首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Arachidonic acid is mobilized from fetal membrane phospholipids at parturition leading to increased production of oxytocic prostaglandins which may initiate or maintain myometrial contractions. Phospholipid mobilization requires activation of phospholipase A2 or C, both of which require calcium for activity. The annexins (lipocortins) are a superfamily of proteins which bind to calcium and phospholipids and thereby may alter phospholipase activity through two mechanisms: modulation of intracellular free Ca2+ concentrations or regulation of the accessibility of phospholipids to hydrolyzing enzymes. Using Western immunoblotting with monospecific polyclonal antibodies, annexins I-VI were identified in human amnion and chorion/decidua at term in tissues obtained from patients in labor or not in labor. Each annexin was present in two distinct pools: a pool which only associated with the membrane in the presence of calcium (calcium-dependent pool) and a calcium-independent pool that remained membrane bound in the presence of calcium chelators. Annexin I was present as two species, resolving at 36 kDa and 68 kDa. The total concentration of annexin I in both amnion and chorion/decidua was significantly decreased with labor, while the total concentration of annexin V in chorion significantly increased with labor. The size of individual pools of annexins also changed with labor: the calcium-dependent pool of annexins I and II in both amnion and chorion significantly decreased; the calcium-dependent pool of annexin V increased in chorion; and calcium-independent pools of annexin I in amnion and annexins I, II, and V in chorion significantly decreased with labor. The decrease in total annexin I concentration with labor in amnion reflects a substantial decrease (80-90%) in the pool tightly bound to the membrane in a calcium-independent manner. This striking change distinguishes annexin I as a potential candidate inhibitor which is specifically downregulated at parturition, potentially leading to increased access of phospholipases to substrate phospholipids and increased prostaglandin production at labor.  相似文献   

2.
Sphingomonas sp. A1 possesses a high molecular mass (average 25,700 Da) alginate uptake system mediated by a novel pit-dependent ABC transporter. The X-ray crystallographic structure of AlgQ2 (57,200 Da), an alginate-binding protein in the system, was determined by the multiple isomorphous replacement method and refined at 2.0 A resolution with a final R-factor of 18.3% for 15 to 2.0 A resolution data. The refined structure of AlgQ2 was comprised of 492 amino acid residues, 172 water molecules, and one calcium ion. AlgQ2 was composed of two globular domains with a deep cleft between them, which is expected to be the alginate-binding site. The overall structure is basically similar to that of maltose/maltodextrin-binding protein, except for the presence of an N2-subdomain. The entire calcium ion-binding site is similar to the site in the EF-hand motif, but comprises a ten residue loop. This calcium ion-binding site is about 40 A away from the alginate-binding site.  相似文献   

3.
4.
Coagulation factor IX-binding protein, isolated from Trimeresurus flavoviridis (IX-bp), is a C-type lectin-like protein. It is an anticoagulant consisting of homologous subunits, A and B. Each subunit has a Ca(2+)-binding site with a unique affinity (K(d) values of 14muM and 130muM at pH 7.5). These binding characteristics are pH-dependent and, under acidic conditions, the Ca(2+) binding of the low-affinity site was reduced considerably. In order to identify which site has high affinity and to investigate the pH-dependent Ca(2+) release mechanism, we have determined the crystal structures of IX-bp at pH 6.5 and pH 4.6 (apo form), and compared the Ca(2+)-binding sites with each other and with those of the solved structures under alkaline conditions; pH 7.8 and pH 8.0 (complexed form). At pH 6.5, Glu43 in the Ca(2+)-binding site of subunit A displayed two conformations. One (minor) is that in the alkaline state, and the other (major) is that at pH 4.6. However, the corresponding Gln43 residue of subunit B is in only a single conformation, which is almost identical with that in the alkaline state. At pH 4.6, Glu43 of subunit A adopts a conformation similar to that of the major conformer observed at pH 6.5, while Gln43 of subunit B assumes a new conformation, and both Ca(2+) positions are occupied by water molecules. These results showed that Glu43 of subunit A is much more sensitive to protonation than Gln43 of subunit B, and the conformational change of Glu43 occurs around pH6.5, which may correspond to the step of Ca(2+) release.  相似文献   

5.
6.
    
