首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The rat PC12 pheochromocytoma cell line exhibits biological responses to both nerve growth factor (NGF) and epidermal growth factor (EGF). The existence of receptors and biological responses on a common cell for these two well-characterized polypeptide growth factors makes this an attractive system for comparison of ligand binding and processing. Both NGF and EGF are bound to PC12 cells in a competable form at 4 degrees C. At 37 degrees C both ligands are "sequestered," but at different rates and to different extents. While sequestration happens rapidly and nearly quantitatively for bound EGF, the dissociation reaction appears to compete favorably with NGF sequestration. Both EGF and NGF are degraded by PC12 cells. Sequestered EGF, however, is degraded to a greater extent than sequestered NGF.  相似文献   

2.
We have studied the effects of nerve growth factor (NGF) and basic fibroblast growth factor (bFGF) on epidermal growth factor (EGF) binding to PC12 cells. We show that NGF and bFGF rapidly induce a reduction in 125I-EGF binding to PC12 cells in a dose-dependent manner. This decrease amounts to 50% for NGF and 35% for bFGF. Both factors appear to act through a protein kinase C(PKC)-independent pathway, because their effect persists in PKC-downregulated PC12 cells. Scatchard analysis indicates that NGF and bFGF decrease the number of high affinity EGF binding sites. In addition to their effect on EGF binding, NGF and bFGF activate in intact PC12 cells one or several serine/threonine kinases leading to EGF receptor threonine phosphorylation. Using an in vitro phosphorylation system, we show that NGF- or bFGF-activated extracellular regulated kinase 1 (ERK1) is able to phosphorylate a kinase-deficient EGF receptor. Phosphoamino acid analysis indicates that this phosphorylation occurs mainly on threonine residues. Furthermore, two comparable phosphopeptides are observed in the EGF receptor, phosphorylated either in vivo after NGF treatment or in a cell-free system by NGF-activated ERK1. Finally, a good correlation was found between the time courses of ERK1 activation and 125I-EGF binding inhibition after NGF or bFGF treatment. In conclusion, in PC12 cells the NGF- and bFGF-stimulated ERK1 appears to be involved in the induction of the threonine phosphorylation of the EGF receptor and the decrease in the number of high affinity EGF binding sites.  相似文献   

3.
We have investigated the roles of pp60c-src and p21c-ras proteins in transducing the nerve growth factor (NGF) and fibroblast growth factor (FGF) signals which promote the sympathetic neuronlike phenotype in PC12 cells. Neutralizing antibodies directed against either Src or Ras proteins were microinjected into fused PC12 cells. Each antibody both prevented and reversed NGF- or FGF-induced neurite growth, a prominent morphological marker for the neuronal phenotype. These data demonstrate the involvement of both pp60c-src and p21c-ras proteins in NGF and FGF actions in PC12 cells, and establish a physiological role for the pp60c-src tyrosine kinase in signal transduction pathways initiated by receptor tyrosine kinases in these cells. Additional microinjection experiments, using PC12 transfectants containing inducible v-src or ras oncogene activities, demonstrated a specific sequence of Src and Ras actions. Microinjection of anti-Ras antibody blocked v-src-induced neurite growth, but microinjection of anti-Src antibodies had no effect on ras oncogene-induced neurite growth. We propose that a cascade of Src and Ras actions, with Src acting first, is a significant feature of the signal transduction pathways for NGF and FGF. The Src-Ras cascade may define a functional cassette in the signal transduction pathways used by growth factors and other ligands whose receptors have diverse structures and whose range of actions on various cell types include mitogenesis and differentiation.  相似文献   

4.
Rat pheochromocytoma cells (clone PC12) respond to nerve growth factor (NGF) by the acquirement of a phenotype resembling neuronal cells. In an earlier study we showed that NGF causes an increase in Na+,K+ pump activity, as monitored by ouabain-sensitive Rb+ influx. Here we show that addition of epidermal growth factor (EGF) to PC12 cells resulted in a stimulation of Na+,K+ pump activity as well. The increase of Na+,K+ pump activity by NGF or EGF was due to increased Na+ influx. This increased Na+ influx was sensitive to amiloride, an inhibitor of Na+,H+ exchange. Furthermore, no changes in membrane potential were observed upon addition of NGF or EGF. Amiloride-sensitive Na+,H+ exchange in PC12 cells was demonstrated by H+ efflux measurements and the effects of weak acids on Na+ influx. These observations suggest that both NGF and EGF activate an amiloride-sensitive, electroneutral Na+,H+ exchange mechanism in PC12 cells. These findings were surprising in view of the opposite ultimate biological effects of NGF and EGF, e.g., growth arrest vs. growth stimulation. However, within 24 h after addition, NGF was found to stimulate growth of PC12 cells, comparable to EGF. In the presence of amiloride, this stimulated growth by NGF and EGF was abolished. In contrast, amiloride did not affect NGF-induced neurite outgrowth of PC12 cells. From these observations it is concluded that in PC12 cells: (a) NGF has an initial growth stimulating effect; (b) neurite outgrowth is independent of increased amiloride-sensitive Na+ influx; and (c) growth stimulation by NGF and EGF is associated with increased amiloride-sensitive Na+ influx.  相似文献   

