首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Measurements were made of changes in stomatal pore widths inepidermal strips of leaves ofVicia faba and Commelina communis.Strips were incubated in dilute KCI solutions (1 and 10 molm–3) flowing through a perfusion chamber on the stageof a microscope and kept for 4 d in continuous light. Circadianrhythms of stomatal apertures were detected in both species.Although the amplitude was small it was statistically significant.It is concluded that at least partof the mechanism for the stomatalrhythm resides in the epidermis, probably in the guard cells. Key words: Cireadian rhythm, epidermal strips, stomata  相似文献   

2.
Fragments of maize leaves were incubated at controlled temperatureand irradiance either on distilled water or on one of threeconcentrations of cytokinin (10–1, 10–2 and 10–3mol m–3). The effects of zeatin or kinetin on stomatalaperture were determined by stripping abaxial epidermis fromthe fragments after incubation and immediately measuring stomatalapertures under the microscope. At each cytokinin concentrationleaf pieces were incubated at 5 or 350 µmol mol–1CO2 with or without ABA (10–1 mol m–3). At 5.0 µmolmol–1 CO2 increasing the concentrations of zeatin hada negligible effect upon stomatal aperture. When air containing350 umol mol–1 CO2 was bubbled through the incubationsolutions, apertures of stomata incubated on water were morethan halved. Increasing cytokinin concentrations reduced theeffect of CO2 on stomata and incubation on 10–1 mol m–3zeatin completely removed any CO2 response. The addition ofABA restored the effect of CO2, even at the highest cytokininconcentration. Key words: Maize, CO2 response, ABA, Cytokinins  相似文献   

3.
The study of the structure-activity relationship of phenoliccompounds in reversing the ABA-effect on stomata led us to investigatethe changes in K+ concentrations in guard cells and in the epidermaldiffusive resistance of leaves, after treatment with ABA andphenolics. The amount of potassium localized in guard cells usually correspondsto stomatal aperture in different treatments. Umbelliferone,however, permits stomatal opening without retention of potassiumin the guard cells, which is an exception. The effect of phenolicsin retaining K+ in epidermal peels is matched by recorded epidermaldiffusive resistance changes in the leaves.Although flavonoidsand some other phenolics behave differently showing recoveryin epidermal peels with K+ in guard cells, epidermal diffusiveresistance is not recovered. Key words: Epidermal diffusive resistance, K+, ABA, phenolics, stomata  相似文献   

4.
Epidermal strips and leaf fragments of Commelina and leaf fragmentsof maize were incubated on solutions containing naturally-occurringor synthetic cytokinins and/or ABA. The effects of these treatmentson stomatal behaviour were assessed. Cytokinins alone did notpromote stomatal opening in either species but concentrationsof both zeatin and kinetin from 10–3 to 10–1 molm–3 caused some reversal of ABA-stimulated closure ofmaize stomata. The reversal of the ABA effect increased withincreasing cytokinin concentration. Cytokinins had no effecton ABA-stimulated closure of Commelina stomata. When appliedalone, at high concentration (10–1 mol m–3), toCommelina epidermis or leaf pieces both zeatin and kinetin restrictedstomatal opening. Key words: ABA, Cytokinins, Stomata, Maize, Commelina  相似文献   