The three-dimensional crystal structure of human pepsin and that of its complex with pepstatin have been solved by X-ray crystallographic methods. The native pepsin structure has been refined with data collected to 2.2 A resolution to an R-factor of 19.7%. The pepsin:pepstatin structure has been refined with data to 2.0 A resolution to an R-factor of 18.5%. The hydrogen bonding interactions and the conformation adopted by pepstatin are very similar to those found in complexes of pepstatin with other aspartic proteinases. The enzyme undergoes a conformational change upon inhibitor binding to enclose the inhibitor more tightly. The analysis of the binding sites indicates that they form an extended tube without distinct binding pockets. By comparing the residues on the binding surface with those of the other human aspartic proteinases, it has been possible to rationalize some of the experimental data concerning the different specificities. At the S1 site, valine at position 120 in renin instead of isoleucine, as in the other enzymes, allows for binding of larger hydrophobic residues. The possibility of multiple conformations for the P2 residue makes the analysis of the S2 site difficult. However, it is possible to see that the specific interactions that renin makes with histidine at P2 would not be possible in the case of the other enzymes. At the S3 site, the smaller volume that is accessible in pepsin compared to the other enzymes is consistent with its preference for smaller residues at the P3 position.  相似文献   

7.
Structure of Paramecium tetraurelia calmodulin at 1.8 A resolution.   总被引:1,自引:4,他引:1       下载免费PDF全文
The crystal structure of calmodulin (CaM; M(r) 16,700, 148 residues) from the ciliated protozoan Paramecium tetraurelia (PCaM) has been determined and refined using 1.8 A resolution area detector data. The crystals are triclinic, space group P1, a = 29.66, b = 53.79, c = 25.49 A, alpha = 92.84, beta = 97.02, and gamma = 88.54 degrees with one molecule in the unit cell. Crystals of the mammalian CaM (MCaM; Babu et al., 1988) and Drosophila CaM (DCaM; Taylor et al., 1991) also belong to the same space group with very similar cell dimensions. All three CaMs have 148 residues, but there are 17 sequence changes between PCaM and MCaM and 16 changes between PCaM and DCaM. The initial difference in the molecular orientation between the PCaM and MCaM crystals was approximately 7 degrees as determined by the rotation function. The reoriented Paramecium model was extensively refitted using omit maps and refined using XPLOR. The R-value for 11,458 reflections with F > 3 sigma is 0.21, and the model consists of protein atoms for residues 4-147, 4 calcium ions, and 71 solvent molecules. The root mean square (rms) deviations in the bond lengths and bond angles in the model from ideal values are 0.016 A and 3 degrees, respectively. The molecular orientation of the final PCaM model differs from MCaM by only 1.7 degrees. The overall Paramecium CaM structure is very similar to the other calmodulin structures with a seven-turn long central helix connecting the two terminal domains, each containing two Ca-binding EF-hand motifs. The rms deviation in the backbone N, Ca, C, and O atoms between PCaM and MCaM is 0.52 A and between PCaM and DCaM is 0.85 A. The long central helix regions differ, where the B-factors are also high, particularly in PCaM and MCaM. Unlike the MCaM structure, with one kink at D80 in the middle of the linker region, and the DCaM structure, with two kinks at K75 and I85, in our PCaM structure there are no kinks in the helix; the distortion appears to be more gradually distributed over the entire helical region, which is bent with an apparent radius of curvature of 74.5(2) A. The different distortions in the central helical region probably arise from its inherent mobility.  相似文献   

