首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using combinations of different polysaccharides as glycosyl donors and of oligosaccharides fluorescently labeled by sulforhodamine (SR) as glycosyl acceptors, we screened for the presence of transglycosylating activities in extracts from nasturtium (Tropaeolum majus). Besides xyloglucan endotransglycosylase/hydrolase (XTH/XET, EC 2.4.1.207) activity, which transfers xyloglucanosyl residues from xyloglucan (XG) to XG-derived oligosaccharides (XGOs), a glycosyl transfer from XG to SR-labeled cellooligosaccharides and laminarioligosaccharides has been detected. The XGOs also served as acceptors for the glycosyl transfer from soluble cellulose derivatives carboxymethyl cellulose and hydroxyethylcellulose. The effectivity of these polysaccharides as glycosyl donors for transfer to XG-derived octasaccharide [1-3H]XXLGol decreased in the order XG > HEC > CMC. Isoelectric focusing in polyacrylamide gels showed that bands corresponding to hetero-transglycosylase activities coincided with zones corresponding to XTH/XET. These results can be explained as due either to substrate non-specificity of certain isoenzymes of XTH/XET or to existence of enzymes catalyzing a hetero-transfer, that is the formation of covalent linkages between different types of carbohydrate polymers.  相似文献   

2.
Xyloglucan endotransglucosylase/hydrolases (XTHs) are cell wall-modifying enzymes that align within three or four distinct phylogenetic subgroups. One explanation for this grouping is association with different enzymic modes of action, as XTHs can have xyloglucan endotransglucosylase (XET) or endohydrolase (XEH) activities. While Group 1 and 2 XTHs predominantly exhibit XET activity, to date the activity of only one member of Group 3 has been reported: nasturtium TmXH1, which has a highly specialized function and hydrolyses seed-storage xyloglucan rather than modifying cell wall structure. Tomato fruit ripening was selected as a model to test the hypothesis that preferential XEH activity might be a defining characteristic of Group 3 XTHs, which would be expressed during processes where net xyloglucan depolymerization occurs. Database searches identified 25 tomato XTHs, and one gene (SlXTH5) was of particular interest as it aligned within Group 3 and was expressed abundantly during ripening. Recombinant SlXTH5 protein acted primarily as a transglucosylase in vitro and depolymerized xyloglucan more rapidly in the presence than in the absence of xyloglucan oligosaccharides (XGOs), indicative of XET activity. Thus, there is no correlation between the XTH phylogenetic grouping and the preferential enzymic activities (XET or XEH) of the proteins in those groups. Similar analyses of SlXTH2, a Group 2 tomato XTH, and nasturtium seed TmXTH1 revealed a spectrum of modes of action, suggesting that all XTHs have the capacity to function in both modes. The biomechanical properties of plant walls were unaffected by incubation with SlXTH5, with or without XGOs, suggesting that XTHs do not represent primary cell wall-loosening agents. The possible roles of SlXTH5 in vivo are discussed.  相似文献   

3.
Xyloglucan endotransglycosylases (XETs) cleave and religate xyloglucan polymers in plant cell walls via a transglycosylation mechanism. Thus, XET is a key enzyme in all plant processes that require cell wall remodeling. To provide a basis for detailed structure-function studies, the crystal structure of Populus tremula x tremuloides XET16A (PttXET16A), heterologously expressed in Pichia pastoris, has been determined at 1.8-A resolution. Even though the overall structure of PttXET16A is a curved beta-sandwich similar to other enzymes in the glycoside hydrolase family GH16, parts of its substrate binding cleft are more reminiscent of the distantly related family GH7. In addition, XET has a C-terminal extension that packs against the conserved core, providing an additional beta-strand and a short alpha-helix. The structure of XET in complex with a xyloglucan nonasaccharide, XLLG, reveals a very favorable acceptor binding site, which is a necessary but not sufficient prerequisite for transglycosylation. Biochemical data imply that the enzyme requires sugar residues in both acceptor and donor sites to properly orient the glycosidic bond relative to the catalytic residues.  相似文献   

