首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Theory suggests that intraspecific competition associated with direct competition between inbred and outbred individuals should be an important determinant of the severity of inbreeding depression. The reason is that, if outbred individuals are stronger competitors than inbred ones, direct competition should have a disproportionate effect on the fitness of inbred individuals. However, an individual's competitive ability is not only determined by its inbreeding status but also by competitive asymmetries that are independent of an individual's inbreeding status. When this is the case, such competitive asymmetries may shape the outcome of direct competition between inbred and outbred individuals. Here, we investigate the interface between age‐based competitive asymmetries within broods and direct competition between inbred and outbred offspring in the burying beetle Nicrophorus vespilloides. We found that inbred offspring had lower survival than outbred ones confirming that there was inbreeding depression. Furthermore, seniors (older larvae) grew to a larger size and had higher survival than juniors (younger larvae), confirming that there were age‐based competitive asymmetries. Nevertheless, there was no evidence that direct competition between inbred and outbred larvae exacerbated inbreeding depression, no evidence that inbreeding depression was more severe in juniors and no evidence that inbred juniors suffered disproportionately due to competition from outbred seniors. Our results suggest that direct competition between inbred and outbred individuals does not necessarily exacerbate inbreeding depression and that inbred individuals are not always more sensitive to poor and stressful conditions than outbred ones.  相似文献   

2.
Inbreeding depression is the reduction in fitness caused by mating between related individuals. Inbreeding is expected to cause a reduction in offspring fitness when the offspring themselves are inbred, but outbred individuals may also suffer a reduction in fitness when they depend on care from inbred parents. At present, little is known about the significance of such intergenerational effects of inbreeding. Here, we report two experiments on the burying beetle Nicrophorus vespilloides, an insect with elaborate parental care, in which we investigated inbreeding depression in offspring when either the offspring themselves or their parents were inbred. We found substantial inbreeding depression when offspring were inbred, including reductions in hatching success of inbred eggs and survival of inbred offspring. We also found substantial inbreeding depression when parents were inbred, including reductions in hatching success of eggs produced by inbred parents and survival of outbred offspring that received care from inbred parents. Our results suggest that intergenerational effects of inbreeding can have substantial fitness costs to offspring, and that future studies need to incorporate such costs to obtain accurate estimates of inbreeding depression.  相似文献   

3.
Inbreeding depression, or the reduction in fitness due to mating between close relatives, is a key issue in biology today. Inbreeding negatively affects many fitness‐related traits, including survival and reproductive success. Despite this, very few studies have quantified the effects of inbreeding on vertebrate gamete traits under controlled breeding conditions using a full‐sib mating approach. Here, we provide comprehensive evidence for the negative effect of inbreeding on sperm traits in a bird, the zebra finch Taeniopygia guttata. We compared sperm characteristics of both inbred (pedigree F = 0.25) and outbred (pedigree F = 0) individuals from two captive populations, one domesticated and one recently wild‐derived, raised under standardized conditions. As normal spermatozoa morphology did not differ consistently between inbred and outbred individuals, our study confirms the hypothesis that sperm morphology is not particularly susceptible to inbreeding depression. Inbreeding did, however, lead to significantly lower sperm motility and a substantially higher percentage of abnormal spermatozoa in ejaculate. These results were consistent across both study populations, confirming the generality and reliability of our findings.  相似文献   