8.
Phospholipase A(2) catalyses hydrolysis of the ester bond at the C2 position of 3-sn-phosphoglycerides. Here we report the 1.9A resolution crystal structure of the triple mutant K56,120,121M of bovine pancreatic phospholipase A(2). The structure was solved by molecular replacement method using the orthorhombic form of the recombinant phospholipase A(2). The final protein model contains all the 123 amino acid residues, two calcium ions, 125 water molecules and one 2-methyl-2-4-pentanediol molecule. The model has been refined to a crystallographic R-factor of 19.6% (R(free) of 25.9%) for all data between 14.2A and 1.9A. The residues 62-66, which are in a surface loop, are always disordered in the structures of bovine pancreatic phospholipase A(2) and its mutants. It is interesting to note that the residues 62-66 in the present structure is ordered and the conformation varies substantially from those in the previously published structures of this enzyme. An unexpected and interesting observation in the present structure is that, in addition to the functionally important calcium ion in the active site, one more calcium ion is found near the N terminus. Detailed structural analyses suggest that binding of the second calcium ion could be responsible for the conformational change and the ordering of the surface loop. Furthermore, the results suggest a structural reciprocity between the k(cat)(*) allosteric site and surface loop at the i-face, which represents a newly identified structural property of secreted phospholipase A(2).  相似文献   

9.
10.
    
Periplasmic binding proteins of a new family particularly well represented in Bordetella pertussis have been called Bug receptors. One B.pertussis Bug protein is part of a tripartite tricarboxylate transporter while the functions of the other 77 are unknown. We report the first structure of a Bug receptor, BugD. It adopts the characteristic Venus flytrap motif observed in other periplasmic binding proteins, with two globular domains bisected by a deep cleft. BugD displays a closed conformation resulting from the fortuitous capture of a ligand, identified from the electron density as an aspartate. The structure reveals a distinctive alpha carboxylate-binding motif, involving two water molecules that bridge the carboxylate oxygen atoms to the protein. Both water molecules are hydrogen bonded to a common carbonyl group from Ala14, and each forms a hydrogen bond with one carboxylate oxygen atom of the ligand. Additional hydrogen bonds are found between the ligand alpha carboxylate oxygen atoms and protein backbone amide groups and with a threonine hydroxyl group. This specific ligand-binding motif is highly conserved in Bug proteins, indicating that they may all be receptors of amino acids or other carboxylated solutes, with a similar binding mode. The present structure thus unveils the bases of ligand binding in this large family of periplasmic binding proteins, several hundred members of which have been identified in various bacterial species.  相似文献   

11.
    
Cytochrome c peroxidase was isolated from Paracoccus denitrificans and purified to homogeneity in three steps prior to crystallization. Two different diffraction‐quality crystal forms were obtained by the hanging‐drop vapour‐diffusion method using a number of screening conditions. The best (needle‐shaped) crystal form is suitable for structural studies and was grown from solutions containing 20% PEG 8000, 0.1 M Tris pH 8.5 and 0.2 M MgCl2. Crystals grew to a maximum length of approximately 0.7 mm and belong to the primitive monoclinic space group P21, with unit‐cell parameters a = 78.3, b = 51.0, c = 167.2 Å, β = 97.9°. After a dehydration step and extensive optimization of the cryocooling conditions, a complete data set was collected to 2.2 Å from a native crystal of the fully oxidized form of the enzyme using synchrotron radiation.  相似文献   

12.
  总被引:7,自引:0,他引:7  
Several annexins have been shown to bind proteins that belong to the S100 calcium-binding protein family. The two best-characterized complexes are annexin II with p11 and annexin I with S100C, the former of which has been implicated in membrane fusion processes. We have solved the crystal structures of the complexes of p11 with annexin II N-terminus and of S100C with annexin I N-terminus. Using these structural results, as well as electron microscopy observations of liposome junctions formed in the presence of such complexes (Lambert et al., 1997 J Mol Biol 272, 42-55), we propose a computer generated model for the entire annexin II/p11 complex.  相似文献   

