首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The antagonism of Trichoderma strains usually correlates with the secretion of fungal cell wall degrading enzymes such as chitinases. Chitinase Chit42 is believed to play an important role in the biocontrol activity of Trichoderma strains as a biocontrol agent against phytopathogenic fungi. Chit42 lacks a chitin-binding domain (ChBD) which is involved in its binding activity to insoluble chitin. In this study, a chimeric chitinase with improved enzyme activity was produced by fusing a ChBD from T. atroviride chitinase 18–10 to Chit42. The improved chitinase containing a ChBD displayed a 1.7-fold higher specific activity than chit42. This increase suggests that the ChBD provides a strong binding capacity to insoluble chitin. Moreover, Chit42-ChBD transformants showed higher antifungal activity towards seven phytopathogenic fungal species.  相似文献   

2.
Chitinase Chit42 from Trichoderma harzianum CECT 2413 is considered to play an important role in the biocontrol activity of this fungus against plant pathogens. Chit42 lacks a chitin-binding domain (ChBD). We have produced hybrid chitinases with stronger chitin-binding capacity by fusing to Chit42 a ChBD from Nicotiana tabacum ChiA chitinase and the cellulose-binding domain from cellobiohydrolase II of Trichoderma reesei. The chimeric chitinases had similar activities towards soluble substrate but higher hydrolytic activity than the native chitinase on high molecular mass insoluble substrates such as ground chitin or chitin-rich fungal cell walls.  相似文献   

3.
Heterologous expression of two fungal chitinases, Chit33 and Chit42, from Trichoderma harzianum was tested in the different compartments and on the surface of Escherichia coli cells. Our goal was to find a fast and efficient expression system for protein engineering and directed evolution studies of the two fungal enzymes. Cytoplasmic overexpression resulted in both cases in inclusion body formation, where active enzyme could be recovered after refolding. Periplasmic expression of Chit33, and especially of Chit42, proved to be better suited for mutagenesis purposes. Recombinant chitinases from the periplasmic expression system showed activity profiles similar to those of the native proteins. Both chitinases also degraded a RET (resonance energy transfer) based bifunctionalized chitinpentaose substrate in a similar manner as reported for some putative exochitinases in the glycosyl hydrolase family 18, offering a sensitive way to assay their activities. We further demonstrated that Chit42 can also be displayed on E. coli surface and the enzymatic activity can be measured directly from the whole cells using methylumbelliferyl-chitinbioside as a substrate. The periplasmic expression and the surface display of Chit42, both offer a suitable expression system for protein engineering and activity screening in a microtiter plate scale. As a first mutagenesis approach we verified the essential role of the two carboxylic acid residues E172 (putative proton donor) and D170 (putative stabilizer) in the catalytic mechanism of Chit42, and additionally the role of the carboxylic acid E145 (putative proton donor) in the catalytic mechanism of Chit33.  相似文献   

4.
The filamentous fungus Paecilomyces lilacinus is currently developed as a biocontrol agent against plant parasitic nematodes. Nematode eggs and cuticles are the infection sites for biocontrol agents that penetrate by the production of lytic enzymes. P. lilacinus was cultured in liquid media and proteases and chitinases were induced by the introduction of egg yolk and chitin, respectively. A serine protease was purified from a culture medium using Sepharose-bacitracin affinity column. The protease occurred in three forms, two of which were C-terminally truncated. Chitinase activity was also observed in the culture supernatant, and after separation by isoelectric focusing six proteins were detected that showed activity. Chitinase activity was further confirmed on non-denaturing one-dimensional (1D) and two-dimensional (2D) gels using a sandwich assay with glycol chitin as a substrate. Two of the proteins had similarities with endochitinases as shown by their N-terminal amino acid sequences.  相似文献   

5.
To evaluate the anti-pathogen activity of chitinases, we developed a new method for measuring the lytic activity, and investigated the correlation of the lytic activity with the enzymatic properties by using four chitinase isozymes, Chitinases E, F, H1 and G, which had been purified from yam tubers by column chromatography. Chitinases E, F and H1 had high lytic activity against the plant pathogen, Fusarium oxysporum, but Chitinase G did not. Chitinase E, which is the family 19 chitinase, was similar to Chitinases F and G in its antigenecity, but not to Chitinase H1 or H2. Chitinases H1 and H2 were recognized by the anti-Bombyx mori chitinase antibody, suggesting that Chitinases H1 and H2 are family 18 chitinases like B. mori chitinases. Chitinases E, F and H1 had two optimum pH ranges of 3-4 and 7.5-9 toward glycolchitin, but Chitinase G had only one optimum pH value of 5. Chitinases E, F and H1 had higher affinity to the polymer substrate, glycolchitin, than Chitinase G. These results suggest that the lytic activity of plant chitinases may be related to the chitin affinity and probably to the characteristic optimum pH value, or two values, but not related to its classification. The correlation of the lytic activity of a chitinase isozyme with its elicitor specificity is also discussed.  相似文献   