4.
Infection can cause hosts to drastically alter their investment in key life‐history traits of reproduction and defence. Infected individuals are expected to increase investment in defence (e.g., by increasing immune function) and, due to trade‐offs, investment in other traits (e.g., current reproduction) should decrease. However, the terminal investment hypothesis postulates that decreased lifespan due to infection and the associated reduction in the expectation for future offspring will favour increased investment towards current reproduction. Variation in intrinsic condition will likely influence shifts in reproductive investment post‐infection, but this is often not considered in such assessments. For example, the extent of inbreeding can significantly impact an individual's lifetime fitness and may influence its reproductive behaviour following a threat of infection. Here, we investigated the effects of inbreeding status on an individual's reproductive investment upon infection, including the propensity to terminally invest. Male crickets (Gryllodes sigillatus) from four genetically distinct inbred lines and one outbred line were subjected to a treatment from an increasing spectrum of simulated infection cue intensities, using heat‐killed bacteria. We then measured reproductive effort (calling effort), survival and immune function (antibacterial activity, circulating haemocytes and haemocyte microaggregations). Inbred and outbred males diverged in how they responded to a low‐dose infection cue: relative to unmanipulated males, outbred males decreased calling effort, whereas inbred males increased calling effort. Moreover, we found that inbred males exhibited higher antibacterial activity and numbers of circulating haemocytes compared with outbred males. These results suggest that an individual's inbreeding status may have consequences for context‐dependent shifts in reproductive strategies, such as those triggered by infection.  相似文献   

5.
Inbreeding results from matings between relatives and can cause a reduction in offspring fitness, known as inbreeding depression. Previous work has shown that a wide range of environmental stresses, such as extreme temperatures, starvation and parasitism, can exacerbate inbreeding depression. It has recently been argued that stresses due to intraspecific competition should have a stronger effect on the severity of inbreeding depression than stresses due to harsh physical conditions. Here, we tested whether an increase in the intensity of sibling competition can exacerbate inbreeding depression in the burying beetle Nicrophorus vespilloides. We used a 2 × 3 factorial design with offspring inbreeding status (outbred or inbred) and brood size (5, 20, or 40 larvae) as the two factors. We found a main effect of inbreeding status, as inbred larvae had lower survival than outbred larvae, and a main effect of brood size, as larvae in large broods had lower survival and mass than larvae in medium‐sized broods. However, there was no effect of the interaction between inbreeding status and brood size, suggesting that sibling competition did not influence the severity of inbreeding depression. Since we focused on sibling competition within homogeneous broods of either inbred or outbred larvae, we cannot rule out possible effects of sibling competition on inbreeding depression in mixed paternity broods comprising of both inbred and outbred offspring. More information on whether and when sibling competition might influence inbreeding depression can help advance our understanding of the causes underlying variation in the severity of inbreeding depression.  相似文献   

6.
Inbreeding depression is defined as a fitness decline in progeny resulting from mating between related individuals, the severity of which may vary across environmental conditions. Such inbreeding‐by‐environment interactions might reflect that inbred individuals have a lower capacity for adjusting their phenotype to match different environmental conditions better, as shown in prior studies on developmental plasticity. Behavioural plasticity is more flexible than developmental plasticity because it is reversible and relatively quick, but little is known about its sensitivity to inbreeding. Here, we investigate effects of inbreeding on behavioural plasticity in the context of parent–offspring interactions in the burying beetle Nicrophorus vespilloides. Larvae increase begging with the level of hunger, and parents increase their level of care when brood sizes increase. Here, we find that inbreeding increased behavioural plasticity in larvae: inbred larvae reduced their time spent associating with a parent in response to the length of food deprivation more than outbred larvae. However, inbreeding had no effect on the behavioural plasticity of offspring begging or any parental behaviour. Overall, our results show that inbreeding can increase behavioural plasticity. We suggest that inbreeding‐by‐environment interactions might arise when inbreeding is associated with too little or too much plasticity in response to changing environmental conditions.  相似文献   

7.
Environmental changes may stress organisms and stimulate an adaptive phenotypic response. Effects of inbreeding often interact with the environment and can decrease fitness of inbred individuals exposed to stress more so than that of outbred individuals. Such an interaction may stem from a reduced ability of inbred individuals to respond plastically to environmental stress; however, this hypothesis has rarely been tested. In this study, we mimicked the genetic constitution of natural inbred populations by rearing replicate Drosophila melanogaster populations for 25 generations at a reduced population size (10 individuals). The replicate inbred populations, as well as control populations reared at a population size of 500, were exposed to a benign developmental temperature and two developmental temperatures at the lower and upper margins of their viable range. Flies developed at the three temperatures were assessed for traits known to vary across temperatures, namely abdominal pigmentation, wing size, and wing shape. We found no significant difference in phenotypic plasticity in pigmentation or in wing size between inbred and control populations, but a significantly higher plasticity in wing shape across temperatures in inbred compared to control populations. Given that the norms of reaction for the noninbred control populations are adaptive, we conclude that a reduced ability to induce an adaptive phenotypic response to temperature changes is not a general consequence of inbreeding and thus not a general explanation of inbreeding–environment interaction effects on fitness components.  相似文献   