13.
The role of aspartic acid-49 (Asp-49) in the active site of porcine pancreatic phospholipase A2 was studied by recombinant DNA techniques: two mutant proteins were constructed containing either glutamic acid (Glu) or lysine (Lys) at position 49. Enzymatic characterization indicated that the presence of Asp-49 is essential for effective hydrolysis of phospholipids. Conversion of Asp-49 to either Glu or Lys strongly reduces the binding of Ca2+ ions, in particular for the lysine mutant, but the affinity for substrate analogues is hardly affected. Extensive purification of naturally occurring Lys-49 phospholipase A2 from the venom of Agkistrodon piscivorus piscivorus yielded a protein that was nearly inactive. Inhibition studies showed that this residual activity was due to a small amount of contaminating enzyme and that the Lys-49 homologue itself has no enzymatic activity. Our results indicate that Asp-49 is essential for the catalytic action of phospholipase A2. The importance of Asp-49 was further evaluated by comparison of the primary sequences of 53 phospholipases A2 and phospholipase homologues showing that substitutions at position 49 are accompanied by structural variations of otherwise conserved residues. The occurrence of several nonconserved substitutions appeared to be a general characteristic of nonactive phospholipase A2 homologues.  相似文献   

14.
    
Calmodulin (CaM), the key calcium sensor of eukaryotic cells regulating a great number of target proteins, belongs to the most conserved proteins. We compared function and properties of CaMs from two evolutionarily distant species, the human (Homo sapiens) representing vertebrates, and the malaria parasite Plasmodium falciparum (Pf). The biophysical characterization revealed higher stability of Pf CaM attributed to the more stable C-terminal domain in both Ca2+ free and saturated states. In vitro binding and functional assays demonstrated that human and Pf CaM exhibit similar biochemical features involving small molecule inhibitor binding and target enzyme activation as illustrated by comparable affinities differing only within a factor of three. It has been reported that CaM antagonists proved to be antimalarials, so Pf CaM could be a potential target to combat malaria parasites. Indeed, we observed that phenotypically active compounds from the Malaria Box could show inhibitory action on Pf CaM, among them the most potent exhibited comparable inhibition to known antagonists of vertebrate CaM. However, based on the minor binding differences in Pf CaM to human CaM, we conclude that CaM is an unsuited target for human intervention against malaria, due to the likely interference with the host protein.  相似文献   

15.
    
Iron acquisition is a complex, multicomponent process critical for most organisms' survival and virulence. Small iron chelating molecules, siderophores, mediate transport as key components of common pathways for iron assimilation in many microorganisms. The chemistry and biology of the extraordinary tight and specific metal binding siderophores is of general interest in terms of host/guest chemistry and is a potential target toward the development of therapeutic treatments for microbial virulence. The siderophore pathway of the moderate thermophile, Thermobifida fusca, is an excellent model system to study the process in Gram‐positive bacteria. Here we describe the structure and characterization of the siderophore periplasmic binding protein, FscJ from the fuscachelin gene cluster of T. fusca. The structure shows a di‐domain arrangement connected with a long α‐helix hinge. Several X‐ray structures detail ligand‐free conformational changes at different pH values, illustrating complex interdomain flexibility of the siderophore receptors. We demonstrated that FscJ has a unique recognition mechanism and details the binding interaction with ferric‐fuscachelin A through ITC and docking analysis. The presented work provides a structural basis for the complex molecular mechanisms of siderophore recognition and transportation. Proteins 2016; 84:118–128. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
17.
    
Annexin I, a member of the annexin family of Ca2+‐ and phospholipid‐binding proteins, has been crystallized with the complete N‐terminus. Annexins are structurally divided into a conserved protein core and an N‐terminal domain that is variable in sequence and length. Three‐dimensional structures of annexins comprising the protein core and a short N‐terminal domain (annexins III, IV, V, VI, XII) or a truncated form almost completely lacking the N‐terminal domain (annexins I and II) have been published so far. Here, the crystallization of annexin I comprising not only the core but also the complete N‐terminal domain is reported. The crystals belong to the space group P212121, with unit‐cell parameters a = 63.6, b = 96.3, c = 127.4 Å, and diffract to better than 2 Å. Assuming a molecular weight of 38.7 kDa for annexin I and an average value of 2.5 Å3 Da−1 for VM, two molecules per asymmetric unit are present.  相似文献   

18.
    