6.
cDNA clones of messenger RNAs for acidic and basic chitinases were isolated from libraries of tobacco mosaic virus-infected Samsun NN tobacco and petunia. The tobacco cDNA clones for acidic chitinase fell into two different groups, whereas all petunia cDNA clones had the same sequence. Also, tobacco genomic clones were isolated and one was characterized. This genomic clone, corresponding to one of the cDNA clones, showed that this acidic chitinase gene contains two introns. The amino acid sequences of the acidic chitinases from tobacco, as deduced from the cDNA clones, fully agreed with partial sequences derived from peptides obtained from purified tobacco-derived pathogenesis-related proteins PR-P and PR-Q. The deduced amino acid sequences showed that PR-P and PR-Q are 93 and 78%, respectively, identical to the petunia enzyme. All deduced chitinase sequences indicated the presence of an NH2-terminal, highly hydrophobic signal peptide. In addition, the polysaccharide-binding domain present at the NH2-terminus of basic chitinases from mature tobacco is not present in these acidic chitinases. Furthermore, the complete coding sequence for the petunia chitinase, constructed downstream of the cauliflower mosaic virus 35S promoter, was used to transform tobacco. The resulting chimeric gene was constitutively expressed, and the petunia enzyme was targeted to the extracellular fluid. In contrast, a basic chitinase of tobacco, expressed from a chimeric gene, was found in total leaf extracts but not in preparations of extracellular fluid.  相似文献   

7.
Starch branching enzymes from immature rice seeds.   总被引:36,自引:0,他引:36  
Four forms of branching enzyme, termed RBE1, RBE2 (a mixture of RBE2A and RBE2B), RBE3, and RBE4, were apparently separated by DEAE-cellulose column chromatography of soluble extract from immature rice seeds, and each of these four forms was further purified by gel-filtration. RBE1, RBE2A, and RBE2B were the predominant forms of the enzyme. The molecular size, amino-terminal amino acid sequence, and immunoreactivity with anti-maize branching enzyme-I (BE-I) antibody were identical among these three forms, except that the molecular mass of RBE2A was almost 3 kDa higher than those of RBE1 and RBE2B. These results indicate that RBE1, RBE2A, and RBE2B are the same (termed rice BE-I). The cDNA clones coding for rice BE-I have been identified from a rice seed library in lambda gt11, using the maize BE-I cDNA as a probe. The nucleotide sequence indicates that rice BE-I is initially synthesized as an 820-residue precursor protein, including a putative 64- or 66-residue transit peptide at the amino terminus. The rice mature BE-I contains 756 (or 754) amino acids with a calculated molecular mass of 86,734 (or 86,502) Da, and shares a high degree of sequence identity (86%) with the maize protein. The consensus sequences of the four regions that form the catalytic sites of amylolytic enzymes are conserved in the central region of the rice BE-I sequence. Thus, rice BE-I as well as the maize protein belongs to a family of amylolytic enzymes.  相似文献   

8.
We report the purification of two glycosyl hydrolase family 18 chitinases, Chit33 and Chit42, from the filamentous fungus Trichoderma harzianum and characterization using a panel of different soluble chitinous substrates and inhibitors. We were particularly interested in the potential of these (alpha/beta)(8)-barrel fold enzymes to recognize beta-1,4-galactosylated and alpha-1,3-fucosylated oligosaccharides, which are animal-type saccharides of medical relevance. Three-dimensional structural models of the proteins in complex with chito-oligosaccharides were built to support the interpretation of the hydrolysis data. Our kinetic and inhibition studies are indicative of the substrate-assisted catalysis mechanism for both chitinases. Both T. harzianum chitinases are able to catalyze some transglycosylation reactions and cleave both simple chito-oligosaccharides and synthetically modified, beta-1,4-galactosylated and alpha-1,3-fucosylated chito-oligosaccharides. The cleavage data give experimental evidence that the two chitinases have differences in their substrate-binding sites, Chit42 apparently having a deeper substrate binding groove, which provides more tight binding of the substrate at subsites (-2-1-+1+2). On the other hand, some flexibility for the sugar recognition at subsites more distal from the cleavage point is allowed in both chitinases. A galactose unit can be accepted at the putative subsites -4 and -3 of Chit42, and at the subsite -4 of Chit33. Fucose units can be accepted as a branch at the putative -3 and -4 sites of Chit33 and as a branch point at -3 of Chit42. These data provide a good starting point for future protein engineering work aiming at chitinases with altered substrate-binding specificity.  相似文献   