8.
We investigate the effect of offspring and maternal inbreeding on maternal and offspring traits associated with early offspring fitness in the burying beetle Nicrophorus vespilloides. We conducted two experiments. In the first experiment, we manipulated maternal inbreeding only (keeping offspring outbred) by generating mothers that were outbred, moderately inbred or highly inbred. Meanwhile, in the second experiment, we manipulated offspring inbreeding only (keeping females outbred) by generating offspring that were outbred, moderately inbred or highly inbred. In both experiments, we monitored subsequent effects on breeding success (number of larvae), maternal traits (clutch size, delay until laying, laying skew, laying spread and egg size) and offspring traits (hatching success, larval survival, duration of larval development and average larval mass). Maternal inbreeding reduced breeding success, and this effect was mediated through lower hatching success and greater larval mortality. Furthermore, inbred mothers produced clutches where egg laying was less skewed towards the early part of laying than outbred females. This reduction in the skew in egg laying is beneficial for larval survival, suggesting that inbred females adjusted their laying patterns facultatively, thereby partially compensating for the detrimental effects of maternal inbreeding on offspring. Finally, we found evidence of a nonlinear effect of offspring inbreeding coefficient on number of larvae dispersing. Offspring inbreeding affected larval survival and larval development time but also unexpectedly affected maternal traits (clutch size and delay until laying), suggesting that females adjust clutch size and the delay until laying in response to being related to their mate.  相似文献   

9.
Inbreeding depression occurs when individuals who are closely related mate and produce offspring with reduced fitness. Although inbreeding depression is a genetic phenomenon, the magnitude of inbreeding depression can be influenced by environmental conditions and parental effects. In this study, we tested whether size-based parental effects influence the magnitude of inbreeding depression in an insect with elaborate and obligate parental care (the burying beetle, Nicrophorus orbicollis). We found that larger parents produced larger offspring. However, larval mass was also influenced by the interaction between parental body size and larval inbreeding status: when parents were small, inbred larvae were smaller than outbred larvae, but when parents were large this pattern was reversed. In contrast, survival from larval dispersal to adult emergence showed inbreeding depression that was unaffected by parental body size. Our results suggest that size-based parental effects can generate variation in the magnitude of inbreeding depression. Further work is needed to dissect the mechanisms through which this might occur and to better understand why parental size influences inbreeding depression in some traits but not others.  相似文献   

10.
The early developmental trajectory is affected by genetic and environmental factors that co‐depend and interact often in a complex way. In order to distinguish their respective roles, we used canaries (Serinus canaria) of different genetic backgrounds (inbred and outbred birds). An artificial size hierarchy was created to provoke within‐nest competition, manipulating postnatal conditions. To this end, inbred birds were weight‐matched with outbred birds into duos, and each nest contained one duo of size‐advantaged, and one duo of size‐disadvantaged inbred and outbred nestlings. Prenatal (maternal) effects were taken into account also, enabling us to study the separate as well as the interactive effects of inbreeding, pre‐ and postnatal conditions on nestling development. We find that postnatal conditions were the most important determinant of early growth, with size‐advantaged nestlings growing faster and obtaining larger size/body mass at fledging in comparison with size‐disadvantaged nestlings. Prenatal conditions were important too, with birds that hatched from eggs that were laid late in the laying order obtaining a larger size at fledging than those hatched from early laid eggs. Inbreeding inhibited growth, but surprisingly this did not depend on (dis)advantageous pre‐ or postnatal conditions. Our findings imply that inbred individuals lose when they are in direct competition with same‐sized outbred individuals regardless of the rearing conditions, and we thus propose that reduced competitiveness is one of the driving forces of inbreeding depression.  相似文献   

