首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complete amino acid sequences of ribosomal proteins L16, L23 and L33 from the archaebacterium Halobacterium marismortui were determined. The sequences were established by manual sequencing of peptides produced with several proteases as well as by cleavage with dilute HCl. Proteins L16, L23 and L33 consist of 119, 154 and 69 amino acid residues, and their molecular masses are 13538, 16812 and 7620 Da, respectively. The comparison of their sequences with those of ribosomal proteins from other organisms revealed that L23 and L33 are related to eubacterial ribosomal proteins from Escherichia coli and Bacillus stearothermophilus, while protein L16 was found to be homologous to a eukaryotic ribosomal protein from yeast. These results provide information about the special phylogenetic position of archaebacteria.  相似文献   

2.
The flanking regions and the end of the chloroplast ribosomal unit of Chlamydomonas reinhardii have been sequenced. The upstream region of the ribosomal unit contains three open reading frames coding for 111, 117 and 124 amino acids, respectively. The latter polypeptide is partially related to the ribosomal protein L16 of E. coli. Two of the open reading frames overlap each other and are oriented in opposite direction. The region between these open reading frames and the 5' end of the 16S rRNA gene contains numerous short direct and inverted repeats which can be folded into large stem-loop structures. Sequence elements that resemble prokaryotic promoters are found in the same region. Several of the repeated elements are distributed throughout the non-coding regions of the chloroplast inverted repeat. Sequence comparison between the 5S rRNA and its gene does not reveal any significant sequence heterogeneity between the chloroplast 5S rRNA genes.  相似文献   

3.
We have analyzed the essentiality or contribution to growth of each of four genes in the Escherichia coli trmD operon (rpsP, 21K, trmD, and rplS) and of the flanking genes ffh and 16K by a reverse genetic method. Mutant alleles were constructed in vitro on plasmids and transferred by recombination to the corresponding lambda phage clone (lambda 439) and from the phage clone to the E. coli chromosome. An ability to obtain recombinants only in cells carrying a complementing plasmid indicated that the mutated gene was essential, while an ability to obtain recombinants in plasmid-free cells indicated nonessentiality. In this way, Ffh, the E. coli homolog to the 54-kDa protein of the signal recognition particle of mammalian cells, and ribosomal proteins S16 and L19 were shown to be essential for viability. A deletion of the second gene, 21K, of the trmD operon reduced the growth rate of the cells fivefold, indicating that the wild-type 21-kDa protein is important for viability. A deletion-insertion in the same gene resulted in the accumulation of an assembly intermediate of the 50S ribosomal subunit, as a result of polar effects on the expression of a downstream gene, rplS, which encodes ribosomal protein L19. This finding suggests that L19, previously not considered to be an assembly protein, contributes to the assembly of the 50S ribosomal subunits. Strains deleted for the trmD gene, the third gene of the operon, encoding the tRNA (m1G37)methyltransferase (or TrmD) showed a severalfold reduced growth rate. Since such a strain grew much slower than a strain lacking the tRNA(m(1)G37) methyltransferase activity because of a point mutation, the TrmD protein might have a second function in the cell. Finally, a 16-kDa protein encoded by the gene located downstream of, and convergently transcribed to, the trmD operon was found to be nonessential and not to contribute to growth.  相似文献   

4.
黄鳝性腺高表达的核糖体蛋白基因   总被引:6,自引:0,他引:6  
采用高密点阵技术从黄鳝雄性性腺cDNA文库中获得8个克隆,序列分析和BLAST结果显示它们编码的蛋白质分别与40S核糖体蛋白S4,S9,S16,S17,S20和60S核糖体蛋白L7, L18a,L29高度同源。 根据黄鳝RP蛋白序列和其他物种的相应同源序列构建ML系统发生树,显示核糖体蛋白基因在进化中高度保守。核糖体蛋白基因不仅可作为分子进化分析的有利工具,而且从它们的表达模式显示RP基因除具有看家基因的功能外,很有可能参与包括性腺分化等过程的发育调控。Abstract: 8 cDNA clones have been isolated from a cDNA library prepared from swamp eel testies by macroarray. DNA sequence analysis and database search showed that they encode 8 proteins which are highly homologous to 40S ribosomal proteins S4,S9,S16,S17,S20 and 60S riobosomal proteins L7, L18a,L29. Phylogenetic trees (ML) based on ribosomal protein genes from swamp eel and other organisms has been reconstructed, which showed that ribosomal protein genes were highly conserved during evolution. These results suggested that ribosomal protein genes as house keeping genes may play roles in developmental regulation such as sexual differentiation and can also be used as markers for the study of molecular evolution.  相似文献   