9.
Trichoderma harzianum is a widely distributed soil fungus that antagonizes numerous fungal phytopathogens. The antagonism of T. harzianum usually correlates with the production of antifungal activities including the secretion of fungal cell walls that degrade enzymes such as chitinases. Chitinases Chit42 and Chit33 from T. harzianum CECT 2413, which lack a chitin-binding domain, are considered to play an important role in the biocontrol activity of this strain against plant pathogens. By adding a cellulose-binding domain (CBD) from cellobiohydrolase II of Trichoderma reesei to these enzymes, hybrid chitinases Chit33-CBD and Chit42-CBD with stronger chitin-binding capacity than the native chitinases have been engineered. Transformants that overexpressed the native chitinases displayed higher levels of chitinase specific activity and were more effective at inhibiting the growth of Rhizoctonia solani, Botrytis cinerea and Phytophthora citrophthora than the wild type. Transformants that overexpressed the chimeric chitinases possessed the highest specific chitinase and antifungal activities. The results confirm the importance of these endochitinases in the antagonistic activity of T. harzianum strains, and demonstrate the effectiveness of adding a CBD to increase hydrolytic activity towards insoluble substrates such as chitin-rich fungal cell walls.  相似文献   

10.
Characterization of two antifungal endochitinases from barley grain   总被引:2,自引:0,他引:2  
A basic chitinase (chitinase T, EC 3.2.1.14, molecular mass 33 kDa, pI 9.8) was isolated and compared with a previously described chitinase (chitinase C, molecular mass 28 kDa, pI 9.7). The two chitinases were isolated in homogeneous form from barley ( Hordeum vulgare L.) Bomi mutant 1508 grains either by two cation exchange steps or by one affinity step followed by cation exchange. Both chitinases are endochitinases with specific activities of 168 and 54 nkat (mg protein)−1 for chitinase T and chitinase C, respectively. Both inhibit the growth of Trichoderma viride efficiently. The lysozyme activity of both chitinases is 104 times lower than that of hen egg-white lysozyme as measured by lysis of cell walls of Micrococcus lysodeikticus . The amino acid composition and two partial amino acid sequences of chitinase T were determined. A 23 residue sequence of the N-terminal domain of chitinase T, which was not present in chitinase C, showed 73% identity with domain B of wheat germ lectin and 65% identity with the N-terminal domain of an endochitinase from bean leaves (deduced from cDNA). A 9 amino acid sequence of a cyanogen bromide fragment of chitinase T was identical with a cDNA deduced sequence of a barley aleurone endochitinase but differed in one residue from chitinase C. Generally, the two grain chitinases have physico-chemical and enzymatic properties similar to the plant leaf chitinases characterized. Both chitinases are localized in the aleurone layer and starchy endosperm of developing and germinating grain, but not in the embryo. The appearance of chitinases T and C at a late state of grain development suggests a role for these enzymes as a defense against fungi in the quiescent and germinating grain.  相似文献   

11.
12.
Leaves and bulbs of garlic ( Allium sativum L.) contain a chitinase which can be separated into three different isoforms with similar molecular structure and N- terminal amino acid sequence. SDS-PAGE of the alkylated chitinase revealed two distinct polypeptides of 32 and 33 kDa. Induction studies of the chitinase in leaves of garlic plants indicated that not only treatment with ethephon or salicylate and wounding but also a temperature shock strongly increased the enzyme level.
cDNA libraries constructed from poly(A)-rich RNA isolated from young garlic shoots and bulbs were screened for chitinase clones using the cDNA clone CCH4 encoding a basic potato chitinase as a probe. Two different cDNA clones (designated CHITAS 1 and CHITAS 2)of ca 1 000 bp were isolated and their sequences analyzed. The amino acid sequences deduced from both cDNA clones were homologous though not identical to the N-terminal sequences of the mature chitinases. Although both clones encode highly homologous chitinases their sequences definitely differ in that they have different signal peptides and one of them contains a glycine-rich domain. The garlic chitinases are apparently translated from an mRNA of 1200 nucleotides which encodes a proprotein of approximately 32 or 33 kDa for CHITAS 1 and CHITAS 2, respectively. Co-translational removal of the signal peptide will result in a 30 (for CHITAS 1) or 31 kDa (for CHITAS 2) protein with an isoelectric point of 4. 94 (for CHITAS 1) or 6. 12 (for CHITAS 2). Garlic chitinases are encoded by a small gene family as shown by Southern blot analysis of genomic DNA isolated from garlic.
The garlic chitinases show a high degree of sequence homology to the previously isolated chitinases from dicotyledonous as well as monocotyledonous species, indicating that these proteins have been conserved from an evolutionary point of view.  相似文献   