11.
Vermeulen CJ  Bijlsma R 《Heredity》2004,92(4):275-281
After an inbreeding event, lifespan can be curtailed through the expression of deleterious alleles. This will impact on both mortality patterns and interactions with the environment as visualised in reaction norms. We have established the effects of inbreeding on the temperature dependence of lifespan and on mortality patterns in Drosophila melanogaster. Four inbred lines displaying severely decreased lifespan and five outbred controls were assessed for male adult survival at three temperatures. As expected, all inbred lines showed a shorter lifespan than noninbred lines. The mechanisms behind this, however, appeared to be very diverse. Two inbred lines showed a significantly decreased temperature dependence of lifespan compared to the control lines. Analysis of variance on the mortality parameters over all lines showed that inbreeding changes the age-independent mortality but not the age-dependent mortality, whereas temperature does the opposite. This suggests that gene-by-environment interaction caused by inbreeding is the result of changes in the processes of lifespan determination. Importantly, for the two other inbred lines, a particular temperature regime triggered the expression of conditional lethal alleles. Mortality was concentrated in short lethal phases early in adult life. These conditionally expressed lethal alleles affecting lifespan demonstrate line specificity for inbreeding depression and will help ageing studies as such alleles may serve as candidate genes for ageing processes and age-related pathologies in humans.  相似文献   

12.
Inbreeding adversely affects life history traits as well as various other fitness‐related traits, but its effect on cognitive traits remains largely unexplored, despite their importance to fitness of many animals under natural conditions. We studied the effects of inbreeding on aversive learning (avoidance of an odour previously associated with mechanical shock) in multiple inbred lines of Drosophila melanogaster derived from a natural population through up to 12 generations of sib mating. Whereas the strongly inbred lines after 12 generations of inbreeding (0.75 < F < 0.93) consistently showed reduced egg‐to‐adult viability (on average by 28%), the reduction in learning performance varied among assays (average = 18% reduction), being most pronounced for intermediate conditioning intensity. Furthermore, moderately inbred lines (F = 0.38) showed no detectable decline in learning performance, but still had reduced egg‐to‐adult viability, which indicates that overall inbreeding effects on learning are mild. Learning performance varied among strongly inbred lines, indicating the presence of segregating variance for learning in the base population. However, the learning performance of some inbred lines matched that of outbred flies, supporting the dominance rather than the overdominance model of inbreeding depression for this trait. Across the inbred lines, learning performance was positively correlated with the egg‐to‐adult viability. This positive genetic correlation contradicts a trade‐off observed in previous selection experiments and suggests that much of the genetic variation for learning is owing to pleiotropic effects of genes affecting functions related to survival. These results suggest that genetic variation that affects learning specifically (rather than pleiotropically through general physiological condition) is either low or mostly due to alleles with additive (semi‐dominant) effects.  相似文献   

13.
The deleterious effects of inbreeding have been well documented, but only recently have studies begun to explore the consequences of inbreeding for important ecological interactions. We examined the effects of inbreeding on the interaction between host and pathogen using the mixed-mating Mimulus guttatus (Scrophulariaceae) and Cucumber mosaic virus (CMV). Inbred (self) and outbred M. guttatus from two California populations (M5 and M13) were rub-inoculated with CMV and compared to sham-inoculated controls. Flower production by outbred plants in host population M5 showed little effect of the inoculation treatment, but inoculation reduced flower production of inbred plants by 12%, indicating that inbreeding reduces tolerance to CMV infection. This interaction fell short of significance, however. The effects of inbreeding and CMV inoculation on biomass in M5 varied significantly across the 15 families used in this experiment, indicating genetic variation in the effect of inbreeding on resistance or tolerance to CMV. CMV infection reduced biomass in host population M13, but there were no significant interactions between virus treatment and level of inbreeding for either flower production or biomass. Enzyme linked immunosorbent assay (ELISA) was used to detect CMV in host tissues. In both populations, mean ELISA absorbance values of inoculated plants were nearly identical for self and outcross hosts, indicating equal susceptibility to CMV. In outbred plants of population M5, flower production did not change with increasing ELISA absorbance, but in inbred plants it declined, indicating reduced tolerance to CMV infection. The results from this study suggest that pathogens may become increasingly detrimental as host populations become more inbred.  相似文献   

