首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Taha S  Hanover JL  Silva AJ  Stryker MP 《Neuron》2002,36(3):483-491
Experience is a powerful sculptor of developing neural connections. In the primary visual cortex (V1), cortical connections are particularly susceptible to the effects of sensory manipulation during a postnatal critical period. At the molecular level, this activity-dependent plasticity requires the transformation of synaptic depolarization into changes in synaptic weight. The molecule alpha calcium-calmodulin kinase type II (alphaCaMKII) is known to play a central role in this transformation. Importantly, alphaCaMKII function is modulated by autophosphorylation, which promotes Ca(2+)-independent kinase activity. Here we show that mice possessing a mutant form of alphaCaMKII that is unable to autophosphorylate show impairments in ocular dominance plasticity. These results confirm the importance of alphaCaMKII in visual cortical plasticity and suggest that synaptic changes induced by monocular deprivation are stored specifically in glutamatergic synapses made onto excitatory neurons.  相似文献   

2.
Critical period revisited: impact on vision   总被引:2,自引:0,他引:2  
Neural circuits are shaped by experience in early postnatal life. The permanent loss of visual acuity (amblyopia) and anatomical remodeling within primary visual cortex following monocular deprivation is a classic example of critical period development from mouse to man. Recent work in rodents reveals a residual subthreshold potentiation of open eye response throughout life. Resetting excitatory-inhibitory balance or removing molecular 'brakes' on structural plasticity may unmask the potential for recovery of function in adulthood. Novel pharmacological or environmental interventions now hold great therapeutic promise based on a deeper understanding of critical period mechanisms.  相似文献   

3.
Dendritic protrusions are highly motile during postnatal development. Although spine morphological plasticity could be associated with synaptic plasticity, the function of rapid spine/filopodial motility is still unknown. To investigate the role of spine motility in the development of the visual cortex and its relation with critical periods, we used two-photon imaging of neurons from layers receiving visual input in developing mouse primary visual cortex and compared motility between control and visually deprived animals. Spine and filopodia motility was prominent during early synaptogenesis (P11-P13) but greatly decreased after P15. This "switch" was coincident with a 2.5-fold increase in protrusion density and spine formation. Spine motility was not regulated during the critical period for monocular deprivation (P19-P34). Moreover, delaying the critical period by dark rearing did not delay the normal developmental decrease of spine motility, but caused a modest further reduction in motility at P28-P35. Dark rearing and enucleation also mildly reduced spine motility before eye opening and dark rearing reduced the proportion of filopodia. We conclude that (1) rapid spine motility is not related to critical period plasticity, but is likely to play a role in early synaptogenesis, and (2) neuronal activity stimulates spine motility during synaptogenesis and promotes the appearance of dendritic filopodia.  相似文献   

4.
During brain development, the neocortex shows periods of enhanced plasticity, which enables the acquisition of knowledge and skills that we use and build on in adult life. Key to persistent modifications of neuronal connectivity and plasticity of the neocortex are molecular changes occurring at the synapse. Here we used isobaric tag for relative and absolute quantification to measure levels of 467 synaptic proteins in a well-established model of plasticity in the mouse visual cortex and the regulation of its critical period. We found that inducing visual cortex plasticity by monocular deprivation during the critical period increased levels of kinases and proteins regulating the actin-cytoskeleton and endocytosis. Upon closure of the critical period with age, proteins associated with transmitter vesicle release and the tubulin- and septin-cytoskeletons increased, whereas actin-regulators decreased in line with augmented synapse stability and efficacy. Maintaining the visual cortex in a plastic state by dark rearing mice into adulthood only partially prevented these changes and increased levels of G-proteins and protein kinase A subunits. This suggests that in contrast to the general belief, dark rearing does not simply delay cortical development but may activate signaling pathways that specifically maintain or increase the plasticity potential of the visual cortex. Altogether, this study identified many novel candidate plasticity proteins and signaling pathways that mediate synaptic plasticity during critical developmental periods or restrict it in adulthood.  相似文献   