5.
The SSR16 gene of Arabidopsis has been identified as a gene encoding a ribosomal protein S16 homolog through analysis of a transposon insertion mutation. The insertion mutation is lethal, arresting embryonic development at approximately the transition from the globular to the heart stage of embryonic development. Co-segregation of the mutant phenotype with the transposon-borne drug-resistance marker and loss of the inserted transposon concomitant with phenotypic reversion provided evidence that the transposon had caused the mutation. Sequences flanking the insertion site were amplified from DNA of viable heterozygotes by thermal asymmetric interlaced (TAIL) PCR. The amplified fragment flanking the 3' end of the inserted element was sequenced and found to be identical to an Arabidopsis expressed sequence tag (EST). The EST, in turn, contained a coding sequence homologous to the ribosomal protein S16 (RPS16) of bacteria such as Escherichia coli, Bacillus subtilis and Salmonella typhimurium , as well as Neurospora crassa mitochondria and higher plant plastids. Thus the gene identified by the embryo-defective lethal insertion mutation encodes an RPS16 homolog and has been designated the SSR16 gene.  相似文献   

6.
7.
The primary structure of rat ribosomal protein L26   总被引:3,自引:0,他引:3  
V Paz  J Olvera  Y L Chan  I G Wool 《FEBS letters》1989,251(1-2):89-93
The amino acid sequence of rat ribosomal protein L26 was deduced from the sequence of nucleotides in a recombinant cDNA and confirmed from the NH2-terminal amino acid sequence of the protein. Rat L26 contains 145 amino acids and has a molecular mass of 17,266 Da. Hybridization of the cDNA to digests of nuclear DNA suggests that there are 8-16 copies of the L26 gene. The mRNA for the protein is about 650 nucleotides in length. Protein L26 has a sequence of 9 residues that may be repeated in three places.  相似文献   

8.
Quantitative analysis of the protein composition of yeast ribosomes   总被引:4,自引:0,他引:4  
The molecular weights of the individual yeast ribosomal proteins were determined. The ribosomal proteins from the 40-S subunit have molecular weights ranging from 11 800 to 31 000 (average molecular weight = 21 300). The molecular weights of the 60-S subunit proteins range from 10 000 to 48 400 (average molecular weight = 21 800). Stoichiometric measurements, performed by densitometric scanning on ribosomal proteins extracted from high-salt dissociated subunits revealed that isolated ribosomal subunits contain, besides some protein species occurring in submolar amounts, a number of protein species which are present in multiple copies: S13, S27, L22, L31, L33, L34 and L39. The mass fractions of the ribosomal proteins which were found to be present on isolated ribosomes in non-unimolar amounts, were re-examined by using an isotope dilution technique. Applying this method to proteins extracted from mildely isolated 80-S ribosomes, we found that some protein species such as S32, S34 and L43 still are present in submolar amounts. On the other hand, however, we conclude that some other ribosomal proteins, in particular the strongly acidic proteins L44 and L45 get partially lost during ribosome dissociation. Proteins L44/L45 appears to be present on 80-S ribosomes in three copies.  相似文献   

9.
10.
Certain mutations in S12, a ribosomal protein involved in translation elongation rate and translation accuracy, confer resistance to the aminoglycoside streptomycin. Previously we showed in Salmonella typhimurium that the fitness cost, i.e. reduced growth rate, due to the amino acid substitution K42N in S12 could be compensated by at least 35 different mutations located in the ribosomal proteins S4, S5 and L19. Here, we have characterized in vivo the fitness, translation speed and translation accuracy of four different L19 mutants. When separated from the resistance mutation located in S12, the three different compensatory amino acid substitutions in L19 at position 40 (Q40H, Q40L and Q40R) caused a decrease in fitness while the G104A change had no effect on bacterial growth. The rate of protein synthesis was unaffected or increased by the mutations at position 40 and the level of read-through of a UGA nonsense codon was increased in vivo, indicating a loss of translational accuracy. The mutations in L19 increased sensitivity to aminoglycosides active at the A-site, further indicating a perturbation of the decoding step. These phenotypes are similar to those of the classical S4 and S5 ram (ribosomal ambiguity) mutants. By evolving low-fitness L19 mutants by serial passage, we showed that the fitness cost conferred by the L19 mutations could be compensated by additional mutations in the ribosomal protein L19 itself, in S12 and in L14, a protein located close to L19. Our results reveal a novel functional role for the 50 S ribosomal protein L19 during protein synthesis, supporting published structural data suggesting that the interaction of L14 and L19 with 16 S rRNA could influence function of the 30 S subunit. Moreover, our study demonstrates how compensatory fitness-evolution can be used to discover new molecular functions of ribosomal proteins.  相似文献   