5.
P. C. Jewer  L. D. Incoll  J. Shaw 《Planta》1982,155(2):146-153
Epidermis is easily detached from both adaxial and abaxial surfaces of leaf four of the Argenteum mutant of Pisum sativum L. The isolated epidermis has stomata with large, easily-measured pores. Hairs and glands are absent. The density of stomata is high and contamination by mesophyll cells is low. In the light and in CO2-free air, stomata in isolated adaxial epidermis of Argenteum mutant opened maximally after 4 h incubation at 25°C. The response of stomata to light was dependent on the concentration of KCl in the incubation medium and was maximal at 50 mol m-3 KCl. Stomata did not respond to exogenous kinetin, but apertures were reduced by incubation of epidermis on solutions containing between 10-5 and 10-1 mol m-3 abscisic acid (ABA). The responses of stomata of Argenteum mutant to light, exogenous KCl, ABA and kinetin were comparable with those described previously for stomata in isolated epidermis of Commelina communis. A method for preparing viable protoplasts of guard cells from isolated epidermis of Argenteum mutant is described. The response of guard cell protoplasts to light, exogenous KCl, ABA and kinetin were similar to those of stomata in isolated epidermis except that the increase in volume of the protoplasts in response to light was maximal at a lower concentration of KCl (10 mol m-3) and that protoplasts responded more rapidly to light than stomata in isolated epidermis. The protoplasts did not respond to exogenous kinetin, but when incubated for 1 h in the light and in CO2-free air on a solution containing 10-3 mol m-3 ABA, they decreased in volume by 30%. The advantages of using epidermis from Argenteum mutant for experiments on stomatal movements are discussed.Abbreviations ABA abscisic acid - MES 2-(N-morpholino)ethanesulfonic acid  相似文献   

6.
We isolated a mutant from Vicia faba L. cv. House Ryousai. Itwilts easily under strong light and high temperature conditions,suggesting that its stomatal movement may be disturbed. We determinedresponses of mutant guard cells to some environmental stimuli.Mutant guard cells demonstrated an impaired ability to respondto ABA in 0.1 mM CaCl2 and stomata did not close in thepresence of up to 1 mM ABA, whereas wild-type stomata closedwhen exposed to 10 µM ABA. Elevating external Ca2+caused a similar degree of stomatal closure in the wild typeand the mutant. A high concentration of CO2 (700 µlliter–1) induced stomatal closure in the wild type, butnot in the mutant. On the basis of these results, we proposethe working hypothesis that the mutation occurs in the regiondownstream of CO2 and ABA sensing and in the region upstreamof Ca2+ elevation. The mutant is named fia (fava bean impairedin ABA-induced stomatal closure). 3 Corresponding author: E-mail, smoiwai{at}agri.kagoshima-u.ac.jp;Fax, +81-99-285-8556.  相似文献   

7.
Accumulation of malate in guard cells of Vicia faba during stomatal opening   总被引:4,自引:3,他引:1  
W. G. Allaway 《Planta》1973,110(1):63-70
Summary The level of malate in the epidermis from illuminated leaves of Vicia faba was greater than in that from dark-treated leaves. A difference in the malate level was still detected after the epidermis had been treated by rolling so that only the guard cells remained alive. The results suggest that malate may accumulate in guard cells on illumination. In subsequent experiments, stomatal apertures were measured, and potassium as well as malate was analysed in extracts of epidermis. In illuminated leaves, the potassium content of rolled epidermis increased from about 90 to about 335 picoequivalents mm-2 of epidermis whele malate increased from about zero to about 71 pmoles mm-2 and the stomata opened; in dark-treated leaves, the potassium content of rolled epidermis decreased slightly, the malate level remained about zero, and the stomata showed very slight further closure. The measured increase in potassium is likely to represent an increase in potassium concentration in the guard cells of about 0.4 Eq l-1 with stomatal opening; the increase in malate could correspond to 0.23 Eq l-1 (with respect to potassium) in the guard cells. Thus, malate accumulating in guard cells could balance about half of the potassium taken up by guard cells when stomata open in the light.  相似文献   