5.
The most dramatic example of experience-dependent cortical plasticity is the shift in ocular dominance that occurs in visual cortex as a consequence of monocular deprivation during early postnatal life. Many of the basic properties of this type of synaptic plasticity have been described in detail. The important challenge that remains is to understand the molecular basis for these properties. By combining theoretical analysis with experiments in vivo and in vitro, some of the elementary molecular mechanisms for visual cortical plasticity have now been uncovered.  相似文献   

6.
Sleep enhances plasticity in the developing visual cortex   总被引:6,自引:0,他引:6  
Frank MG  Issa NP  Stryker MP 《Neuron》2001,30(1):275-287
During a critical period of brain development, occluding the vision of one eye causes a rapid remodeling of the visual cortex and its inputs. Sleep has been linked to other processes thought to depend on synaptic remodeling, but a role for sleep in this form of cortical plasticity has not been demonstrated. We found that sleep enhanced the effects of a preceding period of monocular deprivation on visual cortical responses, but wakefulness in complete darkness did not do so. The enhancement of plasticity by sleep was at least as great as that produced by an equal amount of additional deprivation. These findings demonstrate that sleep and sleep loss modify experience-dependent cortical plasticity in vivo. They suggest that sleep in early life may play a crucial role in brain development.  相似文献   

7.
We report recent results concerning the action of neurotrophins on the development and plasticity of the visual system of mammals and in particular of their visual cortex. It has been demonstrated that NGF prevents all the effects of monocular deprivation during the critical period. BDNF, that in part also prevents the effects of monocular deprivation, has the interesting additional property of accelerating the development of inhibitory processes. In transgenic mice overexpressing BDNF only in the cortex, the critical period for plasticity initiates a week earlier and presents a precocious closure. Visual acuity also develops much before than in normal animals. These phenomenological observations are paralleled by a precocious increase of inhibitory synapses and inhibitory currents in pyramidal neurons. LTP, tested by stimulation of the white matter, recording in layers 2 and 3 of the visual cortex, presents modifications correlated with the alterations observed in the critical period. Last we report the finding from in vitro and in vivo experiments that MAPkase (Erg 1 and 2) is the molecular chain of events driven both by light and neurotrophins, likely at the bases of the phenomena of plasticity observed during the critical period.  相似文献   

8.
Oray S  Majewska A  Sur M 《Neuron》2004,44(6):1021-1030
The mammalian primary visual cortex (V1) is especially susceptible to changes in visual input over a well-defined critical period, during which closing one eye leads to a loss of responsiveness of neurons to the deprived eye and a shift in response toward the open eye. This functional plasticity can occur rapidly, following even a single day of eye closure, although the structural bases of these changes are unknown. Here, we show that rapid structural changes at the level of dendritic spines occur following brief monocular deprivation. These changes are evident in the supra- and infragranular layers of the binocular zone and can be mimicked by degradation of the extracellular matrix with the tPA/plasmin proteolytic cascade. Further, monocular deprivation occludes a subsequent effect of matrix degradation, suggesting that this mechanism is active in vivo to permit structural remodeling during ocular dominance plasticity.  相似文献   

9.
Maturation of the visual cortex is influenced by visual experience during an early postnatal period. The factors that regulate such a critical period remain unclear. We examined the maturation and plasticity of the visual cortex in transgenic mice in which the postnatal rise of brain-derived neurotrophic factor (BDNF) was accelerated. In these mice, the maturation of GABAergic innervation and inhibition was accelerated. Furthermore, the age-dependent decline of cortical long-term potentiation induced by white matter stimulation, a form of synaptic plasticity sensitive to cortical inhibition, occurred earlier. Finally, transgenic mice showed a precocious development of visual acuity and an earlier termination of the critical period for ocular dominance plasticity. We propose that BDNF promotes the maturation of cortical inhibition during early postnatal life, thereby regulating the critical period for visual cortical plasticity.  相似文献   