11.
The amino acid sequences of rat ribosomal proteins L27a and L28 were deduced from the sequences of nucleotides in recombinant cDNAs and confirmed from the NH2-terminal amino acid sequences of the proteins. L27a contains 147 amino acids (the NH2-terminal methionine is removed after translation of the mRNA) and has a molecular weight of 16 476. Hybridization of the cDNA to digests of nuclear DNA suggests that there are 18-22 copies of the L27a gene. The mRNA for the protein is about 600 nucleotides in length. L27a is homologous to mouse L27a (there are 3 amino acid changes) and to yeast L29. Rat ribosomal protein L28 has 136 amino acids (its NH2-terminal methionine is also processed after translation) and has a molecular weight of 15 707. Hybridization of the cDNA to digests of nuclear DNA suggests that there are 9 or 10 copies of the L28 gene. The mRNA for the protein is about 640 nucleotides in length. L28 contains a possible internal duplication of 9 residues. Corrections are recorded in the sequences reported before for rat ribosomal proteins S4 and S12.  相似文献   

12.
Mouse ribosomal protein L7 is encoded by a multigene family. Screening of two mouse genomic libraries with cloned L7 cDNA, has resulted in the isolation of nine independent lambda Charon 4A recombinant phages which include seven different L7 genes. Restriction enzyme mapping of six of these genes (L7-1, L7-16, L7-18, L7-28, L7-35 and L7- 16b ) reveals dissimilarity in sites within the L7 sequences as well as in the flanking regions. Electron microscopic analysis of heteroduplex and S1 nuclease mapping demonstrate that the first five genes contain the entire L7 mRNA sequence but lack introns. Based on these features we propose that these are processed genes. Of the L7 genes described here only one (L7- 16b ) exhibits a high degree of homology with L7 mRNA and contains introns. We discuss the possibility that this low representation of intron containing L7 genes may reflect the proportion of functional L7 genes in this multigene family.  相似文献   

13.
The course of the assembly of ribosomal subunits in yeast   总被引:17,自引:0,他引:17  
The course of the assembly of the various ribosomal proteins of yeast into ribosomal particles has been studied by following the incorporation of radioactive individual protein species in cytoplasmic ribosomal particles after pulse-labelling of yeast protoplasts with tritiated amino acids. The pool of ribosomal proteins is small relative to the rate of ribosomal protein synthesis, and, therefore, does not affect essentially the appearance of labelled ribosomal proteins on the ribosomal particles. From the labelling kinetics of individual protein species it can be concluded that a number of ribosomal proteins of the 60 S subunit (L6, L7, L8, L9, L11, L15, L16, L23, L24, L30, L32, L36, L40, L41, L42, L44 and L45) associate with the ribonucleoprotein particles at a relatively late stage of the ribosomal maturation process. The same was found to be true for a number of proteins of the 40 S ribosomal subunit (S10, S27, S31, S32, S33 and S34). Several members (L7, L9, L24 and L30) of the late associating group of 60-S subunit proteins were found to be absent from a nuclear 66 S precursor ribosomal fraction. These results indicate that incorporation of these proteins into the ribosomal particles takes place in the cytoplasm at a late stage of the ribosomal maturation process.  相似文献   