8.
The characteristics of ABA-induced changes in the fluxes ofCO2 and water vapour from whole leaves of spring wheat (Triticumaestivum cv. Wembley) were examined. Aqueous solutions of ABAwere supplied via the transpiration stream to intact leavesof different ages mounted within a gas exchange cuvette. ABA caused a reduction in stomatal conductance (g) that wasproportional to the concentration in the solution fed to theleaf. For the maintenance of a reduction in g there was a requirementfor a continual supply of ABA. At concentrations greater than10–2 mol m–3 ABA reduced g by at least 50% of thecontrol value, while 1.0 mol m–3 closed stomata within2 h. Concentrations as low as 10–3 mol m–3 produceda 20% reduction in g. As leaves aged they became less responsiveto applied ABA. The possibility that the stomatal response may change aftera leaf has previously experienced a pulse of ABA was exploredby repeating the exposure of a leaf to 10–2 mol m–3ABA. The first pulse of ABA produced a greater reduction ing than a subsequent exposure the following day. This declinein response of g to ABA on repeated exposure was maintainedwith leaves of different ages. The characteristics of the stomatal response to ABA are discussedin the context of what is known about the location of receptorsfor the hormone. It seems likely that a failure to respond toABA that has previously accumulated in the guard cells shouldbe viewed by means of maximizing the sensitivity to the currentsupply of ABA. It is suggested that the smaller response ofthe stomata of older leaves to ABA makes them more susceptibleto water stress, so that they can act as sensors for decliningwater potentials to give early protection to younger, metabolicallyactive leaves. Key words: Abscisic acid, leaf age, stomatal conductance, Triticum aestivum  相似文献   

9.
Stomata of yellow lupin leaves are remarkably insensitive toabscisic acid (ABA). Stomatal resistance was monitored usingboth a viscous now porometer and a diffusion porometer. Resultswere confirmed with scanning electron microscopy. When exogenousABA solutions were supplied via petioles, 10–6 M solutionshad no effect on stomatal resistance. Upper (adaxial) stomatawere not affected by 10–5 M ABA but lower stomata showed3-fold more resistance after 2 h. Stomata of both surfaces closedafter 30 min in 10–4 M ABA. Isolated epidermal peels of lupin leaves were floated on ABAsolutions yet upper surface peels showed no stomatal closingin 10–4 M ABA, while lower surface stomata closed to abarely significant extent. Stomata of intact leaves were not very sensitive to darkness,showing at most a doubling in resistance after 6 h darkness.Complete stomatal closure, however, was readily produced bywilting leaves. Hence, lupin stomata are physically capableof closing. Endogenous ABA levels of water-stressed leaves increased approximately10-fold, which corresponds to concentrations below 10 µMABA. It is concluded that ABA is unlikely to play a role incontrolling short-term stomatal response of lupins.  相似文献   

10.
Exposure of 3 week old field bean plants to concentrations ofSO2 from 50–500 µg m-3 induced comparable 20–25%increases in mean leaf diffusive conductance regardless of whetherthe diffusive conductances were obtained by porometric measurementor calculation from gas exchange data. The stomatal conductancesof the adaxial and abaxial leaf surfaces were both increasedby exposure to SO2. Microscopic examination of epidermal strips from control andpolluted plants revealed that the stomatal opening observedin treated plants was associated with a sharp reduction in theproportion of living epidermal cells adjacent to the stomata.The proportion of surviving adjacent epidermal cells was invariablysmaller on the lower epidermis and appeared to decrease as theSO2 concentration was raised from 50 to 500 µg m–3.Although the guard cells appeared to be undamaged at concentrationsbelow 200 µg m–3, structural disorganization ordeath of one or both guard cells was observed frequently ator above 500 µg m–3. The results are discussed in relation to the controversy concerningthe effects of SO2 on stomatal aperture.  相似文献   