10.
 Recent experimental data indicate that both neurotrophic factors (NTFs) and intracortical inhibitory circuitry are implicated in the development and plasticity of ocular dominance columns. We extend a neurotrophic model of developmental synaptic plasticity, which previously failed to account correctly for the differences between monocular deprivation and binocular deprivation, and show that the inclusion of lateral cortical inhibition is indeed necessary in understanding the effects of visual deprivation in the model. In particular, we argue that monocular deprivation causes a differential shift in the balance between inhibition and excitation in cortical columns, down-regulating NTFs in deprived-eye columns and up-regulating NTFs in undeprived-eye columns; during binocular deprivation, however, no such shift occurs. We thus postulate that the response to visual deprivation is at the level of the cortical circuit, while the mechanisms of afferent segregation are at the molecular or cellular level. Such a dissociation is supported by recent experimental work challenging the assumption that columnar organisation develops in an activity-dependent, competitive fashion. Our extended model also questions recent attempts to distinguish between heterosynaptic and homosynaptic models of synaptic plasticity. Received: 17 April 2001 / Accepted in revised form: 7 November 2001  相似文献   

11.
Spike-timing-dependent plasticity (STDP), a form of Hebbian plasticity, is inherently stabilizing. Whether and how GABAergic inhibition influences STDP is not well understood. Using a model neuron driven by converging inputs modifiable by STDP, we determined that a sufficient level of inhibition was critical to ensure that temporal coherence (correlation among presynaptic spike times) of synaptic inputs, rather than initial strength or number of inputs within a pathway, controlled postsynaptic spike timing. Inhibition exerted this effect by preferentially reducing synaptic efficacy, the ability of inputs to evoke postsynaptic action potentials, of the less coherent inputs. In visual cortical slices, inhibition potently reduced synaptic efficacy at ages during but not before the critical period of ocular dominance (OD) plasticity. Whole-cell recordings revealed that the amplitude of unitary IPSCs from parvalbumin positive (Pv+) interneurons to pyramidal neurons increased during the critical period, while the synaptic decay time-constant decreased. In addition, intrinsic properties of Pv+ interneurons matured, resulting in an increase in instantaneous firing rate. Our results suggest that maturation of inhibition in visual cortex ensures that the temporally coherent inputs (e.g. those from the open eye during monocular deprivation) control postsynaptic spike times of binocular neurons, a prerequisite for Hebbian mechanisms to induce OD plasticity.  相似文献   

12.
Experience-dependent functional plasticity is a hallmark of the primary visual system, but it is not known if analogous mechanisms govern development of the circadian visual system. Here we investigated molecular, anatomical, and behavioral consequences of complete monocular light deprivation during extended intervals of postnatal development in Syrian hamsters. Hamsters were raised in constant darkness and opaque contact lenses were applied shortly after eye opening and prior to the introduction of a light-dark cycle. In adulthood, previously-occluded eyes were challenged with visual stimuli. Whereas image-formation and motion-detection were markedly impaired by monocular occlusion, neither entrainment to a light-dark cycle, nor phase-resetting responses to shifts in the light-dark cycle were affected by prior monocular deprivation. Cholera toxin-b subunit fluorescent tract-tracing revealed that in monocularly-deprived hamsters the density of fibers projecting from the retina to the suprachiasmatic nucleus (SCN) was comparable regardless of whether such fibers originated from occluded or exposed eyes. In addition, long-term monocular deprivation did not attenuate light-induced c-Fos expression in the SCN. Thus, in contrast to the thalamocortical projections of the primary visual system, retinohypothalamic projections terminating in the SCN develop into normal adult patterns and mediate circadian responses to light largely independent of light experience during development. The data identify a categorical difference in the requirement for light input during postnatal development between circadian and non-circadian visual systems.  相似文献   

