首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tatebayashi K  Tani T  Ikeda H 《Genetics》2001,157(4):1513-1522
We have cloned and characterized the Schizosaccharomyces pombe gene mog1(+), which encodes a protein with homology to the Saccharomyces cerevisiae Mog1p participating in the Ran-GTPase system. The S. pombe Mog1p is predominantly localized in the nucleus. In contrast to the S. cerevisiae MOG1 gene, the S. pombe mog1(+) gene is essential for cell viability. mog1(+) is required for the mitosis-to-interphase transition, as the mog1-1 mutant arrests at restrictive temperatures as septated, binucleated cells with highly condensed chromosomes and an aberrant nuclear envelope. FACS analysis showed that these cells do not undergo a subsequent round of DNA replication. Surprisingly, also unlike the Delta mog1 mutation in S. cerevisiae, the mog1-1 mutation causes nucleolar accumulation of poly(A)(+) RNA at the restrictive temperature in S. pombe, but the signals do not overlap with the fibrillarin-rich region of the nucleolus. Thus, we found that mog1(+) is required for the mitosis-to-interphase transition and a class of RNA metabolism. In our attempt to identify suppressors of mog1-1, we isolated the spi1(+) gene, which encodes the fission yeast homologue of Ran. We found that overexpression of Spi1p rescues the S. pombe Delta mog1 cells from death. On the basis of these results, we conclude that mog1(+) is involved in the Ran-GTPase system.  相似文献   

2.
Topoisomerases catalyse changes in the topological state of DNA and are required for many aspects of DNA metabolism. While the functions of topoisomerases I and II in eukaryotes are well established, the role of topoisomerase III remains poorly defined. We have identified a gene in the fission yeast Schizosaccharomyces pombe, designated top3 (+), which shows significant sequence similarity to genes encoding topoisomerase III enzymes in other eukaryotic species. In common with murine TOP3 alpha, but in contrast to Saccharomyces cerevisiae TOP3, the S.pombe top3 (+)gene is essential for long-term cell viability. Fission yeast haploid spores containing a disrupted top3 (+)gene germinate successfully, but then undergo only a limited number of cell divisions. Analysis of these top3 mutants revealed evidence of aberrant mitotic chromosome segregation, including the 'cut' phenotype, where septation is completed prior to nuclear division. Consistent with the existence of an intimate association (originally identified in S.cerevisiae ) between topoisomerase III and DNA helicases of the RecQ family, deletion of the rqh1 (+)gene encoding the only known RecQ helicase in S.pombe suppresses lethality in top3 mutants. This conservation of genetic interaction between two widely diverged yeasts suggests that the RecQ family helicases encoded by the Bloom's and Werner's syndrome genes are likely to act in concert with topoisomerase III isozymes in human cells. Our data are consistent with a model in which the association of a RecQ helicase and topoisomerase III is important for facilitating decatenation of late stage replicons to permit faithful chromosome segregation during anaphase.  相似文献   

3.
4.
The initiation of eukaryotic DNA replication is preceded by the assembly of prereplication complexes (pre-RCs) at chromosomal origins of DNA replication. Pre-RC assembly requires the essential DNA replication proteins ORC, Cdc6, and Cdt1 to load the MCM DNA helicase onto chromatin. Saccharomyces cerevisiae Noc3 (ScNoc3), an evolutionarily conserved protein originally implicated in 60S ribosomal subunit trafficking, has been proposed to be an essential regulator of DNA replication that plays a direct role during pre-RC formation in budding yeast. We have cloned Schizosaccharomyces pombe noc3(+) (Spnoc3(+)), the S. pombe homolog of the budding yeast ScNOC3 gene, and functionally characterized the requirement for the SpNoc3 protein during ribosome biogenesis, cell cycle progression, and DNA replication in fission yeast. We showed that fission yeast SpNoc3 is a functional homolog of budding yeast ScNoc3 that is essential for cell viability and ribosome biogenesis. We also showed that SpNoc3 is required for the normal completion of cell division in fission yeast. However, in contrast to the proposal that ScNoc3 plays an essential role during DNA replication in budding yeast, we demonstrated that fission yeast cells do enter and complete S phase in the absence of SpNoc3, suggesting that SpNoc3 is not essential for DNA replication in fission yeast.  相似文献   

