首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Saccharomyces cerevisiae has proved to be an invaluable model in classical and molecular genetics studies. Despite several hundreds of isolates already available, the scientific community relies on the use of only a handful of unrelated strains. The lack of sequence information, haploid derivatives and genetic markers has prevented novel strains from being used. Here, we release a set of 55 S. cerevisiae and Saccharomyces paradoxus genetically tractable strains, previously sequenced in the Saccharomyces Genome Resequencing Project. These strains are stable haploid derivatives and ura3 auxotrophs tagged with a 6-bp barcode, recognized by a restriction enzyme to allow easy identification. We show that the specific barcode can be used to accurately measure the prevalence of different strains during competition experiments. These strains are now amenable to a wide variety of genetic experiments and can be easily crossed with each other to create hybrids and segregants, providing a valuable resource for breeding programmes and quantitative genetic studies. Three versions of each strain (haploid Mat a and Mat α and diploid Mat a /α all as ura3 ∷ KanMX-Barcode ) are available through the National Culture Yeast Collection.  相似文献   

2.
M J Penninckx  C J Jaspers 《Biochimie》1985,67(9):999-1006
In a foregoing paper we have shown the presence in the yeast Saccharomyces cerevisiae of an enzyme catalyzing the hydrolysis of L-gamma-glutamyl-p-nitroanilide, but apparently distinct from gamma-glutamyltranspeptidase. The cellular level of this enzyme was not regulated by the nature of the nitrogen source supplied to the yeast cell. Purification was attempted, using ion exchange chromatography on DEAE Sephadex A 50, salt precipitations and successive chromatographies on DEAE Sephadex 6B and Sephadex G 100. The apparent molecular weight of the purified enzyme was 14,800 as determined by gel filtration. As shown by kinetic studies and thin layer chromatography, the enzyme preparation exhibited only hydrolytic activity against gamma-glutamylarylamide and L-glutamine with an optimal pH of about seven. Various gamma-glutamylaminoacids, amides, dipeptides and glutathione were inactive as substrates and no transferase activity was detected. The yeast gamma-glutamylarylamidase was activated by SH protective agents, dithiothreitol and reduced glutathione. Oxidized glutathione, ophtalmic acid and various gamma-glutamylaminoacids inhibited competitively the enzyme. The activity was also inhibited by L-gamma-glutamyl-o-(carboxy)phenylhydrazide and the couple serine-borate, both transition-state analogs of gamma-glutamyltranspeptidase. Diazooxonorleucine, reactive analog of glutamine, inactivated the enzyme. The physiological role of yeast gamma-glutamylarylamidase-glutaminase is still undefined but is most probably unrelated to the bulk assimilation of glutamine by yeast cells.  相似文献   

3.
Du L  Su Y  Sun D  Zhu W  Wang J  Zhuang X  Zhou S  Lu Y 《FEMS yeast research》2008,8(4):531-539
Formic acid disrupts mitochondrial electron transport and sequentially causes cell death in mammalian ocular cells by an unidentified molecular mechanism. Here, we show that a low concentration of formic acid induces apoptosis-like cell death in the budding yeast Saccharomyces cerevisiae, with several morphological and biochemical changes that are typical of apoptosis, including chromatin condensation, DNA fragmentation, externalization of phosphatidylserine, reactive oxygen species (ROS) production, loss of mitochondrial membrane potential and mitochondrion destruction. This process may not be dependent on the activation of Yca1p, the yeast caspase counterpart. In addition, the cell death induced by formic acid is associated with ROS burst,while intracellular ROS accumulate more rapidly and to a higher level in the YCA1 disruptant than in the wild-type strain during the progression of cell death. Our data indicate that formic acid induces yeast apoptosis via an Yca1p-independent pathway and it could be used as an extrinsic inducer for identifying the regulators downstream of ROS production in yeast.  相似文献   