14.
Do stressful conditions exacerbate inbreeding depression? Using Drosophila melanogaster, Schou et al. (2018) examine the mechanisms underlying the interaction between stress and inbreeding depression. The authors found that gene expression in inbred individuals was highly stochastic under benign conditions, but differential gene expression in inbred individuals was reduced compared to controls under stressful conditions.  相似文献   

15.
The consequences of population subdivision and inbreeding have been studied in many organisms, particularly in plants. However, most studies focus on the short‐term consequences, such as inbreeding depression. To investigate the consequences of both population fragmentation and inbreeding for genetic variability in the longer term, we here make use of a natural inbreeding experiment in spiders, where sociality and accompanying population subdivision and inbreeding have evolved repeatedly. We use mitochondrial and nuclear data to infer phylogenetic relationships among 170 individuals of Anelosimus spiders representing 23 species. We then compare relative mitochondrial and nuclear genetic variability of the inbred social species and their outbred relatives. We focus on four independently derived social species and four subsocial species, including two outbred–inbred sister species pairs. We find that social species have 50% reduced mitochondrial sequence divergence. As inbreeding is not expected to reduce genetic variability in the maternally inherited mitochondrial genome, this suggests the loss of variation due to strong population subdivision, founder effects, small effective population sizes (colonies as individuals) and lineage turnover. Social species have < 10% of the nuclear genetic variability of the outbred species, also suggesting the loss of genetic variability through founder effects and/or inbreeding. Inbred sociality hence may result in reduction in variability through various processes. Sociality in most Anelosimus species probably arose relatively recently (0.1–2 mya), with even the oldest social lineages having failed to diversify. This is consistent with the hypothesis that inbred spider sociality represents an evolutionary dead end. Heterosis underlies a species potential to respond to environmental change and/or disease. Inbreeding and loss of genetic variability may thus limit diversification in social Anelosimus lineages and similarly pose a threat to many wild populations subject to habitat fragmentation or reduced population sizes.  相似文献   

16.
Mating between relatives often results in inbreeding depression, and is assumed to have a strong effect on fitness traits such as fertility and gonad/gamete quality. However, data concerning this topic are contradictory and particularly scarce in fishes. Three‐spined sticklebacks (Gasterosteus aculeatus L.) show inbreeding depression in fertilization and hatching success, survival rates, body symmetry and behavioural traits. To date, any knowledge of the impact of inbreeding on males' gonads and gametes is lacking in this species. In the present study, testis and sperm traits were quantified in outbred and inbred males. Overall, these traits were not generally impaired by inbreeding, and this result was not changed by a second/third generation of brother–sister matings. However, testes brightness, a potential measure of oxidative stress, was negatively correlated with sperm number. Additionally, inbred males with higher body condition had significantly brighter testes, whereas their sperm number was significantly negatively correlated with sperm quality (as estimated by head volume). Such a trade‐off did not appear in outbred males. The comparatively small impact of inbreeding on testis and sperm traits might be explained by the low number of inbred individuals that reached the reproductive phase. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 107 , 510–520.  相似文献   