5.
Immunohistochemical demonstration of epidermal growth factor (EGF) and nerve growth factor (NGF) was made during chemical carcinogenesis in the mouse submandibular gland. The granular convoluted tubule cells in the normal male submandibular gland contained larger amounts of EGF and NGF than in the female. The initial phase and early stages in chemical carcinogenesis showed degranulation of the granular convoluted tubule cells with a marked decrease in EGF and NGF. Premalignant lesions such as duct-like structures and multicystic lesions showed variable staining for EGF and were usually negative for NGF. Material secreted into the luminal spaces revealed increased staining for EGF and NGF. Scattered tumor cells of the poorly differentiated squamous-cell carcinoma type and desquamated tumor cells contained abundant EGF, but not NGF. No positive reaction for EGF or NGF was found in the induced squamous-cell carcinoma cells.  相似文献   

6.
Prostate glands of adult guinea pigs were stained for nerve growth factor (NGF) and epidermal growth factor (EGF) by immunohistochemical methods. Both NGF and EGF were localized diffusely in the cytoplasm of the glandular epithelial cells, and also in their secretory products. These findings suggest that NGF and EGF are synthesized, stored, and secreted by the glandular epithelial cells of the prostate.  相似文献   

7.
8.
In PC12 cells, a well studied model for neuronal differentiation, an elevation in the intracellular cAMP level increases cell survival, stimulates neurite outgrowth, and causes activation of extracellular signal-regulated protein kinase 1 and 2 (ERK1/2). Here we show that an increase in the intracellular cAMP concentration induces tyrosine phosphorylation of two receptor tyrosine kinases, i.e. the epidermal growth factor (EGF) receptor and the high affinity receptor for nerve growth factor (NGF), also termed Trk(A). cAMP-induced tyrosine phosphorylation of the EGF receptor is rapid and correlates with ERK1/2 activation. It occurs also in Panc-1, but not in human mesangial cells. cAMP-induced tyrosine phosphorylation of the NGF receptor is slower and correlates with Akt activation. Inhibition of EGF receptor tyrosine phosphorylation, but not of the NGF receptor, reduces cAMP-induced neurite outgrowth. Expression of dominant-negative Akt does not abolish cAMP-induced survival in serum-free media, but increases cAMP-induced ERK1/2 activation and neurite outgrowth. Together, our results demonstrate that cAMP induces dual signaling in PC12 cells: transactivation of the EGF receptor triggering the ERK1/2 pathway and neurite outgrowth; and transactivation of the NGF receptor promoting Akt activation and thereby modulating ERK1/2 activation and neurite outgrowth.  相似文献   

9.
Summary Prostate glands of adult guinea pigs were stained for nerve growth factor (NGF) and epidermal growth factor (EGF) by immunohistochemical methods. Both NGF and EGF were localized diffusely in the cytoplasm of the glandular epithelial cells, and also in their secretory products. These findings suggest that NGF and EGF are synthesized, stored, and secreted by the glandular epithelial cells of the prostate.  相似文献   

10.
In PC12 cells, epidermal growth factor (EGF) transiently stimulates the mitogen-activated protein (MAP) kinases, ERK1 and ERK2, and provokes cellular proliferation. In contrast, nerve growth factor (NGF) stimulation leads to the sustained activation of the MAPKs and subsequently to neuronal differentiation. It has been shown that both the magnitude and longevity of MAPK activation governs the nature of the cellular response. The activations of MAPKs are dependent upon two distinct small G-proteins, Ras and Rap1, that link the growth factor receptors to the MAPK cascade by activating c-Raf and B-Raf, respectively. We found that Ras was transiently stimulated upon both EGF and NGF treatment of PC12 cells. However, EGF transiently activated Rap1, whereas NGF stimulated prolonged Rap1 activation. The activation of the ERKs was due almost exclusively (>90%) to the action of B-Raf. The transient activation of the MAPKs by EGF was a consequence of the formation of a short lived complex assembling on the EGF receptor itself, composed of Crk, C3G, Rap1, and B-Raf. In contrast, NGF stimulation of the cells resulted in the phosphorylation of FRS2. FRS2 scaffolded the assembly of a stable complex of Crk, C3G, Rap1, and B-Raf resulting in the prolonged activation of the MAPKs. Together, these data provide a signaling link between growth factor receptors and MAPK activation and a mechanistic explanation of the differential MAPK kinetics exhibited by these growth factors.  相似文献   