14.
《The Journal of cell biology》1990,111(6):2261-2274
Two strains of Saccharomyces cerevisiae were constructed that are conditional for synthesis of the 60S ribosomal subunit protein, L16, or the 40S ribosomal subunit protein, rp59. These strains were used to determine the effects of depriving cells of either of these ribosomal proteins on ribosome assembly and on the synthesis and stability of other ribosomal proteins and ribosomal RNAs. Termination of synthesis of either protein leads to diminished accumulation of the subunit into which it normally assembles. Depletion of L16 or rp59 has no effect on synthesis of most other ribosomal proteins or ribosomal RNAs. However, most ribosomal proteins and ribosomal RNAs that are components of the same subunit as L16 or rp59 are rapidly degraded upon depletion of L16 or rp59, presumably resulting from abortive assembly of the subunit. Depletion of L16 has no effect on the stability of most components of the 40S subunit. Conversely, termination of synthesis of rp59 has no effect on the stability of most 60S subunit components. The implications of these findings for control of ribosome assembly and the order of assembly of ribosomal proteins into the ribosome are discussed.  相似文献   

15.
Transformant phages expressing L15, a yeast ribosomal protein which binds to 26S rRNA and interacts with the acidic ribosomal proteins, were isolated by screening a yeast cDNA expression library in lambda gt11 with specific monoclonal antibodies. Using yeast DNA HindIII fragments that hybridize with the cDNA insert from the L15-expressing clones, minilibraries were prepared in pUC18, which were afterward screened with the same cDNA probe. In this way, plasmids carrying two different types of genomic DNA inserts were obtained. The inserts were subcloned and sequenced and we found a similar coding sequence in both cases flanked by 5' and 3' regions with very low homology. Sequences homologous to the consensus TUF-binding UAS boxes are present in the 5' flanking regions of both genes. Southern analysis revealed the presence of two copies of the L15 gene in the Saccharomyces cerevisiae genome, which are located in different chromosomes. The encoded amino acid sequence corresponds, as expected, to protein L15 and shows a high similarity to bacterial ribosomal protein L11.  相似文献   

16.
17.
We report that the third intron of the L1 ribosomal protein gene of Xenopus laevis encodes a previously uncharacterized small nucleolar RNA that we called U16. This snRNA is not independently transcribed; instead it originates by processing of the pre-mRNA in which it is contained. Its sequence, localization and biosynthesis are phylogenetically conserved: in the corresponding intron of the human L1 ribosomal protein gene a highly homologous region is found which can be released from the pre-mRNA by a mechanism similar to that described for the amphibian U16 RNA. The presence of a snoRNA inside an intron of the L1 ribosomal protein gene and the phylogenetic conservation of this gene arrangement suggest an important regulatory/functional link between these two components.  相似文献   

18.
The primary structure of rat ribosomal protein L21   总被引:2,自引:0,他引:2  
The covalent structure of rat ribosomal protein L21 was deduced from the sequence of nucleotides in a recombinant cDNA and confirmed from the NH2-terminal amino acid sequence of the protein. Ribosomal protein L21 contains 159 amino acids (the NH2-terminal methionine is removed after translation of the mRNA) and has a molecular weight of 18,322. Hybridization of the cDNA to digests of nuclear DNA suggests that there are 16-23 copies of the L21 gene. The mRNA for the protein is about 680 nucleotides in length.  相似文献   

19.
The covalent structure of rat ribosomal protein L7 was determined in part from the sequence of nucleotides in a recombinant cDNA and in part from the sequence of amino acids in portions of the protein. The complementary analyses supplemented and confirmed each other. Ribosomal protein L7 contains 258 amino acids and has a molecular weight of 30,040. The protein has an unusual and striking structural feature near the NH2 terminus: five tandem repeats of a sequence of 12 residues. Rat L7 appears to be related to ribosomal protein L7 from the moderate halophile Vibrio costicola and perhaps to L30 from Bacillus stearothermophilus, to L7 from the moderate halophile NRCC 41227, and to L22 from Nicotinia tobaccum chloroplast. In addition, there is a sequence of 24 amino acids in rat protein L7 that may be related to segments of the same number of residues in Escherichia coli ribosomal proteins S10, S15, L9, and L22.  相似文献   

20.
The primary structure of chicken ribosomal protein L37a.   总被引:3,自引:0,他引:3  
The amino acid sequence of chicken ribosomal protein L37a was deduced from the nucleotide sequence of a recombinant cDNA and its genomic DNA. Chicken ribosomal protein L37a has 92 amino acids and a molecular mass of 10,247 Da including the initiator methionine. The protein contains a typical Cys2Cys2 zinc finger motif, which may be involved in protein-RNA interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号