ruminantium restriction and modification systems recognize hexanucleotide sequences only, consistently low counts of both 6-bp and 4-bp palindromes were found in DNA sequences of S. ruminantium. Statistical analysis indicated that there is some correlation between the degree of underrepresentation of tetranucleotide words and the number of known restriction endonucleases for a given sequence. Control analysis showed the same correlation in lambda DNA but not in human adenovirus DNA. Based on the data presented, it could be proposed that there is a much higher historical occurrence of restriction and modification systems in S. ruminantium and (or) frequent horizontal gene transfer of restriction and modification gene complexes.  相似文献   

3.
Cleavage of a DNA replication fork leads to fork restoration by recombination repair. In prokaryote cells carrying restriction–modification systems, fork passage reduces genome methylation by the modification enzyme and exposes the chromosome to attack by the restriction enzyme. Various observations have suggested a relationship between the fork and Type I restriction enzymes, which cleave DNA at a distance from a recognition sequence. Here, we demonstrate that a Type I restriction enzyme preparation cleaves a model replication fork at its branch. The enzyme probably tracks along the DNA from an unmethylated recognition site on the daughter DNA and cuts the fork upon encountering the branch point. Our finding suggests that these restriction–modification systems contribute to genome maintenance through cell death and indicates that DNA replication fork cleavage represents a critical point in genome maintenance to choose between the restoration pathway and the destruction pathway.  相似文献   

4.
Nucleoside triphosphate-dependent restriction enzymes   总被引:13,自引:8,他引:5       下载免费PDF全文
The known nucleoside triphosphate-dependent restriction enzymes are hetero-oligomeric proteins that behave as molecular machines in response to their target sequences. They translocate DNA in a process dependent on the hydrolysis of a nucleoside triphosphate. For the ATP-dependent type I and type III restriction and modification systems, the collision of translocating complexes triggers hydrolysis of phosphodiester bonds in unmodified DNA to generate double-strand breaks. Type I endonucleases break the DNA at unspecified sequences remote from the target sequence, type III endonucleases at a fixed position close to the target sequence. Type I and type III restriction and modification (R-M) systems are notable for effective post-translational control of their endonuclease activity. For some type I enzymes, this control is mediated by proteolytic degradation of that subunit of the complex which is essential for DNA translocation and breakage. This control, lacking in the well-studied type II R-M systems, provides extraordinarily effective protection of resident DNA should it acquire unmodified target sequences. The only well-documented GTP-dependent restriction enzyme, McrBC, requires methylated target sequences for the initiation of phosphodiester bond cleavage.  相似文献   

5.
6.
Many promiscuous plasmids encode the antirestriction proteins ArdA (alleviation of restriction of DNA) that specifically affect the restriction activity of heterooligomeric type I restriction-modification (R-M) systems in Escherichia coli cells. In addition, a lot of the putative ardA genes encoded by plasmids and bacterial chromosomes are found as a result of sequencing of complete genomic sequences, suggesting that ArdA proteins and type I R-M systems that seem to be widespread among bacteria may be involved in the regulation of gene transfer among bacterial genomes. Here, the mechanism of antirestriction action of ArdA encoded by IncI plasmid ColIb-P9 has been investigated in comparison with that of well-studied T7 phage-encoded antirestriction protein Ocr using the mutational analysis, retardation assay and His-tag affinity chromatography. Like Ocr, ArdA protein was shown to be able to efficiently interact with EcoKI R-M complex and affect its in vivo and in vitro restriction activity by preventing its interaction with specific DNA. However, unlike Ocr, ArdA protein has a low binding affinity to EcoKI Mtase and the additional C-terminal tail region (VF-motif) is needed for ArdA to efficiently interact with the type I R-M enzymes. It seems likely that this ArdA feature is a basis for its ability to discriminate between activities of EcoKI Mtase (modification) and complete R-M system (restriction) which may interact with unmodified DNA in the cells independently. These findings suggest that ArdA may provide a very effective and delicate control for the restriction and modification activities of type I systems and its ability to discriminate against DNA restriction in favour of the specific modification of DNA may give some advantage for efficient transmission of the ardA-encoding promiscuous plasmids among different bacterial populations.  相似文献   