4.
Aims: This paper presents an analysis of lag phase phenomena in Saccharomyces cerevisiae growth as a function of ultrasonic irradiation. Methods and Results: Pulse irradiation treatments were performed by a 20 kHz ultrasonic transducer with different durations and energies. Data obtained from experiments were then employed to estimate growth parameters by specific transfer function. The significance of the different lag times in response to ultrasonic irradiation was analysed. The results showed that the yeast growth in lag phase responded to the irradiated ultrasonic of 20 min more than the 10 min. The ultrasonic energies between 330 and 360 W s m?3 could decrease lag time up to 1 h compared to the sample without ultrasonic irradiation. Conversely, the treatments with energies higher than 850 W s m?3 were able to extend the lag time and decrease the yeast growth. Conclusions: The lag durations of S. cerevisiae were changed significantly by different ultrasonic irradiations, energies and durations. In particular, sufficient irradiation energies reduced the lag time, resulting in accelerated yeast growth. In contrast, high energy could inactivate growth by increasing the lag time. Significance and Impact of the Study: This work provides an alternative technique to either accelerate or inactivate the S. cerevisiae lag phase. The approach can be developed in experiment designed to control the yeast growth by ultrasonic irradiation as assistance in the environments.  相似文献   

5.
To gain further insight into the mechanism by which yeast programmed cell death (PCD) occurs, we investigated whether and how proteasome activity changes in Saccharomyces cerevisiae cells undergoing PCD as a result of treatment with acetic acid (AA-PCD). We show that proteasome activation starts 60 min after AA-PCD induction, with a maximum at 90 min, and decreases at 150 min. Moreover, cell survival measurements carried out in the absence or presence of MG132, which inhibits proteasome function, show that the inhibition of proteasome activity partially prevents AA-PCD, thus indicating that a transient proteasome activation is needed for AA-PCD to occur.  相似文献   

6.
Abstract The Saccharomyces cerevisiae strain XL16-5B exhibited a fungicidal response to treatment with ketoconazole. Cell death became apparent during prolonged treatment over 72 h following an initial period over 24 h where viable cells were found and limited cell division occurred. Sterol analysis showed some differences between XL16-5B and the strain XY729-5a, which had a fungistatic response to ketoconazole. In particular, the level of ergosterol was higher in XL16-5B and remained high during treatment.  相似文献   

7.
Accumulation and secretion of beta-glucanases have been studied in vivo by using a thermosensitive secretory mutant of Saccharomyces cerevisiae blocked at the endoplasmic reticulum level (sec 18-1). When incubated at the restrictive temperature no accumulation of active glucanases was observed. Following a shift to permissive conditions in the presence of cycloheximide a rise in the internal activity took place. The increase in total glucanase activity was partially due to the activation of an exo-glucanase that hydrolyzes PNPG. It is concluded that glucanases are synthesized in inactive precursor forms and are converted to the active forms in their secretory pathway.  相似文献   

8.
金城 《微生物学通报》2012,39(1):0138-0138
微生物细胞通常仅含2%3%油脂,但少数微生物含油脂率却可达70%以上,所以高含油脂量使微生物油脂实际开发成为可能。目前用于生产多不饱和脂肪酸的微生物主要为藻类和真菌。尽管微生物油脂是当前的研究热点,已经引起广大研究者的重视,但目前国内外研究大都集中在含油脂量在干重20%以上的微生物,如浅白色隐性酵母、粘红酵母等,而对于酿酒酵母来说,则很少见到研究其产油脂的相关报道。  相似文献   

9.
Abstract Leflunomide is a novel immunomodulatory drug representing a new small molecule class of substances which are structurally unrelated to previously described immunomodulatory/immunosuppressive compounds. The effect of leflunomide on the cell cycle of Saccharomyces cerevisiae was investigated to elucidate the molecular mechanism of its action in eukaryotic organisms. When yeast cells were treated with leflunomide, unbudded cells were accumulated, suggesting that leflunomide may arrest the cell cycle in the G☎ase. When leflunomide-treated cells were subjected to heat shock treatment, the cells became resistant to heat shock treatment, implying that leflunomide-mediated block to cell division results in entry from the proliferative cycle into the alternative developmental g0 phase.  相似文献   

10.
Seven strains of Saccharomyces cerevisiae all produced lipase when grown in shake flask culture. The best strain, DSM 1848, produced 4.0U of lipase in the medium containing olive oil and yeast extract. Production of the lipase was growth-associated.  相似文献   