11.
Smith S  Stewart GR 《Plant physiology》1990,94(3):1472-1476
The hemi-parasite Striga hermonthica, exhibits an anomalous pattern of stomatal response, stomata remaining open in darkness and when subjected to water stress. This suggests irregularity in stomatal response due to malfunction of the stomatal mechanism. To test this suggestion guard cells were isolated from the effects of surrounding cells, by incubating epidermal strips at low pH. These stomata responded rapidly to low CO2 concentrations, darkness, and ABA. Thus, a paradox exists between stomatal behavior observed in whole leaves and that in isolated guard cells. However, when incubated in the presence of high potassium concentrations (>200 millimolar KCl) stomatal responses in epidermal strips resembled those found in whole leaves, with enhanced opening and reduced closing responses. It is suggested that the anomalous behavior of stomata in Striga and other leafy hemiparasites can be explained by the modulatory effects of high potassium concentrations which accumulate in the leaves as a consequence of high transpiration rates and the lack of a retranslocation system.  相似文献   

12.
The effects of abscisic acid (ABA) on the size of the apertureof stomata on epidermal strips of Vicia faba were studied inincubation media with different pH values. The osmotic potentialof guard cells, as determined by the limiting plasmolysis method,was higher at pH 4.0 than at pH 6.0, although the size of thestomatal apertures was almost identical at both pH values. AtpH 4.0, ABA effectively caused stomatal closure but had onlya small effect on the osmotic potential, whereas, at pH 6.0,ABA significantly increased the osmotic potential. ABA promotedthe efflux of Cl and malate from epidermal strips intothe incubation medium, an effect which was more marked at pH6.0, with a concomitant efflux of K+ to balance the charge onthe exported anions. From these results, it is suggested thatABA may cause an increase in the elastic modulus of the cellwalls of guard cells. 3 Present address: Nagano Prefectural Vegetable and OrnamentalCrops Experimental Station, 2206 Oomuro, Matsusiro-machi, Nagano381-12, Japan (Received September 30, 1986; Accepted January 9, 1987)  相似文献   

13.
Commelina communis stomata closed within 1 h of transferring intact plants from 27 degrees C to 7 degrees C, whereas tobacco (Nicotiana rustica) stomata did not until the leaves wilted. Abscisic acid (ABA) did not mediate cold-induced C. communis stomatal closure: At low temperatures, bulk leaf ABA did not increase; ABA did not preferentially accumulate in the epidermis; its flux into detached leaves was lower; its release from isolated epidermis was not greater; and stomata in epidermal strips were less sensitive to exogenous ABA. Stomata of both species in epidermal strips on large volumes of cold KCl failed to close unless calcium was supplied. Therefore, the following cannot be triggers for cold-induced stomatal closure in C. communis: direct effects of temperature on guard or epidermal cells, long-distance signals, and effects of temperature on photosynthesis. Low temperature increased stomatal sensitivity to external CaCl(2) by 50% in C. communis but only by 20% in tobacco. C. communis stomata were 300- to 1,000-fold more sensitive to calcium at low temperature than tobacco stomata, but tobacco epidermis only released 13.6-fold more calcium into bathing solutions than C. communis. Stomata in C. communis epidermis incubated on ever-decreasing volumes of cold calcium-free KCl closed on the lowest volume (0.2 cm(3)) because the epidermal apoplast contained enough calcium to mediate closure if this was not over diluted. We propose that the basis of cold-induced stomatal closure exhibited by intact C. communis leaves is increased apoplastic calcium uptake by guard cells. Such responses do not occur in chill-sensitive tobacco leaves.  相似文献   

14.
Epidermal strips from either well-watered or water-stressedplants of Commelina communis L. were subjected to a range ofABA concentrations (10–6–10–3 mol m–3)in the presence (330 parts 10–6 in air) or virtual absence(3 parts 10–6 in air) of CO2. The stomatal response toCO2 was greater in epidermis from water-stressed plants, althoughthere was a distinct CO2 response in epidermis from well-wateredplants. Additions of ABA via the incubation medium had littleeffect on the relative CO2 response. Stomata responded to ABAboth in the presence and virtual absence of CO2, but the relativeresponse to ABA was greatest in the high CO2 treatment. Whenwell-watered plants were sprayed with a 10–1 mol m–3ABA solution 1 d prior to use, the stomatal response of detachedepidermis to both CO2 and ABA was very similar to that of epidermisdetached from water-stressed leaves. It is hypothesized thata prolonged exposure to ABA is necessary before there is anymodification of the CO2 response of stomata.  相似文献   