4.
Isolated pectic domains representative of the pectic backbone and the neutral sugar side chains were tested for their ability to interact with cellulose in comparison to the well-known binding of xyloglucan. Pectic side chains displayed a significant in vitro binding capacity to cellulose, whereas pectic backbone domains exhibited only slight adsorption to cellulose microfibrils. To support the binding results, electron microscopy and X-ray diffraction were applied. Celluloses from bacteria and sugar beet cell walls were used as substrates for the precipitation of isolated pectic domains or xyloglucan by acetone vapor diffusion. Pectic side chains grew attached to the cellulose surfaces, whereas pectic backbone domains were observed separately from cellulose microfibrils. Xyloglucan seeded with cellulose provoked a decrease of microfibrils entanglement, but no clear cross-links between neighboring microfibrils were observed. These results led to the elucidation of the pectic domains responsible for binding with cellulose microfibrils.  相似文献   

5.
6.
Restructuring the network of xyloglucan (XG) and cellulose during plant cell wall morphogenesis involves the action of xyloglucan endo-transglycosylases (XETs). They cleave the XG chains and transfer the enzyme-bound XG fragment to another XG molecule, thus allowing transient loosening of the cell wall and also incorporation of nascent XG during expansion. The substrate specificity of a XET from Populus (PttXET16-34) has been analyzed by mapping the enzyme binding site with a library of xylogluco-oligosaccharides as donor substrates using a labeled heptasaccharide as acceptor. The extended binding cleft of the enzyme is composed of four negative and three positive subsites (with the catalytic residues between subsites -1 and +1). Donor binding is dominated by the higher affinity of the XXXG moiety (G=Glcbeta(1-->4) and X=Xylalpha(1-->6)Glcbeta(1-->4)) of the substrate for positive subsites, whereas negative subsites have a more relaxed specificity, able to bind (and transfer to the acceptor) a cello-oligosaccharyl moiety of hybrid substrates such as GGGGXXXG. Subsite mapping with k(cat)/K(m) values for the donor substrates showed that a GG-unit on negative and -XXG on positive subsites are the minimal requirements for activity. Subsites -2 and -3 (for backbone Glc residues) and +2' (for Xyl substitution at Glc in subsite +2) have the largest contribution to transition state stabilization. GalGXXXGXXXG (Gal=Galbeta(1-->4)) is the best donor substrate with a "blocked" nonreducing end that prevents polymerization reactions and yields a single transglycosylation product. Its kinetics have unambiguously established that the enzyme operates by a ping-pong mechanism with competitive inhibition by the acceptor.  相似文献   

7.
Xyloglucan has been hypothesized to bind extensively to cellulose microfibril surfaces and to tether microfibrils into a load‐bearing network, thereby playing a central role in wall mechanics and growth, but this view is challenged by newer results. Here we combined high‐resolution imaging by field emission scanning electron microscopy (FESEM) with nanogold affinity tags and selective endoglucanase treatments to assess the spatial location and conformation of xyloglucan in onion cell walls. FESEM imaging of xyloglucanase‐digested cell walls revealed an altered microfibril organization but did not yield clear evidence of xyloglucan conformations. Backscattered electron detection provided excellent detection of nanogold affinity tags in the context of wall fibrillar organization. Labelling with xyloglucan‐specific CBM76 conjugated with nanogold showed that xyloglucans were associated with fibril surfaces in both extended and coiled conformations, but tethered configurations were not observed. Labelling with nanogold‐conjugated CBM3, which binds the hydrophobic surface of crystalline cellulose, was infrequent until the wall was predigested with xyloglucanase, whereupon microfibril labelling was extensive. When tamarind xyloglucan was allowed to bind to xyloglucan‐depleted onion walls, CBM76 labelling gave positive evidence for xyloglucans in both extended and coiled conformations, yet xyloglucan chains were not directly visible by FESEM. These results indicate that an appreciable, but still small, surface of cellulose microfibrils in the onion wall is tightly bound with extended xyloglucan chains and that some of the xyloglucan has a coiled conformation.  相似文献   