11.
为了探讨酵母进入对数生长后期以后酒精生产速度降低的原因, 我们利用酵母表达谱芯片技术对酿酒酵母细胞从对数生长中期进入对数生长后期时的全基因组表达谱进行了分析, 发现酵母在对数生长中期的表达谱非常稳定, 而一旦进入对数生长后期, 则出现明显的代谢重构现象。许多氨基酸合成和代谢相关的基因、离子转移以及与能量的生成和储存等功能相关的基因出现了不同程度的上调; 而许多涉及酵母转座和DNA重组的基因则表达下调; 一些中心代谢途径也发生了代谢重构, 包括: 琥珀酸和a-酮戊二酸生成途径基因的一致上调, 都与氨基酸合成和代谢相关基因表达的结果相吻合。结果表明: 由于氨基酸合成的需求量增加, 进入对数生长后期酵母的代谢转向TCA循环和乙醛酸循环, 导致酒精的生产速率降低。  相似文献   

12.
Data obtained on the conversion of d-glucose to alcohol using Saccharomyces cerevisiae in batch culture has been analysed kinetically. The effects of different kinetic parameters, e.g. rates of ethanol and biomass formation, rate of d-glucose utilization and variation of pH have been studied. Analysis of data was made on the basis of Michaelis-Menten, Leudeking-Piret and simple kinetics. Unsteady rate behaviour in the lag phase was observed and explained.  相似文献   

13.
为了探讨酵母进入对数生长后期以后酒精生产速度降低的原因,我们利用酵母表达谱芯片技术对酿酒酵母细胞从对数生长中期进入对数生长后期时的全基因组表达谱进行了分析,发现酵母在对数生长中期的表达谱非常稳定,而一旦进入对数生长后期.则出现明显的代谢重构现象.许多氨基酸合成和代谢相关的基因、离子转移以及与能量的生成和储存等功能相关的基因出现了不同程度的上调;而许多涉及酵母转座和DNA重组的基因则表达下调;一些中心代谢途径也发生了代谢重构.包括:琥珀酸和α-酮戊二酸生成途径基因的一致上调,都与氨基酸合成和代谢相关基因表达的结果相吻合.结果表明:由于氨基酸合成的需求量增加,进入对数生长后期酵母的代谢转向TCA循环和乙醛酸循环,导致酒精的生产速率降低.  相似文献   

14.
Several factors may control trehalose and glycogen synthesis, like the glucose flux, the growth rate, the intracellular glucose-6-phosphate level and the glucose concentration in the medium. Here, the possible relation of these putative inducers to reserve carbohydrate accumulation was studied under well-defined growth conditions in nitrogen-limited continuous cultures. We showed that the amounts of accumulated trehalose and glycogen were regulated by the growth rate imposed on the culture, whereas other implicated inducers did not exhibit a correlation with reserve carbohydrate accumulation. Trehalose accumulation was induced at a dilution rate (D)相似文献   

15.
A combination of FTIR and UV spectroscopy is proposed as a novel technique for integrated real-time monitoring of metabolic activity and growth rates of cell cultures, required for systematic studies of cellular low-frequency (LF) electric and magnetic field (EMF) effects. As an example, we investigated simultaneous influence of periodic LF 3D EMFs on a culture of Saccharomyces cerevisiae (baker's yeast) cells. Amplitudes, frequencies and phases of the field components were the variable parameters. Electromagnetic fields were found to efficiently control the activity of the yeast cells, with the resulting CO2 production rates, as monitored by FTIR spectroscopy, varying by at least one order of magnitude due to the field action. Additionally, population dynamics of the yeast cells was monitored by UV absorption of the yeast culture at λprob = 320 nm, and compared to the CO2 production rates. The detected physiologically active frequencies are all below 1 kHz, namely, 800 Hz excitation was effective in reducing the metabolic rates and arresting cell proliferation, whereas 200 Hz excitation was active in accelerating both cell proliferation and overall metabolic rates. The proposed methods produce objective, reliable and quantitative real-time results within minutes and may be used in various tasks that could benefit from a rapid feedback they provide in the form of metabolic and growth rates. Amplitude and frequency dependences of the LF EMF effects from individual field components with different polarizations were recorded and qualitatively interpreted based on a simple model, describing ion diffusion through a membrane channel.  相似文献   