15.
Willmer, C. M., Wilson, A. B. and Jones, H. G. 1988. Changingresponses of stomata to abscisic acid and CO2 as leaves andplants age.—J. exp. Bot. 39: 401–410. Stomatal conductances were measured in ageing leaves of Commelinacommunis L. as plants developed; stomatal responses to CO2 andabscisic acid (ABA) in epidermal strips of C. communis takenfrom ageing leaves of developing plants and in epidermal stripsfrom the same-aged leaves (the first fully-expanded leaf) ofdeveloping plants were also monitored. Stomatal behaviour wascorrelated with parallel measurements of photosynthesis andleaf ABA concentrations. Stomatal conductance in intact leavesdecreased from a maximum of 0-9 cm s– 1 at full leaf expansionto zero about 30 d later when leaves were very senescent. Conductancesdeclined more slowly with age in unshaded leaves. Photosynthesisof leaf slices also declined with age from a maximum at fullleaf expansion until about 30 d later when no O2 exchange wasdetectable. Exogenously applied ABA (0.1 mol m– 3) didnot affect respiration or photosynthesis. In epidermal stripstaken from ageing leaves the widest stomatal apertures occurredabout 10 d after full leaf expansion (just before floweringbegan) and then decreased with age; this decrease was less dramaticin unshaded leaves. The inhibitory effects of ABA on stomatalopening in epidermal strips decreased as leaves aged and wasgreater in the presence of CO2 than in its absence. When leaveswere almost fully-senescent stomata were still able to open.At this stage, guard cells remained healthy-looking with greenchloroplasts while mesophyll cells were senescing and theirchloroplasts were yellow. Similar data were obtained for stomatain epidermal strips taken from the same-aged leaves of ageingplants. The inhibitory effects of ABA on stomatal opening alsodecreased with plant age. In ageing leaves both free and conjugated ABA concentrationsremained low before increasing dramatically about 30 d afterfull leaf expansion when senescence was well advanced. Concentrationsof free and conjugated ABA remained similar to each other atall times. It is concluded that the restriction of stomatal movements inintact leaves as the leaves and plants age is due mainly toa fall in photosynthetic capacity of the leaves which affectsintracellular CO2 levels rather than to an inherent inabilityof the stomata to function normally. Since stomatal aperturein epidermal strips declines with plant and leaf age and stomatabecome less responsive to ABA (while endogenous leaf ABA levelsremain fairly constant until leaf senescence) it is suggestedthat some signal, other than ABA, is transmitted from the leafor other parts of the plant to the stomata and influences theirbehaviour. Key words: Abscisic acid, CO2, Commelina, leaf age, senescence, stomatal sensitivity  相似文献   

16.
Age-related Changes in Stomatal Response to Cytokinins and Abscisic Acid   总被引:2,自引:0,他引:2  
Kinetin and zeatin(100 mmol m–3)reversald the ABA-mediated(100mmol m-2)closure of stomata of young maize leaves but did notaffect stomatal apertures of these leaves when applied alone.As leaves aged, kinetin or zeatin alone promoted increased stomatalapertures, while abscisic acid (ABA) applied alone had a reducedeffect on stomata. Even with older leaves, cytokinins reversadthe effect of ABA on stomata. Maize, stomata, abscisic acid, kineusc, zeatin, Zea mays  相似文献   

17.
Abstract Epidermal strips of Commelina communis with ‘isolated’ stomata were incubated on Trizma-maleate buffer containing 0-500 mM KCL, with or without 10?4 M ABA, for 2.5 h. The resulting stomatal apertures indicate that there is no absolute requirement for live epidermal and subsidiary cells for ABA-mediated closure. This implies that ABA has a direct effect on influx or efflux of K+ into or out of the guard cells rather than on uptake of K+ by the subsidiary cells. The possible in vivo role of subsidiary cells in stomatal closure is discussed.  相似文献   