8.
Beta-galactosidases are enzymes that can be found in most living beings and in the plant kingdom its activity and genes have been detected in several tissues such as ripening fruits, developing leaves and flowers and storage tissues such as cotyledons. In plants, their activities are usually associated with the secondary metabolism or with oligosaccharide or polysaccharide degradation. Polysaccharide specific beta-galactosidases include beta-galactanases, which attack pectic polymers and beta-galactosidases that attack xyloglucans (XG). In the present work we purified an XG-specific beta-galactosidase (named hcbetagal) from cotyledons of developing seedlings of Hymenaea courbaril, a legume tree from the Neotropical region of the world. The enzyme has a molecular weight of 52-62 kDa and was shown to attack specifically xyloglucan oligosaccharides (XGOs) but not the polymer. It has a pH optimum between 3 and 4 and at this pH range the enzyme increases activity linearly up to 50 degrees C. Kinetic studies showed that hcbetagal is inhibited competitively by free galactose (K(i) = 3.7). The biochemical properties of hcbetagal as a whole suggest that it is involved in storage xyloglucan mobilisation during seedling development. Its high specificity towards XGOs, the low pH optimum and the fact that it is inhibited by its product (galactose) suggest that hcbetagal might be one of the biochemical control points in xyloglucan catabolism in vivo. A possible relationship with functional stability of the wall during cell death as cotyledons undergo senescence is discussed.  相似文献   

9.
Xyloglucans are the major component of plant cell walls and bind tightly to the surface of individual cellulose microfibrils, thereby cross-linking them into a complex polysaccharide network of the cell wall. The cleavage and reconnection of xyloglucan cross-links are considered to play the leading role during chemical processes essential for wall expansion and, therefore, cell growth and differentiation. Although it is hypothesized that some transglycosylation is involved in these chemical processes, the enzyme responsible for the reaction was not identified. We have now purified a novel class of endo-type glycosyltransferase to apparent homogeneity from the extracellular space or the cell wall of the epicotyls of Vigna angularis, a bean plant. The enzyme is a glycoprotein with a molecular mass of about 33 kDa. The enzyme catalyzes both 1) endo-type splitting of a xyloglucan molecule and 2) linking of a newly generated reducing end of the xyloglucan to the nonreducing end of another xyloglucan molecule, thereby mediating the transfer of a large segment of the xyloglucan to another xyloglucan molecule. The transferase exhibits no glycosidase or glycanase activity. Substrate specificity of the enzyme was investigated using several polysaccharides with different glycosidic linkages as donor substrates and pyridylamino oligosaccharides as acceptor substrates, in which the reducing end of the carbohydrate was tagged with a fluorescent group. The enzyme required a basic xyloglucan structure, i.e. a beta-(1-->4)-glucosyl backbone with xylosyl side chains, for both acceptor and donor activity. Galactosyl or fucosyl side chains on the main chain were not required for the acceptor activity. The enzyme exhibited higher reaction rates when xyloglucans with higher M(r) were used as donor substrates. Xyloglucans smaller than 10 kDa were no longer the donor substrate. On the other hand, pyridylamino heptasaccharide acted as a good acceptor as did xyloglucan polymers. Based on these results we propose to designate this novel enzyme a xyloglucan: xyloglucano-transferase, to be abbreviated endo-xyloglucan transferase (EXT) or xyloglucan recombinase. This enzyme is the first enzyme identified that mediates the transfer of a high M(r) segment between polysaccharide molecules to generate chimeric polymers. We conclude that endo-xyloglucan transferase functions as a reconnecting enzyme for xyloglucans and is involved in the interweaving or reconstruction of cell wall matrix, which is responsible for chemical creepage that leads to morphological changes in the cell wall.  相似文献   