7.
8.
A circular periodic map of short palindromic DNA sequences is constructed using the sequence homology and symmetry. It is applied to compare sequences recognised by class II restriction and modification enzymes with other similar DNA sequences. All known restriction sites have two strong properties: they are enriched by GC pairs, and clustered (purine-purine, pyrimidine-pyrimidine) bonds predominant upon alternating ones. The preference of AT/GC alternation is only slight. These properties were compared quantitatively with the help of suggested numerical methods among different groups of restriction enzymes. The map is applied for prediction of new specificities of restriction modification systems. Possible mechanism of DNA sequence recognition by these enzymes and their evolution are discussed.  相似文献   

9.
Restriction enzymes are well known as reagents widely used by molecular biologists for genetic manipulation and analysis, but these reagents represent only one class (type II) of a wider range of enzymes that recognize specific nucleotide sequences in DNA molecules and detect the provenance of the DNA on the basis of specific modifications to their target sequence. Type I restriction and modification (R-M) systems are complex; a single multifunctional enzyme can respond to the modification state of its target sequence with the alternative activities of modification or restriction. In the absence of DNA modification, a type I R-M enzyme behaves like a molecular motor, translocating vast stretches of DNA towards itself before eventually breaking the DNA molecule. These sophisticated enzymes are the focus of this review, which will emphasize those aspects that give insights into more general problems of molecular and microbial biology. Current molecular experiments explore target recognition, intramolecular communication, and enzyme activities, including DNA translocation. Type I R-M systems are notable for their ability to evolve new specificities, even in laboratory cultures. This observation raises the important question of how bacteria protect their chromosomes from destruction by newly acquired restriction specifities. Recent experiments demonstrate proteolytic mechanisms by which cells avoid DNA breakage by a type I R-M system whenever their chromosomal DNA acquires unmodified target sequences. Finally, the review will reflect the present impact of genomic sequences on a field that has previously derived information almost exclusively from the analysis of bacteria commonly studied in the laboratory.  相似文献   

10.
Jeltsch A 《Gene》2003,317(1-2):13-16
Bacteria frequently exchange DNA among each other by horizontal gene transfer. However, maintenance of species identity and in particular speciation requires a certain barrier against an unregulated uptake of foreign DNA. Here it is suggested that formation of such a barrier is one important biological function of restriction/modification systems, in addition to the classical function of protection of bacteria against bacteriophage infection. This model explains the extreme variability and wide distribution of restriction/modification systems among prokaryotes, the prevalence of RM-systems in pathogenic bacteria and the existence of several RM-systems in single bacterial strains.  相似文献   

11.
It has been generally accepted that DNA modification protects the chromosome of a bacterium encoding a restriction and modification system. But, when target sequences within the chromosome of one such bacterium (Escherichia coli K-12) are unmodified, the cell does not destroy its own DNA; instead, ClpXP inactivates the nuclease, and restriction is said to be alleviated. Thus, the resident chromosome is recognized as 'self' rather than 'foreign' even in the absence of modification. We now provide evidence that restriction alleviation may be a characteristic of Type I restriction-modification systems, and that it can be achieved by different mechanisms. Our experiments support disassembly of active endonuclease complexes as a potential mechanism. We identify amino acid substitutions in a restriction endonuclease, which impair restriction alleviation in response to treatment with a mutagen, and demonstrate that restriction alleviation serves to protect the chromosome even in the absence of mutagenic treatment. In the absence of efficient restriction alleviation, a Type I restriction enzyme cleaves host DNA and, under these conditions, homologous recombination maintains the integrity of the bacterial chromosome.  相似文献   