18.
Effect of the Mesophyll on Stomatal Opening in Commelina communis   总被引:1,自引:0,他引:1  
The effect of a number of factors on the opening of stomatain the intact leaf and in the isolated leaf epidermis of Commelinacommunishas been investigated. Stomata in the intact leaf opened widein the light and closed rapidly on transfer to the dark. Theywere also sensitive to CO2. In contrast, stomata in isolatedepidermis floated on an incubation solution containing 100 molm–3KCl responded neither to light nor CO2. They opened as widelyas those in the intact leaf when treated with fusicoccin. Stomata in isolated epidermis opened almost as wide as thosein the intact leaf when they were incubated with isolatedmesophyllcells in the light. The solution in which the mesophyll cellswere incubated was separated by centrifugation. Themedium fromcells previously incubated in the light caused the stomata inisolated epidermis to open but that from cells kept inthe darkhad no effect. A similar effect was observed when isolated chloroplastswere incubated with the isolated epidermis.However, the supernatantfrom the chloroplast suspension had no significant effect onstomatal opening. These results indicate that the mesophyll plays an importantrole in stomatal opening in the light. The mesophyll appearstoproduce in the light, but not in the dark, a soluble compoundwhich moves to the guard cells to bring about stomatal opening.Theexperiments with isolated chloroplasts suggest that this substanceis a product of photosynthesis. Key words: Commelina communis, stomata, light, mesophyll  相似文献   

19.
Epidermal strips from well-watered faba-bean plants were subjected to a range of abscisic acid (ABA) and indolyl-3-acetic acid (IAA) concentrations (10-5 to 1 mM) in the presence or absence of CO2 in light or dark. ABA had inhibitory effect on abaxial stomatal apertures in all the concentrations studied and retained them closed even after addition of KCl (SO and 100 mM) to the incubation medium. It also influenced stomatal responses to CO2. In the presence of CO2 apertures were greater than in its absence in light as well as in darkness. This relationship remained unchanged also after addition of KCl. The action of ABA inhibited accumulation of potassium in the guard cells. IAA stimulated stomatal opening and its effect was quite opposite to ABA; in the presence of CO2 the apertures were smaller than in its absence. IAA, however, was able to inhibit the closing effect of darkness, CO2, and ABA, and stimulated potassium accumulation in the guard cells. Simultaneous action of ABA+IAA manifested effects of both substances.  相似文献   

20.
Stomatal Responses to High Temperature in Darkness   总被引:1,自引:0,他引:1  
PEMADASA  M. A. 《Annals of botany》1977,41(5):969-976
The effect of a temperature increase from 25 to 35°C onstomatal opening in darkness (‘night opening’) onexcised, turgid leaves of Stachytarpheta indica was investigatedby microscopic examination of a baxial epidermis fixed in absoluteethanol. An appreciable degree of opening occurred towards theend of a 14-h night at 25°C, and this was substantiallyenhanced by the temperature increase to 35°C in the dark,which also promoted a marked increase in starch hydrolysis andaccumulation of potassium in the guard cells. The degree oftemperature-induced night opening was somewhat smaller thanthat of light-induced opening, and was higher in CO2-free airthan in normal air. 2,4-dinitrophenol (DNP) was effective inarresting stomatal opening and suppressing starch hydrolysisand increase in stomatal potassium. The temperature-inducednight opening is related, to a great extent, to the enhancementby high temperature of starch hydrolysis and potassium accumulationin the guard cells, and the inhibitory effect of DNP on stomatalopening is attributed largely to its suppression of these twometabolic processes. The importance of oxidative phosphorylationas a possible source of energy for stomatal opening is brieflydiscussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号