10.
Thermobifida fusca xyloglucan-specific endo-beta-1,4-glucanase (Xeg)74 and the Xeg74 catalytic domain (CD) were cloned, expressed in Escherichia coli, purified and characterized. This enzyme has a glycohydrolase family-74 CD that is a specific xyloglucanase followed by a family-2 carbohydrate binding module at the C terminus. The Michaelis constant (Km) and maximal rate (Vmax) values for hydrolysis of tamarind seed xyloglucan (tamXG) are 2.4 micro m and 966 micro mol xyloglucan oligosaccharides (XGOs) min-1. micro mol protein-1. More than 75% of the activity was retained after a 16-h incubation at temperatures up to 60 degrees C. The enzyme was most active at pH 6.0-9.4. NMR analysis showed that its catalytic mechanism is inverting. The oligosaccharide products from hydrolysis of tamXG were determined by MS analysis. Cel9B, an active carboxymethylcellulose (CMC)ase from T. fusca, was also found to have activity on xyloglucan (XG) at 49 micro mol.min-1. micro mol protein-1, but it could not hydrolyze XG units containing galactose. An XG/cellulose composite was prepared by growing Gluconacetobacterxylinus on glucose with tamXG in the medium. Although a mixture of purified cellulases was unable to degrade this material, the composite material was fully hydrolyzed when Xeg74 was added. T. fusca was not able to grow on tamXG, but Xeg74 was found in the culture supernatant at the same level as was found in cultures grown on Solka Floc. The function of this enzyme appears to be to break down the XG surrounding cellulose fibrils found in biomass so that T. fusca can utilize the cellulose as a carbon source.  相似文献   

11.
The xyloglucan-cellulose assembly at the atomic scale   总被引:3,自引:0,他引:3  
Hanus J  Mazeau K 《Biopolymers》2006,82(1):59-73
The assembly of cell wall components, cellulose and xyloglucan (XG), was investigated at the atomistic scale using molecular dynamics simulations. A molecular model of a cellulose crystal corresponding to the allomorph Ibeta and exhibiting a flexible complex external morphology was employed to mimic the cellulose microfibril. The xyloglucan molecules considered were the three typical basic repeat units, differing only in the size of one of the lateral chain. All the investigated XG fragments adsorb nonspecifically onto cellulose fiber; multiple arrangements are equally probable, and every cellulose surface was capable of binding the short XG molecules. The following structural effects emerged: XG molecules that do not have any long side chains tended to adapt themselves nicely to the topology of the microfibril, forming a flat, outstretched conformation with all the sugar residues interacting with the surface. In contrast, the XG molecules, which have long side chains, were not able to adopt a flat conformation that would enable the interaction of all the XG residues with the surface. In addition to revealing the fundamental atomistic details of the XG adsorption on cellulose, the present calculations give a comprehensive understanding of the way the XG molecules can unsorb from cellulose to create a network that forms the cell wall. Our revisited view of the adsorption features of XG on cellulose microfibrils is consistent with experimental data, and a model of the network is proposed.  相似文献   

12.
Pectins of varying structures were tested for their ability to interact with cellulose in comparison to the well-known adsorption of xyloglucan. Our results reveal that sugar beet (Beta vulgaris) and potato (Solanum tuberosum) pectins, which are rich in neutral sugar side chains, can bind in vitro to cellulose. The extent of binding varies with respect to the nature and structure of the side chains. Additionally, branched arabinans (Br-Arabinans) or debranched arabinans (Deb-Arabinans; isolated from sugar beet) and galactans (isolated from potato) were shown bind to cellulose microfibrils. The adsorption of Br-Arabinan and galactan was lower than that of Deb-Arabinan. The maximum adsorption affinity of Deb-Arabinan to cellulose was comparable to that of xyloglucan. The study of sugar beet and potato alkali-treated cell walls supports the hypothesis of pectin-cellulose interaction. Natural composites enriched in arabinans or galactans and cellulose were recovered. The binding of pectins to cellulose microfibrils may be of considerable significance in the modeling of primary cell walls of plants as well as in the process of cell wall assembly.  相似文献   