17.
The consequences of inbreeding have been well studied in a variety of taxa, revealing that inbreeding has major negative impacts in numerous species, both in captivity and in the wild; however, as trans-generational health data are difficult to obtain for long-lived, free-ranging species, similar analyses are generally lacking for nonhuman primates. Here, we examined the long-term effects of inbreeding on numerous health estimates in a captive colony of ring-tailed lemurs (Lemur catta), housed under semi-natural conditions. This vulnerable strepsirrhine primate is endemic to Madagascar, a threatened hotspot of biodiversity; consequently, this captive population represents an important surrogate. Despite significant attention to maintaining the genetic diversity of captive animals, breeding colonies invariably suffer from various degrees of inbreeding. We used neutral heterozygosity as an estimate of inbreeding and showed that our results reflect genome-wide inbreeding, rather than local genetic effects. In particular, we found that genetic diversity affects several fitness correlates, including the prevalence and burden of Cuterebra parasites and a third (N = 6) of the blood parameters analyzed, some of which reflect immunocompetence. As a final validation of inbreeding depression in this captive colony, we showed that, compared to outbred individuals, inbred lemurs were more likely to die earlier from diseases. Through these analyses, we highlight the importance of monitoring genetic variation in captive animals—a key objective for conservation geneticists—and provide insight into the potential negative consequences faced by small or isolated populations in the wild. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Populations forced through bottlenecks typically lose genetic variation and exhibit inbreeding depression. ‘Genetic rescue’ techniques that introduce individuals from outbred populations can be highly effective in reversing the deleterious effects of inbreeding, but have limited application for the majority of endangered species, which survive only in a few bottlenecked populations. We tested the effectiveness of using highly inbred populations as donors to rescue two isolated and bottlenecked populations of the South Island robin (Petroica australis). Reciprocal translocations significantly increased heterozygosity and allelic diversity. Increased genetic diversity was accompanied by increased juvenile survival and recruitment, sperm quality, and immunocompetence of hybrid individuals (crosses between the two populations) compared with inbred control individuals (crosses within each population). Our results confirm that the implementation of ‘genetic rescue’ using bottlenecked populations as donors provides a way of preserving endangered species and restoring their viability when outbred donor populations no longer exist.  相似文献   

19.
Because inbreeding is common in natural populations of plants and their herbivores, herbivore‐induced selection on plants, and vice versa, may be significantly modified by inbreeding and inbreeding depression. In a feeding assay with inbred and outbred lines of both the perennial herb, Vincetoxicum hirundinaria, and its specialist herbivore, Abrostola asclepiadis, we discovered that plant inbreeding increased inbreeding depression in herbivore performance in some populations. The effect of inbreeding on plant resistance varied among plant and herbivore populations. The among‐population variation is likely to be driven by variation in plant secondary compounds across populations. In addition, inbreeding depression in plant resistance was substantial when herbivores were outbred, but diminished when herbivores were inbred. These findings demonstrate that in plant–herbivore interactions expression of inbreeding depression can depend on the level of inbreeding of the interacting species. Furthermore, our results suggest that when herbivores are inbred, herbivore‐induced selection against self‐fertilisation in plants may diminish.  相似文献   

20.
N S H Tien  M W Sabelis  M Egas 《Heredity》2015,114(3):327-332
Compared with diploid species, haplodiploids suffer less inbreeding depression because male haploidy imposes purifying selection on recessive deleterious alleles. However, alleles of genes only expressed in the diploid females are protected in heterozygous individuals. This leads to the prediction that haplodiploids suffer more from inbreeding effects on life-history traits controlled by genes with female-limited expression. To test this, we used a wild population of the haplodiploid mite Tetranychus urticae. First, negative effects of inbreeding were investigated by comparing maturation rate, juvenile survival, oviposition rate and longevity between lines created by three generations of either outbreeding or mother–son inbreeding. Second, purging through inbreeding was investigated by comparing the intensity of inbreeding depression between outbred families with known inbreeding/outbreeding mating histories. Negative effects of inbreeding and evidence for purging were found for the female trait oviposition rate, but not for juvenile survival and longevity. Both male and female maturation rate were negatively affected by inbreeding, most likely due to maternal effects because inbred offspring of outbred mothers was not affected. These results support the hypothesis that, in haplodiploids inbreeding effects and genetic variation due to deleterious recessive alleles may depend on gender.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号