5.
6.
A 0.7-kbp DNA fragment from bacteriophage P4 that contained the polarity suppression (psu) gene was cloned in an expression plasmid. Induction of the plasmid-borne psu gene resulted in the overproduction of a protein having the biological properties of the P4-induced polarity suppressor. In vivo, Psu protein acted in trans to suppress rho-dependent polarity in the late genes of an infecting P2 phage, in plasmid operons, and in the host chromosome. Psu action did not require the presence of other P2 or P4 phage genes. Psu caused efficient readthrough (antitermination) by Escherichia coli RNA polymerase at the rho-dependent terminators tR1 and TIS2, individually and in tandem, but did not affect termination at rho-independent sites. Neither the conserved antitermination sequence boxA nor any unique promoter or utilization sequence was required for Psu activity.  相似文献   

7.
The cmk2 gene of Schizosaccharomyces pombe encodes a 504 amino acid protein kinase with sequence homology with the calmodulin-dependent protein kinase family. The cmk2(+) gene is not essential for cell viability but overexpression of cmk2(+) blocks the cell cycle at G2 phase and this inhibition is cdc2-dependent. The Cmk2 is a cytoplasmic protein expressed in a cell cycle-dependent manner, peaking at the G1/S boundary. Overexpression of Cmk2 suppresses fission yeast DNA replication checkpoint defects but not DNA damage checkpoint defects, suggesting that the G2 cell cycle arrest mediated by high levels of Cmk2 provides sufficient time to correct DNA replication alterations.  相似文献   

8.
The fission yeast Schizosaccharomyces pombe attaches an outer chain containing mannose and galactose to the N-linked oligosaccharides on many of its glycoproteins. We identified an S. pombe och1 mutant that did not synthesize the outer chains on acid phosphatase. The S. pombe och1(+) gene was a functional homolog of Saccharomyces cerevisiae OCH1, and its gene product (SpOch1p) incorporated alpha-1,6-linked mannose into pyridylaminated Man(9)GlcNAc(2), indicating that och1(+) encodes an alpha-1,6-mannosyltransferase. Our results indicate that SpOch1p is a key enzyme of outer chain elongation. The substrate specificity of SpOch1p was different from that of S. cerevisiae OCH1 gene product (ScOch1p), suggesting that SpOch1p may have a wider substrate specificity than that of ScOch1p.  相似文献   

9.
J. B. Keeney  J. D. Boeke 《Genetics》1994,136(3):849-856
Homologous integration into the fission yeast Schizosaccharomyces pombe has not been well characterized. In this study, we have examined integration of plasmids carrying the leu1(+) and ura4(+) genes into their chromosomal loci. Genomic DNA blot analysis demonstrated that the majority of transformants have one or more copies of the plasmid vector integrated via homologous recombination with a much smaller fraction of gene conversion to leu1(+) or ura4(+). Non-homologous recombination events were not observed for either gene. We describe the construction of generally useful leu1(+) and ura4(+) plasmids for targeted integration at the leu1-32 and ura4-294 loci of S. pombe.  相似文献   