13.
Tamarind seed xyloglucan was partially degraded with a purified endoglucanase (endoV) from Trichoderma viride. Analysis by high-performance anion-exchange chromatography showed that this digest was composed of fragments consisting of 1 to 10 repeating oligosaccharide units ([xg]1-[xg]10). To study the adsorption of xyloglucan fragments to cellulose in detail, this digest was fractionated on BioGel P-6. Fragments were separated satisfactorily up to 5 repeating oligosaccharide units ([xg]5). The galactose substitution of the fragments increased with increasing molecular weight. The BioGel P-6 pools, as well as polymeric xyloglucan ([xg] infinity), were tested for their ability to interact with Avicel crystalline cellulose. Quantitative binding to cellulose occurred for sequences consisting of (at least) 4 repeating units. The adsorption of [xg]4 to Avicel was very high relative to that of [xg] infinity. The dimensions of these fragments were such that they could also penetrate the smaller pores of cellulose. Apparently, the effective surface area for the polymers is much smaller. Adsorption isotherms of [xg] infinity and [xg]4 showed a pattern that is typical for polydisperse systems. However, the mechanisms underlying these patterns were different. At high xyloglucan concentrations, this polydispersity resulted in preferential adsorption of the larger molecules in the case of [xg] infinity and a more extensive colonization of the smaller pores of cellulose in the case of [xg]4. The pH influenced the interaction between xyloglucan (fragments) and cellulose to only a small extent.  相似文献   

14.
The desire for improved methods of biomass conversion into fuels and feedstocks has re-awakened interest in the enzymology of plant cell wall degradation. The complex polysaccharide xyloglucan is abundant in plant matter, where it may account for up to 20% of the total primary cell wall carbohydrates. Despite this, few studies have focused on xyloglucan saccharification, which requires a consortium of enzymes including endo-xyloglucanases, α-xylosidases, β-galactosidases and α-L-fucosidases, among others. In the present paper, we show the characterization of Xyl31A, a key α-xylosidase in xyloglucan utilization by the model Gram-negative soil saprophyte Cellvibrio japonicus. CjXyl31A exhibits high regiospecificity for the hydrolysis of XGOs (xylogluco-oligosaccharides), with a particular preference for longer substrates. Crystallographic structures of both the apo enzyme and the trapped covalent 5-fluoro-β-xylosyl-enzyme intermediate, together with docking studies with the XXXG heptasaccharide, revealed, for the first time in GH31 (glycoside hydrolase family 31), the importance of a PA14 domain insert in the recognition of longer oligosaccharides by extension of the active-site pocket. The observation that CjXyl31A was localized to the outer membrane provided support for a biological model of xyloglucan utilization by C. japonicus, in which XGOs generated by the action of a secreted endo-xyloglucanase are ultimately degraded in close proximity to the cell surface. Moreover, the present study diversifies the toolbox of glycosidases for the specific modification and saccharification of cell wall polymers for biotechnological applications.  相似文献   

15.
The growth-promoting effect of xyloglucan-derived oligosaccharides was investigated using a bioassay with entire pea (Pisum sativum L., var Alaska) shoots. After a 24-h incubation period at 25[deg]C, xyloglucan oligosaccharide (XGO) solutions with concentrations of 10-6 M notably increased the growth rate of pea shoots, whereas the same oligosaccharides at 10-7 M were less effective. To investigate the possible correlation between growth rate changes in the XGO-treated shoots and changes in the wall mechanical properties of their growing regions (third internodes), we used a short-term creep assay. The promotion of elongation by XGOs was reflected in an enhancement of the viscoelasticity of the growing regions of the shoots. To show whether this effect on wall viscoelastic properties was the cause or a consequence of their growth promotion, we tested the effect of XGOs on the long-term extension of isolated cell walls. We characterized an acid-induced extension in isolated cell walls from pea shoots that was not inhibited by preincubation in neutral buffers. Exogenously added XGOs did not alter the pattern of pea segment extension at any pH tested, indicating that XGOs have no direct effect on cell wall viscoelasticity. Finally, preincubation of pea segments in neutral buffers with XGOs enhanced their capacity to extend under acidic conditions. This finding suggests that XGOs at a neutral pH can act via transglycosylation, weakening the wall matrix and making the wall more responsive to other mechanisms of acid-induced extension as an expansin-mediated extension.  相似文献   