11.
Src family kinases are involved in transducing growth factor signals for cellular differentiation and proliferation in a variety of cell types. The activity of all Src family kinases (SFKs) is controlled by phosphorylation at their C-terminal 527-tyrosine residue by C-terminal SRC kinase, CSK. There is a paucity of information regarding the role of CSK and/or specific Src family kinases in neuronal differentiation. Pretreatment of PC12 cells with the Src family kinase inhibitor, PP1, blocked NGF-induced activation of SFKs and obliterated neurite outgrowth. To confirm a role for CSK and specific isoforms of SFKs in neuronal differentiation, we overexpressed active and catalytically dead CSK in the rat pheochromocytoma cell line, PC12. CSK overexpression caused a profound inhibition of NGF-induced activation of FYN, YES, RAS, and ERK and inhibited neurite outgrowth, NGF-stimulated integrin-directed migration and blocked the NGF-induced conversion of GDP-RAC to its GTP-bound active state. CSK overexpression markedly augmented the activation state of AKT following NGF stimulation. In contrast, kinase-dead CSK augmented the activation of FYN, RAS, and ERK and increased neurite outgrowth. These data suggest a distinct requirement for CSK in the regulation of NGF/TrkA activation of RAS, RAC, ERK, and AKT via the differential control of SFKs in the orchestration of neuronal differentiation.  相似文献   

12.
Cells of the rat pheochromocytoma clone PC12 possess receptors for both nerve growth factor (NGF) and epidermal growth factor (EGF), thus enabling the study of the interaction of these receptors in the regulation of proliferation and differentiation. Treatment of the cells with NGF induces a progressive and nearly total decrease in the specific binding of EGF beginning after 12 h and completed within 4 d. Three different measures of receptor show that the decreased binding capacity represents, in fact, a decreased amount of receptor: (a) affinity labeling of PC12 cell membranes by cross-linking of receptor-bound 125I-EGF showed a 60-90% decrease in the labeling of 170- and 150-kD receptor bands in cells treated with NGF for 1-4 d; (b) EGF-dependent phosphorylation of a src-related synthetic peptide or EGF receptor autophosphorylation with membranes from NGF-differentiated cells showed a decrease of 80 and 90% in the tyrosine kinase activity for the exogenous substrate and for receptor autophosphorylation, respectively; (c) analysis of 35S-labeled glycoproteins isolated by wheat germ agglutinin-Sepharose chromatography from detergent extracts of PC12 membranes showed a 70-90% decrease in the 170-kD band in NGF-differentiated cells. These findings permit the hypothesis that long-term heterologous down-regulation of EGF receptors by NGF in PC12 cells is mediated by an alteration in EGF receptor synthesis. It is suggested that this heterologous down-regulation is part of the mechanism by which differentiating cells become insensitive to mitogens.  相似文献   

13.
Scanning and transmission electron microscopic studies were carried out on the rapid cell surface response of PC12 pheochromocytoma cells to treatment with nerve growth factor (NGF), epidermal growth factor (EGF), and dibutyryl cyclic AMP. EGF induced a rapidly initiated series of surface changes identical to those previously observed with NGF. Ruffles appear over the dorsal surface of the cells by 30 s, are prominent at 3 min, and are absent by 7 min. Microvilli disappear as dorsal ruffles become prominent. Peripheral ruffles are seen by 3 min, are prominent on most of the cells by 7 min, and are virtually absent by 15 min. Large blebs are present on 50% of the cells by 2 h and are markedly decreased by 4 h. Within 30 s after NGF or EGF addition, an increase in the density of 60-130-nm coated pits per unit membrane is detectable. This reaches a maximum of two- to threefold in from 1 to 3 min and gradually decreases. Combined treatment with NGF and EGF increases surface ruffling and, after an early peak in coated pits which at 3 min is similar in magnitude to that observed for the separately administered factors, maintains a greater number of pits per unit area than either treatment alone. 3-d pretreatment with NGF greatly reduces the response of the cells to EGF both with respect to surface ruffling and coated pit formation while 4-h NGF pretreatment has no effect on the EGF response. Dibutyryl cyclic AMP induced none of the rapidly onsetting changes caused by NGF or EGF, and therefore it seems unlikely that cyclic AMP mediates these surface changes. Changes in cell surface architecture induced by NGF and EGF on PC12 cells and by NGF in normal sympathetic neurons (as previously described) indicates that such responses may be a widespread phenomenon associated with the interaction of at least some peptide growth factors/hormones with their receptors. These responses may represent or reflect primary events in the mechanism by which these factors act.  相似文献   