13.
In mammals, visual experience during early postnatal life is critical for normal development of the visual system. Here we report that monocular deprivation for 2, 7, and 14 consecutive days causes p53 accumulation, cell death, and progressive loss of neurones in the dorsal lateral geniculate nucleus (dLGN) of newborn rats and these are prevented by NMDA and non-NMDA glutamate receptor antagonists, and by L-NAME, an inhibitor of nitric oxide synthesis. Monocular deprivation also increases dLGN levels of citrulline, the coproduct of nitric oxide synthesis, and this, as well as cell death and neuronal loss, is abolished by antagonists of glutamate receptors and by L-NAME. Finally, poly-(ADP-ribose) polymerase (PARP) knock-out mice appear to be protected from monocular deprivation-induced cell death. In conclusion, during early postnatal development of the rat visual system monocular deprivation causes excitotoxic, nitric oxide-mediated, cell death in the dLGN that appears to be apoptotic and also requires activation of PARP.  相似文献   

14.
The mammalian visual system exhibits significant experience-induced plasticity in the early postnatal period. While physiological studies have revealed the contribution of the CB1 cannabinoid receptor (CB1) to developmental plasticity in the primary visual cortex (V1), it remains unknown whether the expression and localization of CB1 is regulated during development or by visual experience. To explore a possible role of the endocannabinoid system in visual cortical plasticity, we examined the expression of CB1 in the visual cortex of mice. We found intense CB1 immunoreactivity in layers II/III and VI. CB1 mainly localized at vesicular GABA transporter-positive inhibitory nerve terminals. The amount of CB1 protein increased throughout development, and the specific laminar pattern of CB1 appeared at P20 and remained until adulthood. Dark rearing from birth to P30 decreased the amount of CB1 protein in V1 and altered the synaptic localization of CB1 in the deep layer. Dark rearing until P50, however, did not influence the expression of CB1. Brief monocular deprivation for 2 days upregulated the localization of CB1 at inhibitory nerve terminals in the deep layer. Taken together, the expression and the localization of CB1 are developmentally regulated, and both parameters are influenced by visual experience.  相似文献   

15.
Mataga N  Mizuguchi Y  Hensch TK 《Neuron》2004,44(6):1031-1041
Sensory experience physically rewires the brain in early postnatal life through unknown processes. Here, we identify a robust anatomical consequence of monocular deprivation (MD) in layer II/III of visual cortex that corresponds to the rapid, functional loss of responsiveness preceding any changes in axonal input. Protrusions on pyramidal cell apical dendrites increased steadily after eye opening, but were transiently lost through competitive mechanisms after brief MD only during the physiological critical period. Proteolysis by tissue-type plasminogen activator (tPA) conversely declined with age and increased with MD only in young mice. Targeted disruption of tPA release or its upstream regulation by glutamic acid decarboxylase (GAD65) prevented MD-induced spine loss that was pharmacologically rescued concomitant with critical period plasticity. An extracellular mechanism for structural remodeling that is limited to the binocular zone upon proper detection of competing inputs thus links early sensory experience to visual function.  相似文献   

16.
Espinosa JS  Stryker MP 《Neuron》2012,75(2):230-249
Hubel and Wiesel began the modern study of development and plasticity of primary visual cortex (V1), discovering response properties of cortical neurons that distinguished them from their inputs and that were arranged in a functional architecture. Their findings revealed an early innate period of development and a later critical period of dramatic experience-dependent plasticity. Recent studies have used rodents to benefit from biochemistry and genetics. The roles of spontaneous neural activity and molecular signaling in innate, experience-independent development have been clarified, as have the later roles of visual experience. Plasticity produced by monocular visual deprivation (MD) has been dissected into stages governed by distinct signaling mechanisms, some of whose molecular players are known. Many crucial questions remain, but new tools for perturbing cortical cells and measuring plasticity at the level of changes in connections among identified neurons now exist. The future for the study of V1 to illuminate cortical development and plasticity is bright.  相似文献   