12.
We have investigated the role of a four amino acid element that is repeated twice and three times, respectively, in the specificity polypeptides of the two allelic restriction-modification systems EcoR124 and EcoR124/3. We had earlier shown that this difference in amino acid sequence between the two systems is solely responsible for the different DNA sequence specificities of the two systems. The effect of single amino acid substitutions and small insertion and deletion mutations on restriction activity and modification specificity was determined in vivo by phage infection assays and in vitro by methylation of DNA with purified modification methylases. Mutant restriction-modification systems with changes in the number and the length of the central amino acid repeats exhibited decreased restriction activity and in some cases relaxed substrate specificity. Our data strongly support the idea that the repetitive amino acid motif in the specificity polypeptides forms part of a flexible interdomain linker. It may be responsible for positioning on the DNA the two major specificity polypeptide domains which are thought to contact independently the half sites of the split recognition sequences typical for all type I restriction-modification systems.  相似文献   

13.
Methyltransferases associated with type III restriction–modification (RM) systems are phase-variably expressed in a variety of pathogenic bacteria. NgoAXP, the type III RM system encoded by Neisseria gonorrhoeae , was characterized in this study. The cloned resngoAXP and ngoAXPmod genes were expressed in Escherichia coli strains. The restriction and modification activities of NgoAXP were confirmed in vivo by the λ phage restriction and modification test and in vitro by the methylation of DNA substrates in the presence of [ methyl -3H]AdoMet. As in all known type III systems, the restriction activity needed the presence of both genes, while the presence of the ngoAXPmod gene was sufficient for DNA methylation. Following its overexpression, the DNA methyltransferase M.NgoAXP was purified to apparent homogeneity using metal affinity chromatography. The specific sequence recognized by this enzyme was determined as a nonpalindromic sequence: 5'-CCACC-3', in which the adenine residue is methylated. We observed that in E. coli cells, the expression of the restriction phenotype associated with NgoAXP switched randomly. This phase variation was associated with the change in the number of pentanucleotide repeats (5'-CCAAC/G-3') present at the 5'-end of the coding region of the ngoAXPmod gene.  相似文献   

14.

Background  

Restriction/modification systems provide the dual function of protecting host DNA against restriction by methylation of appropriate bases within their recognition sequences, and restriction of foreign invading un-methylated DNA, such as promiscuous plasmids or infecting bacteriphage. The plasmid-encoded LlaJI restriction/modification system from Lactococcus lactis recognizes an asymmetric, complementary DNA sequence, consisting of 5'GACGC'3 in one strand and 5'GCGTC'3 in the other and provides a prodigious barrier to bacteriophage infection. LlaJI is comprised of four similarly oriented genes, encoding two 5mC-MTases (M1.LlaJI and M2.LlaJI) and two subunits responsible for restriction activity (R1.LlaJI and R2.LlaJI). Here we employ a detailed genetic analysis of the LlaJI restriction determinants in an attempt to characterize mechanistic features of this unusual hetero-oligomeric endonuclease.  相似文献   

15.
Eco R124I, Eco DXXI and Eco prrI are the known members of the type IC family of DNA restriction and modification systems. The first three are carried on large, conjugative plasmids, while Eco prrI is chromosomally encoded. The enzymes are coded by three genes, hsdR , hsdM and hsdS . Analysis of the DNA sequences upstream and downstream of the type IC hsd loci shows that all are highly homologous to each other and also to sequences present in the bacteriophage P1 genome. The upstream sequences include functional phd and doc genes, which encode an addiction system that stabilizes the P1 prophage state, and extend to and beyond pac , the site at which phage DNA packaging begins. Downstream of the hsd loci, P1 DNA sequences begin at exactly the same place for all of the systems. For Eco DXXI and Eco prrI the P1 homology extends for thousands of base pairs while for Eco R124I an IS 1 insertion and an associated deletion have removed most of the P1-homologous sequences. The significance of these results for the evolution of DNA restriction and modification systems is discussed.  相似文献   