14.
Nerve growth factor (NGF) has previously been shown to increase the rate of adhesion of PC-12 pheochromocytoma cells to cell culture dishes. This increase in the rate of adhesion was postulated to be important in NGF-mediated neurite outgrowth. We now report that epidermal growth factor (EGF) is also able to increase the rate of adhesion of PC-12 cells to cell culture dishes, but does not elicit neurite outgrowth. The dose-response curve for EGF is bell-shaped, in contrast to the more classically shaped dose-response curve obtained with NGF. Tetradecanoyl-phorbol-acetate (TPA), a potent tumor promoter, blocks the EGF-induced increase in adhesion rate of PC-12 cells, but does not alter the NGF-induced increase in adhesion rate. TPA shifts the EGF binding curve to the right for PC-12 cells, but does not alter maximal EGF binding at saturating concentrations of EGF. The binding of NGF to PC-12 cells is not affected by TPA. NGF-induced neurite formation by PC-12 cells is unaffected by TPA, in contrast to the previously reported delay of neurite outgrowth of serum-deprived neuroblastoma cells and NGF-exposed chick embryonic ganglia cells. NGF and EGF both cause a decrease in the number of short microvilli and an increase in the number of long microvilli on PC-12 cells. TPA blocks the decrease in the number of short microvilli in EGF-treated cells, but not in NGF-treated cells. Long microvilli formation is blocked by TPA in both conditions, suggesting the latter are not involved in the increased adhesion rates.  相似文献   

15.
Rat pheochromocytoma (PC12) cells contain specific plasma membrane receptors for both epidermal growth factor (EGF) and nerve growth factor (NGF). Whereas EGF addition to PC12 cells causes a persistent enhancement of proliferation. NGF addition induces a transient stimulation of growth, followed by growth arrest and neuronal differentiation. Despite these differences in biological response, EGF and NGF share a number of early receptor-mediated responses, which are likely te be related to their effect on cell proliferation. In this paper we show that EGF, but not NGF, is able to stimulate the phosphorylation of membrane proteins. In addition, EGF was able to stimulate phosphorylation of a synthetic peptide (RR-SRC) by PC12 membranes in a concentration-dependent manner. Kinetic analysis of the phosphorylation reaction indicated that EGF increased the Vmax from 13 to 70 pmoles/min/mg protein, while no change was observed in Km. Furthermore, EGF was able to stimulate tyrosine phosphorylation of angiotensin I and II, to the same extent as RR-SRC. In contrast no effects of NGF on peptide phosphorylation by PC12 membranes were observed. Cross-linking experiments demonstrated the presence of receptors for both NGF and EGF in PC12 membranes. These different effects of NGF and EGF on activation of membrane-associated protein-kinase activity demonstrate that NGF might be able to stimulate growth transiently without stimulating protein kinase activity.  相似文献   

16.
Estrogens and androgens exert many biological effects that do not require interactions of their receptors with chromosomal DNA. However, it has been a long-standing question how the sex steroid receptors provoke signal transduction outside the nucleus. Here we have shown that epidermal growth factor (EGF) directs sex-specific steroid signaling through Src activation. We have revealed that estrogen (E2)-induced Src activation takes place in, not only plasma, but also endomembranes. This was found ascribed to the existence of EGF and the occurrence of EGF receptor (EGFR)-involved endocytosis of estrogen receptor together with Src. EGFR, estrogen receptor, and Src were found to form a complex upon E2 stimulation. The cell growth of breast cancer-derived MCF-7 cells was found to remarkably increase through the above EGF-involved estrogen-signaling process. In contrast, the androgen 5alpha-dihydrotestosterone-induced Src activation occurs only in the plasma membrane free from the interaction of EGFR with androgen receptor, irrespective of EGF. The cell growth occurred only moderately as a result. The spatial difference in Src activation between E2 and 5alpha-dihydrotestosterone may be responsible for the different extent of observed cell growth.  相似文献   