16.
Abstract The flocculation character in strain IM1-8b of Saccharomyces cerevisiae is controlled by a single and dominant gene shown to be allelic to FLO1 . Such a gene has been both mitotically and meiotically mapped on the right arm of chromosome I at 4.7 cM from PHO11 . The phenotype was suppressed by a single gene of wide distribution among non-flocculent strains (proposed as fsu3 ) that, however, was unable to suppress other FLO1 genes in other flocculent strains.  相似文献   

17.
Abstract

We studied action of one-dimensional, two-dimensional and three-dimensional low-frequency oscillating electric and magnetic fields on sugar metabolism in Saccharomyces cerevisiae cell culture. S. cerevisiae cells were grown on a minimal medium containing glucose (10%) as a carbon source and salts (0.3–0.5%) that supplied nitrogen, phosphorus and trace metals. We found that appropriate three-dimensional field patterns can either accelerate or inhibit sugar metabolism in yeast cells, as compared to control experiments. We also studied aerobic sugar metabolism, with similar results. Sugar metabolism was monitored by formation of pyruvate, acetate and CO2. We found that for the P1 parameter set the cell metabolism accelerates as evaluated by all of the monitored chemical products, and the cell density growth rate also accelerates, with opposite effects observed for the P2 parameter set. These parameter sets are introduced using D, ω, ?, B, ω′, and ?′ – vectors defining amplitudes, frequencies and phases of periodic electric and magnetic fields, respectively. Thus, the P1 parameter set: D?=?(2.6, 3.1, 2.2)?V/cm; ω?=?(0.8, 1.6, 0.2)?kHz; ??=?(1.31, 0.9, 1.0) rad; B?=?(3.1, 7.2, 7.2)?×?10?4 T; ω′?=?(2.1, 1.3, 3.1)?kHz; ?′?=?(0.4, 2.1, 2.8) rad; and the P2 parameter set: D?=?(4.3, 1.6, 3.8)?V/cm; ω?=?(3.3, 1.8, 2.8)?kHz; ??=?(0.86, 1.1, 0.4) rad; B?=?(5.4, 1.3, 1.3)?×?10-4 T; ω′?=?(1.3, 1.7, 0.9)?kHz; ?′?=?(2.6, 1.7, 1.7) rad. The effects obtained for the less complex field combinations that used one-dimensional or two-dimensional configurations, or omitted either the electric or the magnetic contribution, were significantly weaker than those obtained for the complete P1 and P2 parameter sets.  相似文献   

18.
19.
The demand for biofuel ethanol made from clean, renewable nonfood sources is growing. Cellulosic biomass, such as switch grass (Panicum virgatum L.), is an alternative feedstock for ethanol production; however, cellulosic feedstock hydrolysates contain high levels of xylose, which needs to be converted to ethanol to meet economic feasibility. In this study, the effects of xylose isomerase on cell growth and ethanol production from biomass sugars representative of switch grass were investigated using low cell density cultures. The lager yeast species Saccharomyces pastorianus was grown with immobilized xylose isomerase in the fermentation step to determine the impact of the glucose and xylose concentrations on the ethanol production rates. Ethanol production rates were improved due to xylose isomerase; however, the positive effect was not due solely to the conversion of xylose to xylulose. Xylose isomerase also has glucose isomerase activity, so to better understand the impact of the xylose isomerase on S. pastorianus, growth and ethanol production were examined in cultures provided fructose as the sole carbon. It was observed that growth and ethanol production rates were higher for the fructose cultures with xylose isomerase even in the absence of xylose. To determine whether the positive effects of xylose isomerase extended to other yeast species, a side-by-side comparison of S. pastorianus and Saccharomyces cerevisiae was conducted. These comparisons demonstrated that the xylose isomerase increased ethanol productivity for both the yeast species by increasing the glucose consumption rate. These results suggest that xylose isomerase can contribute to improved ethanol productivity, even without significant xylose conversion.  相似文献   

20.
酿酒酵母细胞表面工程应用研究新进展   总被引:4,自引:0,他引:4  
酿酒酵母表面展示工程是一个新兴的蛋白表达系统,由于它能进行蛋白翻译后修饰,能方便地对表达的蛋白产物进行检测和筛选,近年来应用研究发展迅猛。它在构建全细胞催化剂、抗原/抗体库、生物吸附剂、生物传感器、组合蛋白文库、免疫检测及亲和纯化中取得了很多新的应用,在蛋白质分子的功能研究与应用中发挥了更加重要的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号