16.
Park YB  Cosgrove DJ 《Plant physiology》2012,158(4):1933-1943
Xyloglucan is widely believed to function as a tether between cellulose microfibrils in the primary cell wall, limiting cell enlargement by restricting the ability of microfibrils to separate laterally. To test the biomechanical predictions of this "tethered network" model, we assessed the ability of cucumber (Cucumis sativus) hypocotyl walls to undergo creep (long-term, irreversible extension) in response to three family-12 endo-β-1,4-glucanases that can specifically hydrolyze xyloglucan, cellulose, or both. Xyloglucan-specific endoglucanase (XEG from Aspergillus aculeatus) failed to induce cell wall creep, whereas an endoglucanase that hydrolyzes both xyloglucan and cellulose (Cel12A from Hypocrea jecorina) induced a high creep rate. A cellulose-specific endoglucanase (CEG from Aspergillus niger) did not cause cell wall creep, either by itself or in combination with XEG. Tests with additional enzymes, including a family-5 endoglucanase, confirmed the conclusion that to cause creep, endoglucanases must cut both xyloglucan and cellulose. Similar results were obtained with measurements of elastic and plastic compliance. Both XEG and Cel12A hydrolyzed xyloglucan in intact walls, but Cel12A could hydrolyze a minor xyloglucan compartment recalcitrant to XEG digestion. Xyloglucan involvement in these enzyme responses was confirmed by experiments with Arabidopsis (Arabidopsis thaliana) hypocotyls, where Cel12A induced creep in wild-type but not in xyloglucan-deficient (xxt1/xxt2) walls. Our results are incompatible with the common depiction of xyloglucan as a load-bearing tether spanning the 20- to 40-nm spacing between cellulose microfibrils, but they do implicate a minor xyloglucan component in wall mechanics. The structurally important xyloglucan may be located in limited regions of tight contact between microfibrils.  相似文献   

17.

Xyloglucan oligosaccharides (XGOs), derived from the hydrolysis of plant cell wall xyloglucan, are a novel class of biostimulants that exert positive effects on plant growth and morphology and can enhance plant stress tolerance. The aim of this study was to determine the influence of the application of exogenous Tamarindus indica L. cell wall-derived XGOs on Nicotiana tabacum L. tolerance to salt stress by evaluating morphology, physiological, and metabolic changes. N. tabacum plants were grown in agar-gelled media for 2 mo under salt stress with 100 mM of sodium chloride (NaCl) ± 0.1 μM XGOs. The germination percentage (GP), number of leaves (NL), foliar area (FA), primary root length (PRL), and density of lateral roots (DLR) were measured. In addition, unaffected 21-d-old N. tabacum plants were treated with a salt shock (100 mM NaCl) ± 0.1 μM XGOs. Proline, total chlorophyll, and total carbonyl levels, in addition to lipid peroxidation degree and activities of four enzymes related to oxidative stress, were quantified. The results indicated that XGOs significantly improved N. tabacum plants development after exposure to salt stress. XGOs caused a significant increase in NL and PRL, promoted lateral root formation, and produced an increase in proline and total chlorophyll contents, while reducing protein oxidation and lipid peroxidation. Although the XGOs modulated the activity of the enzymes analyzed, they were not statistically different from the salt control. It was concluded that XGOs may act as metabolic inducers that trigger the physiological responses that counteract the negative effects of oxidative stress under saline conditions.