17.
The Src family of protein tyrosine kinases have been implicated in the response of cells to several ligands. These include platelet-derived growth factor (PDGF), epidermal growth factor (EGF), and colony stimulating factor type 1 (CSF-1, in macrophages and in fibroblasts engineered to express the receptor). We recently described a microinjection approach which we used to demonstrate that Src family kinases are required for PDGF-induced S phase entry of fibroblasts. We now use this approach to ask whether other ligands also require Src kinases to stimulate cells to replicate DNA. An antibody specific for the carboxy terminus of Src, Fyn, and Yes (anti-cst.1) inhibited Src kinase activity in vitro and caused morphological reversion of Src transformed cells in vivo. Microinjection of this antibody was used to demonstrate that Src kinases were required for both CSF-1 and EGF to drive cells into the S phase. Expression of a kinase-inactive form of Src family kinases also prevented EGF- and CSF-1-stimulated DNA synthesis. However, even though the Src family kinases were necessary for both PDGF- and EGF-induced DNA synthesis in Swiss 3T3 cells, the responses to two other potent growth factors for these cells, lysophosphatidic acid and bombesin, were unaffected by the neutralizing antibodies. Therefore, some but not all growth factors required functional Src family kinases to transmit mitogenic responses.  相似文献   

18.
1. Exposure of PC12 cells to nerve growth factor (NGF) induces an early tyrosine phosphorylation of many proteins, a number of which is still unidentified. Although NGF is known to bind to and activate the receptor tyrosine kinase TrkA, many downstream targets of NGF signaling may be possibly phosphorylated by nonreceptor tyrosine kinases such as c-Src and focal adhesion kinase (FAK). 2. In the present study, exposure of TrkA-overexpressing PC12 cells to NGF is found to cause a rapid and sustained loss in the recovery of a subpopulation of nominally active FAK (i.e., being autophosphorylated on the positive site of regulation). 3. Consistent with the possibility that NGF induces the proteolysis of FAK via recruitment of Src family kinases, the use of various phosphorylation site-specific anti-FAK antibodies revealed an NGF-inducible and PP1-sensitive accumulation of a putative fragment (i.e., p62) of FAK. Significantly, the mitogenic epidermal growth factor (EGF) failed to induce the downregulation of FAK and the accumulation of tyrosine phosphorylated p62. Such differential response of FAK to NGF and EGF may shape the specificity by which these growth factors control the status of cell-matrix adhesion and the adhesion-driven signaling.  相似文献   

19.
Rat pheochromocytoma cells (clone PC12) possess functional surface receptors for both nerve growth factor (NGF) and epidermal growth factor (EGF). PC12 cells respond to NGF as well as to dibutyryl cyclic AMP (dbcAMP) by arrest of cell proliferation and initiation of morphological differentiation, while EGF acts as a mitogen. Exposure of PC12 cells to NGF for several days resulted in a complete loss of rapid EGF responses, such as membrane ruffling and activation of active K+ transport. EGF binding studies revealed that this loss of EGF responses was due to an almost complete reduction of the number of EGF binding sites. In contrast, exposure of PC12 cells to dbcAMP for 2 days did not affect the rapid EGF responses, despite the morphological differentiation. Moreover, EGF binding studies demonstrated a twofold increase in the number of high-affinity binding sites and a small increase in the number of low-affinity sites. In addition, exposure of the cells to dbcAMP caused a twofold increase of EGF-receptor phosphotyrosine kinase activity. These results indicate that neither EGF-binding or the presence of EGF receptors nor the rapid EGF responses are sufficient for persistent proliferation, on one hand, or sufficient to avoid morphological differentiation, on the other.  相似文献   

20.
We have previously described the isolation of a clonal cell line (PC-G2) in which the level of tyrosine hydroxylase (TH), the rate-limiting step in the synthesis of the catecholamine neurotransmitters, is induced by nerve growth factor (NGF). We now report that epidermal growth factor (EGF) also induces TH in the PC-G2 cell line. Although EGF has been shown to be mitogenic for many cultured cells, no neuronal function has been previously reported for this protein. The TH response to EGF is elicited in a dose-dependent fashion at concentrations as low as 0.1 ng/ml and is maximal at 10 ng/ml EGF. The maximal response is observed after 3--4 d of exposure to 10 ng/ml EGF. The induction by NGF and EGF is inhibited by their respective antisera. Dexamethasone, a synthetic glucocorticoid which we have previously shown modulates the response of PC-G2 cells to NGF, also modulates the TH induction elicited by EGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号