10.
The RNA1 gene from Saccharomyces cerevisiae is defined by the temperature-sensitive rna1-1 mutation that interferes with the maturation and/or nucleocytoplasmic transport of RNA. We describe the purification of a 44-kDa protein from the evolutionary distant fission yeast Schizosaccharomyces pombe and the cloning and sequence analysis of the corresponding gene. Although this protein shares only 42% sequence identity with the RNA1 gene product, it represents a functional homologue because the expression of the S. pombe gene in S. cerevisiae complements the rna1-1 defect. Disruption in S. pombe of the gene encoding the 44-kDa protein, for which we propose the name S. pombe rna1p, reveals that it is essential for growth. Our analysis of purified S. pombe rna1p represents the first biochemical characterization of an RNA1 gene product and reveals that it is a monomeric protein of globular shape. Cell fractionation and immunofluorescence microscopy indicate that rna1p is a cytoplasmic protein possibly enriched in the nuclear periphery. We identify a sequence motif of 29 residues, which is rich in leucine and repeated eight times both in S. pombe and in S. cerevisiae rna1p. Similar leucine-rich repeats present in a series of other proteins, e.g., the mammalian ribonuclease/angiogenin inhibitor, adenylyl cyclase from S. cerevisiae, the toll protein from Drosophila melanogaster, and the sds22 protein phosphatase regulatory subunit from S. pombe, are thought to be involved in protein-protein interactions. Thus rna1p may act as a scaffold protein possibly interacting in the nuclear periphery with a protein ligand that could be associated with exported RNA.  相似文献   

11.
The Saccharomyces cerevisiae nuclear gene OXA1, which is conserved from prokaryotes to human, was shown to be essential for cytochrome c oxidase and F1F0-ATP synthase biogenesis. We have searched for an orthologue of OXA1 in Schizosaccharomyces pombe, another yeast that is highly diverged from S. cerevisiae and which could more closely model higher eukaryotes. In particular, S. pombe exhibits a limited growth under anaerobic conditions and is petite negative, that is it does not tolerate large deletions of its mitochondrial DNA. Surprisingly, two S. pombe cDNAs able to complement an S. cerevisiae oxa1 mutation were isolated. The corresponding genes have different chromosomal locations and intron contents. They encode distinct proteins, both sharing a weak sequence identity one with the other and with Oxa1p. A phenotypic analysis of both single inactivations demonstrates that only one gene is essential for respiration in S. pombe. However, the double inactivation is lethal. This work gives new insight into the dependence of S. pombe viability upon oxa1 function, providing evidence of a connection between petite negativity, a functional respiratory chain and F1F0-ATP synthase complex in S. pombe.  相似文献   

12.
The trk1(+) gene has been proposed as a component of the K(+) influx system in the fission yeast Schizosaccharomyces pombe. Previous work from our laboratories revealed that trk1 mutants do not show significantly altered content or influx of K(+), although they are more sensitive to Na(+). Genome database searches revealed that S. pombe encodes a putative gene (designated here trk2(+)) that shows significant identity to trk1(+). We have analyzed the characteristics of potassium influx in S. pombe by using trk1 trk2 mutants. Unlike budding yeast, fission yeast displays a biphasic transport kinetics. trk2 mutants do not show altered K(+) transport and exhibit only a slightly reduced Na(+) tolerance. However, trk1 trk2 double mutants fail to grow at low K(+) concentrations and show a dramatic decrease in Rb(+) influx, as a result of loss of the high-affinity transport component. Furthermore, trk1 trk2 cells are very sensitive to Na(+), as would be expected for a strain showing defective potassium transport. When trk1 trk2 cells are maintained in K(+)-free medium, the potassium content remains higher than that of the wild type or trk single mutants. In addition, the trk1 trk2 strain displays increased sensitivity to hygromycin B. These results are consistent with a hyperpolarized state of the plasma membrane. An additional phenotype of cells lacking both Trk components is a failure to grow at acidic pH. In conclusion, the Trk1 and Trk2 proteins define the major K(+) transport system in fission yeast, and in contrast to what is known for budding yeast, the presence of any of these two proteins is sufficient to allow growth at normal potassium levels.  相似文献   