The mouse major urinary proteins are pheromone-binding proteins that function as carriers of volatile effectors of mouse physiology and behavior. Crystal structures of recombinant mouse major urinary protein-I (MUP-I) complexed with the synthetic pheromones, 2-sec-butyl-4,5-dihydrothiazole and 6-hydroxy-6-methyl-3-heptanone, have been determined at high resolution. The purification of MUP-I from mouse liver and a high-resolution structure of the natural isolate are also reported. These results show the binding of 6-hydroxy-6-methyl-3-heptanone to MUP-I, unambiguously define ligand orientations for two pheromones within the MUP-I binding site, and suggest how different chemical classes of pheromones can be accommodated within the MUP-I beta-barrel.  相似文献   

19.
    
A novel member of the family 3 carbohydrate-binding modules (CBM3s) is encoded by a gene (Cthe_0271) in Clostridium thermocellum which is the most highly expressed gene in the bacterium during its growth on several types of biomass substrates. Surprisingly, CtCBM3-0271 binds to at least two different types of xylan, instead of the common binding of CBM3s to cellulosic substrates. CtCBM3-0271 was crystallized and its three-dimensional structure was solved and refined to a resolution of 1.8 Å. In order to learn more about the role of this type of CBM3, a comparative study with its orthologue from Clostridium clariflavum (encoded by the Clocl_1192 gene) was performed, and the three-dimensional structure of CcCBM3-1192 was determined to 1.6 Å resolution. Carbohydrate binding by CcCBM3-1192 was found to be similar to that by CtCBM3-0271; both exhibited binding to xylan rather than to cellulose. Comparative structural analysis of the two CBM3s provided a clear functional correlation of structure and binding, in which the two CBM3s lack the required number of binding residues in their cellulose-binding strips and thus lack cellulose-binding capabilities. This is an enigma, as CtCBM3-0271 was reported to be a highly expressed protein when the bacterium was grown on cellulose. An additional unexpected finding was that CcCBM3-1192 does not contain the calcium ion that was considered to play a structural stabilizing role in the CBM3 family. Despite the lack of calcium, the five residues that form the calcium-binding site are conserved. The absence of calcium results in conformational changes in two loops of the CcCBM3-1192 structure. In this context, superposition of the non-calcium-binding CcCBM3-1192 with CtCBM3-0271 and other calcium-binding CBM3s reveals a much broader two-loop region in the former compared with CtCBM3-0271.  相似文献   

20.
The crystal structure of staphylococcal nuclease refined at 1.7 A resolution   总被引:16,自引:0,他引:16  
T R Hynes  R O Fox 《Proteins》1991,10(2):92-105
The crystal structure of staphylococcal nuclease has been determined to 1.7 A resolution with a final R-factor of 16.2% using stereochemically restrained Hendrickson-Konnert least-squares refinement. The structure reveals a number of conformational changes relative to the structure of the ternary complex of staphylococcal nuclease 1,2 bound with deoxythymidine-3',5'-diphosphate and Ca2+. Tyr-113 and Tyr-115, which pack against the nucleotide base in the nuclease complex, are rotated outward creating a more open binding pocket in the absence of nucleotide. The side chains of Ca2+ ligands Asp-21 and Asp-40 shift as does Glu-43, the proposed general base in the hydrolysis of the 5'-phosphodiester bond. The significance of some changes in the catalytic site is uncertain due to the intrusion of a symmetry related Lys-70 side chain which hydrogen bonds to both Asp-21 and Glu-43. The position of a flexible loop centered around residue 50 is altered, most likely due to conformational changes propagated from the Ca2+ site. The side chains of Arg-35, Lys-84, Tyr-85, and Arg-87, which hydrogen bond to the 3'- and 5'-phosphates of the nucleotide in the nuclease complex, are unchanged in conformation, with packing interactions with adjacent protein side chains sufficient to fix the geometry in the absence of ligand. The nuclease structure presented here, in combination with the stereochemically restrained refinement of the nuclease complex structure at 1.65 A, provides a wealth of structural information for the increasing number of studies using staphylococcal nuclease as a model system of protein structure and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号