17.
Katagiri H  Fagiolini M  Hensch TK 《Neuron》2007,53(6):805-812
Local GABAergic circuits trigger visual cortical plasticity in early postnatal life. How these diverse connections contribute to critical period onset was investigated by nonstationary fluctuation analysis following laser photo-uncaging of GABA onto discrete sites upon individual pyramidal cells in slices of mouse visual cortex. The GABA(A) receptor number decreased on the soma-proximal dendrite (SPD), but not at the axon initial segment, with age and sensory deprivation. Benzodiazepine sensitivity was also higher on the immature SPD. Too many or too few SPD receptors in immature or dark-reared mice, respectively, were adjusted to critical period levels by benzodiazepine treatment in vivo, which engages ocular dominance plasticity in these animal models. Combining GAD65 deletion with dark rearing from birth confirmed that an intermediate number of SPD receptors enable plasticity. Site-specific optimization of perisomatic GABA response may thus trigger experience-dependent development in visual cortex.  相似文献   

18.
Sensory input is essential for the normal development of sensory centers in the brain, such as the somatosensory, visual, auditory, and olfactory systems. Visual deprivation during a specific developmental stage, called the critical period, results in severe and irreversible functional impairments in the primary visual cortex. Olfactory deprivation in the early postnatal period also causes significant developmental defects in the olfactory bulb, the primary center for olfaction. Olfactory bulb interneurons are continuously generated from neural stem cells in the ventricular-subventricular zone, suggesting that the olfactory system has plasticity even in adulthood. Here, we investigated the effect of transient neonatal olfactory deprivation on the addition of interneurons to the glomerular layer of the adult mouse olfactory bulb. We found that the addition of one subtype of interneurons was persistently inhibited even after reopening the naris. BrdU pulse-chase experiments revealed that the neonatal olfactory deprivation predominantly affected an early phase in the maturation of this neuronal subtype in the olfactory bulb. Subjecting the mice to odor stimulation for 6 weeks after naris reopening resulted in significant recovery from the histological and functional defects caused by the olfactory deprivation. These results suggest that a subtype-specific critical period exists for olfactory bulb neurogenesis, but that this period is less strict and more plastic compared with the critical periods for other systems. This study provides new insights into the mechanisms of postnatal neurogenesis and a biological basis for the therapeutic effect of olfactory training.  相似文献   

19.
During early postnatal brain development, changes in visual input can lead to specific alteration of function and connectivity in mammalian visual cortex. In cat, this so-called critical period exhibits maximal sensory-driven adaptations around postnatal day 30 (P30), and ceases toward adulthood. We examined the molecular framework that directs age- and experience-dependent plasticity in cat visual cortex, by comparing protein expression profiles at eye opening (postnatal day 10 (P10), when experience-dependent plasticity starts), the peak of the critical period (P30), and in adulthood. Using 2-D DIGE, we performed comparisons of P10-P30 and P30-adult brain protein samples. Sixty protein spots showed statistically significant intensity changes in at least one comparison. Fifty-one spots were identified using quadrupole-TOF MS/MS or LC-MS/MS, containing 37 different proteins. The progressive increase or decrease in protein expression levels could be correlated to age-dependent postnatal brain development. Four spots containing transferrin, 14-3-3 alpha/beta and cypin, showed maximal protein expression levels at P30, thereby showing a positive correlation to critical period plasticity. Western analysis indeed revealed a clear effect of visual deprivation on cypin expression in cat visual cortex. Our results therefore demonstrate the power of 2-D DIGE as a tool toward understanding the molecular basis of nervous system development and plasticity.  相似文献   

20.
Experience-dependent plasticity is crucial for the precise formation of neuronal connections during development. It is generally thought to depend on Hebbian forms of synaptic plasticity. In addition, neurons possess other, homeostatic means of compensating for changes in sensory input, but their role in cortical plasticity is unclear. We used two-photon calcium imaging to investigate whether homeostatic response regulation contributes to changes of eye-specific responsiveness after monocular deprivation (MD) in mouse visual cortex. Short MD durations decreased deprived-eye responses in neurons with binocular input. Longer MD periods strengthened open-eye responses, and surprisingly, also increased deprived-eye responses in neurons devoid of open-eye input. These bidirectional response adjustments effectively preserved the net visual drive for each neuron. Our finding that deprived-eye responses were either weaker or stronger after MD, depending on the amount of open-eye input a cell received, argues for both Hebbian and homeostatic mechanisms regulating neuronal responsiveness during experience-dependent plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号