13.
14.
The PAK family kinase, Shk1, is an essential regulator of polarized growth in the fission yeast, Schizosaccharomyces pombe. Here we describe the characterization of a novel member of the RhoGAP family, Rga8, identified from a two-hybrid screen for proteins that interact with the Shk1 kinase domain. Although deletion of the rga8 gene in wild type S. pombe cells results in no obvious phenotypic defects under normal growth conditions, it partially suppresses the cold-sensitive growth and morphological defects of S. pombe cells carrying a hypomorphic allele of the shk1 gene. By contrast, overexpression of rga8 is lethal to shk1-defective cells and causes morphological and cytokinesis defects in wild type S. pombe cells. Consistent with a role for Rga8 as a downstream target of Shk1, we show that the Rga8 protein is directly phosphorylated by Shk1 in vitro and phosphorylated in a Shk1-dependent fashion in S. pombe cells. Fluorescence photomicroscopy of the GFP-Rga8 fusion protein indicates that Rga8 is localized to the cell ends during interphase and to the septum-forming region during cytokinesis. In S. pombe cells carrying the orb2-34 allele of shk1, Rga8 exhibits a monopolar pattern of localization, providing evidence that Shk1 contributes to the regulation of Rga8 localization. Although molecular analyses suggest that Rga8 functions as a GAP for the S. pombe Rho1 GTPase, genetic experiments suggest that Rga8 and Rho1 have a positive functional interaction and that gain of Rho1 function, like gain of Rga8 function, is lethal to Shk1-defective cells. Our results suggest that Rga8 is a Shk1 substrate that negatively regulates Shk1-dependent growth control pathway(s) in S. pombe, potentially through interaction with the Rho1 GTPase.  相似文献   

15.
Myb-related cdc5p is required for G(2)/M progression in the yeast Schizosaccharomyces pombe. We report here that all detectable cdc5p is stably associated with a multiprotein 40S complex. Immunoaffinity purification has allowed the identification of 10 cwf (complexed with cdc5p) proteins. Two (cwf6p and cwf10p) are members of the U5 snRNP; one (cwf9p) is a core snRNP protein. cwf8p is the apparent ortholog of the Saccharomyces cerevisiae splicing factor Prp19p. cwf1(+) is allelic to the prp5(+) gene defined by the S. pombe splicing mutant, prp5-1, and there is a strong negative genetic interaction between cdc5-120 and prp5-1. Five cwfs have not been recognized previously as important for either pre-mRNA splicing or cell cycle control. Further characterization of cwf1p, cwf2p, cwf3p, and cwf4p demonstrates that they are encoded by essential genes, cosediment with cdc5p at 40S, and coimmunoprecipitate with cdc5p. We further show that cdc5p associates with the U2, U5, and U6 snRNAs and that cells lacking cdc5(+) function are defective in pre-mRNA splicing. These data raise the possibility that the cdc5p complex is an intermediate in the assembly or disassembly of an active S. pombe spliceosome.  相似文献   

16.
Completion of the yeast cell cycle involves extensive remodelling of the cell wall upon separation of mother and daughter cells. We have studied two members of the ascomycete-specific SUN gene family in Candida albicans. Inactivation of SUN41 yields defects in cell separation and hyphal elongation while inactivation of SUN42 results in minor phenotypic alterations. Simultaneous inactivation of SUN41 and SUN42 is synthetically lethal due to lysis of mother cells after septation. Electronic microscopy reveals cell wall defects mainly localized in the region surrounding the septa. This phenotype is osmoremediable and the conditional double mutants show increased sensitivity to cell wall or cell membrane perturbing agents. The essential function shared by Sun41p and Sun42p is conserved among yeasts because UTH1, a Saccharomyces cerevisiae SUN gene, suppresses the lethality of SUN41 and SUN42 conditional mutants. Investigation of functional genomic data obtained in S. cerevisiae reveals links between members of the SUN gene family and the RAM pathway regulating cell wall-degrading enzymes specifically involved during cell separation. Thus, the main function of ascomycetous Sun proteins appears linked to cell wall remodelling, with a probable role in counter-balancing cell wall degradation to avoid cell lysis upon cell separation.  相似文献   