16.
Type I DNA restriction/modification systems are oligomeric enzymes capable of switching between a methyltransferase function on hemimethylated host DNA and an endonuclease function on unmethylated foreign DNA. They have long been believed to not turnover as endonucleases with the enzyme becoming inactive after cleavage. Cleavage is preceded and followed by extensive ATP hydrolysis and DNA translocation. A role for dissociation of subunits to allow their reuse has been proposed for the EcoR124I enzyme. The EcoKI enzyme is a stable assembly in the absence of DNA, so recycling was thought impossible. Here, we demonstrate that EcoKI becomes unstable on long unmethylated DNA; reuse of the methyltransferase subunits is possible so that restriction proceeds until the restriction subunits have been depleted. We observed that RecBCD exonuclease halts restriction and does not assist recycling. We examined the DNA structure required to initiate ATP hydrolysis by EcoKI and find that a 21-bp duplex with single-stranded extensions of 12 bases on either side of the target sequence is sufficient to support hydrolysis. Lastly, we discuss whether turnover is an evolutionary requirement for restriction, show that the ATP hydrolysis is not deleterious to the host cell and discuss how foreign DNA occasionally becomes fully methylated by these systems.  相似文献   

17.
In host cells containing the Salmonella typhimurium DNA restriction-modification systems SA(+) and SB(+), replication of the ocr(+) bacteriophages T3 and T7 is not impaired. However, ocr (gene 0.3) mutants of these phages are susceptible to DNA restriction and modification by the SA(+) and SB(+) systems.  相似文献   

18.
The type II restriction endonucleases form one of the largest families of biochemically-characterized proteins. These endonucleases typically share little sequence similarity, except among isoschizomers that recognize the same sequence. MmeI is an unusual type II restriction endonuclease that combines endonuclease and methyltransferase activities in a single polypeptide. MmeI cuts DNA 20 bases from its recognition sequence and modifies just one DNA strand for host protection. Using MmeI as query we have identified numerous putative genes highly similar to MmeI in database sequences. We have cloned and characterized 20 of these MmeI homologs. Each cuts DNA at the same distance as MmeI and each modifies a conserved adenine on only one DNA strand for host protection. However each enzyme recognizes a unique DNA sequence, suggesting these enzymes are undergoing rapid evolution of DNA specificity. The MmeI family thus provides a rich source of novel endonucleases while affording an opportunity to observe the evolution of DNA specificity. Because the MmeI family enzymes employ modification of only one DNA strand for host protection, unlike previously described type II systems, we propose that such single-strand modification systems be classified as a new subgroup, the type IIL enzymes, for Lone strand DNA modification.  相似文献   

19.
The methyltransferase component of type I DNA restriction and modification systems comprises three subunits, one DNA sequence specificity subunit and two DNA modification subunits. Limited proteolysis of the EcoKI methyltransferase shows that a 55-kDa N-terminal fragment of the 59-kDa modification subunit is resistant to degradation. We have purified this fragment and determined by mass spectrometry that proteolysis removes 43 or 44 amino acids from the C-terminus. The fragment fails to interact with the other subunits even though it still possesses secondary and tertiary structure and the ability to bind the S-adenosylmethionine cofactor. We conclude that the C-terminal region of the modification subunit of EcoKI is essential for the assembly of the EcoKI methyltransferase.  相似文献   

20.
Singh TR 《Bioinformation》2010,4(8):341-343
Restriction endonucleases are indispensable tools in molecular biology and biotechnology. Type II restriction endonucleases are part of restriction modification systems. DNA fragment extraction and restriction mapping are the basis for several biotechnological activities. WebFARM is a server application for identifying restriction endonuclease recognition sites and to give information regarding restriction mapping for given nucleotide sequences. WebFARM analyses given nucleotide sequence and identify restriction site for selected restriction endonucleases. It will also provide frequency of restriction for each restriction endonuclease. AVAILABILITY: http://webfarm.bioinfoindia.org/  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号