  相似文献   

18.
Features of the interaction between cellulose and xyloglucan have been studied using the cellulose-producing bacterium Acetobacter aceti ssp. xylinum (ATCC 53524) and tamarind seed xyloglucan. Direct microscopic evidence is provided for the generation of cross-bridges between cellulose ribbons produced in the presence of xyloglucan but not carboxymethyl-cellulose. Cross-bridge lengths are very similar to those observed for de-pectinated onion cell walls. Similar cross-bridge lengths are observed following mixing of isolated A. xylinum cellulose and xyloglucan, showing that network formation can be an abiotic process. The level of incorporation of xyloglucan in an actively growing system (ca. 38% of cellulose) is an order of magnitude higher than that observed in mixtures of isolated polymers and is comparable with cell wall levels. NMR spectroscopy suggests that 80–85% of incorporated xyloglucan is segmentally rigid with the backbone adopting an extended ‘cellulosic’ conformation and probably aligned with cellulose chains. The remaining xyloglucan is more mobile and is assigned to cross-bridges with, on average, a twisted backbone conformation. No evidence for specific involvement of side-chain residues in binding is found, and the observation of cross-bridges with a non-fucosylated xyloglucan shows that fucose residues are not essential for network formation. Xyloglucan causes cellulose ribbons to become more amorphous and to have a decreased 1α/1β crystallite ratio without any significant alteration in ribbon diameter. Based on the findings that levels of xyloglucan incorporation, the presence and lengths of cross-bridges, and the modification of cellulosic molecular organization are all similar to those found in plant cell walls, we suggest that A. aceti ssp. xylinum is a more useful model for primary plant cell walls and their assembly than has previously been appreciated.  相似文献   

19.
This study focuses on the manufacture and characterization of model surfaces consisting of end-grafted xyloglucan (XG), a naturally occurring polysaccharide, onto a gold substrate. The now well-established XET-technology was utilized for enzymatic incorporation of a thiol moiety at one end of the xyloglucan backbone. This functionalized macromolecule was subsequently top-down grafted to gold, forming a thiol-bonded xyloglucan brushlike layer. The grafting was monitored in situ with QCM-D, and a significant difference in the adsorbed/grafted amount between unmodified xyloglucan and the thiol-functionalized polymer was observed. The grafted surface was demonstrated to be accessible to enzyme digestion using the plant endo-xyloglucanase TmNXG1. The nanotribological properties toward cellulose of the untreated crystal, brush-modified surface, and enzyme-exposed surfaces were compared with a view to understanding the role of xyloglucan in friction reduction. Friction coefficients obtained by the AFM colloidal probe technique using a cellulose functionalized probe on the xyloglucan brush showed an increase of a factor of 2 after the enzyme digestion, and this result is interpreted in terms of surface roughness. Finally, the brush is shown to exhibit binding to cellulose despite its highly oriented nature.  相似文献   

20.
Since xyloglucan is believed to bind to cellulose microfibrils in the primary cell walls of higher plants and, when isolated from the walls, can also bind to cellulose in vitro, the binding mechanism of xyloglucan to cellulose was further investigated using radioiodinated pea xyloglucan. A time course for the binding showed that the radioiodinated xyloglucan continued to be bound for at least 4 hours at 40°C. Binding was inhibited above pH 6. Binding capacity was shown to vary for celluloses of different origin and was directly related to the relative surface area of the microfibrils. The binding of xyloglucan to cellulose was very specific and was not affected by the presence of a 10-fold excess of (1→2)-β-glucan, (1→3)-β-glucan, (1→6)-β-glucan, (1→3, 1→4)-β-glucan, arabinogalactan, or pectin. When xyloglucan (0.1%) was added to a cellulose-forming culture of Acetobacter xylinum, cellulose ribbon structure was partially disrupted indicating an association of xyloglucan with cellulose at the time of synthesis. Such a result suggests that the small size of primary wall microfibrils in higher plants may well be due to the binding of xyloglucan to cellulose during synthesis which prevents fasciation of small fibrils into larger bundles. Fluorescent xyloglucan was used to stain pea cell wall ghosts prepared to contain only the native xyloglucan:cellulose network or only cellulose. Ghosts containing only cellulose showed strong fluorescence when prepared before or after elongation; as predicted, the presence of native xyloglucan in the ghosts repressed binding of added fluorescent xyloglucan. Such ghosts, prepared after elongation when the ratio of native xyloglucan:cellulose is substantially reduced, still showed only faint fluorescence, indicating that microfibrils continue to be coated with xyloglucan throughout the growth period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号