17.
Meiotic homologous pairing is crucial to proper homologous recombination, which secures subsequent reductional chromosome segregation. We have identified a novel meiosis-specific protein of fission yeast Schizosaccharomyces pombe, Meu13p, to be a molecule that is required for proper homologous pairing and recombination. Rec12p (homologue of Saccharomyces cerevisiae Spo11p), which is essential for the initiation of meiotic recombination, is also shown for the first time to participate in the pairing process of S.pombe. Meu13p, however, contributes to pairing through a recombination-independent mechanism, as disruption of the meu13(+) gene reduces pairing whether the rec12(+) gene is deleted or not. We also demonstrate a dynamic nature of homologous pairing in living meiotic cells, which is markedly affected by meu13 deletion. Meu13p is not required for telomere clustering and the nuclear movement process, which are well known requirements for efficient pairing in S.pombe. Based on these results, together with the localization of Meu13p on meiotic chromatin, we propose that Meu13p directly promotes proper homologous pairing and recombination.  相似文献   

18.
Schizosaccharomyces pombe has an open reading frame, which we named alr1(+), encoding a putative protein similar to bacterial alanine racemase. We cloned the alr1(+) gene in Escherichia coli and purified the gene product (Alr1p), with an M(r) of 41,590, to homogeneity. Alr1p contains pyridoxal 5'-phosphate as a coenzyme and catalyzes the racemization of alanine with apparent K(m) and V(max) values as follows: for L-alanine, 5.0 mM and 670 micromol/min/mg, respectively, and for D-alanine, 2.4 mM and 350 micromol/min/mg, respectively. The enzyme is almost specific to alanine, but L-serine and L-2-aminobutyrate are racemized slowly at rates 3.7 and 0.37% of that of L-alanine, respectively. S. pombe uses D-alanine as a sole nitrogen source, but deletion of the alr1(+) gene resulted in retarded growth on the same medium. This indicates that S. pombe has catabolic pathways for both enantiomers of alanine and that the pathway for L-alanine coupled with racemization plays a major role in the catabolism of D-alanine. Saccharomyces cerevisiae differs markedly from S. pombe: S. cerevisiae uses L-alanine but not D-alanine as a sole nitrogen source. Moreover, D-alanine is toxic to S. cerevisiae. However, heterologous expression of the alr1(+) gene enabled S. cerevisiae to grow efficiently on D-alanine as a sole nitrogen source. The recombinant yeast was relieved from the toxicity of D-alanine.  相似文献   

19.
Whereas mammalian cells harbor two double strand telomeric repeat binding factors, TRF1 and TRF2, the fission yeast Schizosaccharomyces pombe has been thought to harbor solely the TRF1/TRF2 ortholog Taz1p to perform comparable functions. Here we report the identification of telomeric repeat binding factor 1 (Tbf1), a second TRF1/TRF2 ortholog in S. pombe. Like the Taz1p, the identified Tbf1p shares amino acid sequence similarity, as well as structural and functional characteristics, with the mammalian TRF1 and TRF2 proteins. This family of proteins shares a common architecture with two separate structural domains. An N-terminal domain is necessary and sufficient for the formation of homodimers, and a C-terminal MYB/homeodomain mediates sequence specific recognition of double-stranded telomeric DNA. The identified Tbf1p binds S. pombe telomeric DNA with high sequence specificity in vitro. Targeted deletion of the tbf1 gene reveals that it is essential for survival, and overexpression of the tbf1 gene leads to telomere elongation in vivo, which is dependent upon the MYB domain. These data suggest that fission yeast, like mammals, have two factors that bind double-stranded telomeric DNA and perform distinct roles in telomere length regulation.  相似文献   

20.
Kang WH  Park YD  Hwang JS  Park HM 《FEBS letters》2007,581(18):3473-3478
Recent studies have shown that global gene expression during oxidative stress in Schizosaccharomyces pombe is regulated by stress-induced activation and binding of Csx1 to atf1(+) mRNA. However, the kinase responsible for the activation of Csx1 has not been identified. Here, we describe, for the first time, that Csx1 is phosphorylated by S. pombe LAMMER kinase, Lkh1, under oxidative conditions and that the stress-activated binding of the Csx1 to the atf1(+) mRNA was also affected by Lkh1 and Spc1. These data indicate that concerted actions of Spc1 and Lkh1 are required for the activation of Csx1 during oxidative condition in the fission yeast S. pombe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号