13.
Chitinases have the ability of chitin digestion that constitutes a main compound of the cell wall in many of the phytopathogens such as fungi. Chitinase Chit42 from Trichoderma atroviride PTCC5220 is considered to play an important role in the biocontrol activity of this fungus against plant pathogens. Chit42 lacks a chitin binding domain (ChBD). We have produced a chimeric chitinase with stronger chitin-binding capacity by fusing to Chit42 a ChBD from Serratia marcescens Chitinase B. The fusion of ChBD improved the affinity to crystalline and colloidal chitin and also the enzyme activity of the chimeric chitinase when compared with the native Chit42. The chimeric chitinase showed higher antifungal activity toward phytopathogenic fungi.  相似文献   

14.
Cruciferin (12S globulin) is the major seed protein in Brassica napus (oil seed rape). It is synthesized during seed development and consists of six subunit pairs. Each of these pairs is synthesized as a precursor containing one alpha and one beta chain. At least three different precursors exist (P1-3), giving rise to four different mature subunits (cru1-4). Several cruciferin clones were isolated from a seed mRNA cDNA library. Comparison of the deduced amino acid sequences of these clones to amino acid sequences of purified cruciferin chains and peptides identified them as coding for cru2/3 and cru4 subunits. From the amino acid sequences deduced from two overlapping cDNA clones, the precursor of the cru4 subunit was shown to consist of 465 amino acid residues. Comparison of cruciferin and cruciferin-related sequences from B. napus and Arabidopsis thaliana, respectively, suggested that early during evolution the Brassicaceae family only possessed two types of 11-12S globulin genes, like the present-day Fabaceae.  相似文献   

15.
A novel strain exhibiting entomopathogenic and chitinolytic activity was isolated from mangrove marsh soil in India. The isolate was identified as Brevibacillus laterosporus by phenotypic characterization and 16S rRNA sequencing and designated Lak1210. When grown in the presence of colloidal chitin as the sole carbon source, the isolate produced extracellular chitinases. Chitinase activity was inhibited by allosamidin indicating that the enzymes belong to the family 18 chitinases. The chitinases were purified by ammonium sulfate precipitation followed by chitin affinity chromatography yielding chitinases and chitinase fragments with 90, 75, 70, 55, 45, and 25 kDa masses. Mass spectrometric analyses of tryptic fragments showed that these fragments belong to two distinct chitinases that are almost identical to two putative chitinases, a 89.6-kDa four-domain chitodextrinase and a 69.4-kDa two-domain enzyme called ChiA1, that are encoded on the recently sequenced genome of B. laterosporus LMG15441. The chitinase mixture showed two pH optima, at 6.0 and 8.0, and an optimum temperature of 70 °C. The enzymes exhibited antifungal activity against the phytopathogenic fungus Fusarium equiseti. Insect toxicity bioassays with larvae of diamondback moths (Plutella xylostella), showed that addition of chitinases reduced the time to reach 50 % mortality upon infection with non-induced B. laterosporus from 3.3 to 2.1 days. This study provides evidence for the presence of inducible, extracellular chitinolytic enzymes in B. laterosporus that contribute to the strain’s antifungal activity and insecticidal activity.  相似文献   

16.
Characterization of chitinases excreted by Bacillus cereus CH   总被引:1,自引:0,他引:1  
Bacillus cereus CH was shown to excrete chitinases into the culture supernatant when cultivated in a medium containing 0.2% colloidal chitin, whereas the removal of colloidal chitin resulted in a low activity. After concentration of the culture supernatant by precipitation with ammonium sulfate, the induced chitinases were purified by sequential chromatography. Four different chitinases, A, B1, B2, and B3 with molecular masses of 35, 47, 58, and 64 kDa, respectively, were separated. All chitinases showed similarities in their kinetic parameters when observed with colloidal chitin, including an optimal pH of 5.0-7.5, and an optimal temperature between 50-60 degrees C. Chitinase A hydrolyzed glycol chitin and p-nitrophenyl-di-N-acetyl-beta-chitobioside at similar rates to that of colloidal chitin, whereas group B chitinases hydrolyzed both substrates in much lower rates. From analyses of the reaction products, it is most likely that chitinase A and all group B chitinases hydrolyze the substrates tested in an endo-fashion. However, group B chitinases were distinct from chitinase A in possessing high transglycosylation activity. From amino terminal sequencing, chitinases B1, B2, and B3 were shown to have almost identical sequences, which differed from that of chitinase A. The similarities in the reaction modes and amino terminal sequences among chitinases B1, B2, and B3 suggest that these chitinases may be derived from a presumptive precursor protein through C-terminal processing.  相似文献   

17.
Chitinase A of Streptomyces cyaneus SP-27 or chitinase I of Bacillus circulans KA-304 showed the protoplast-forming activity when combined with alpha-1,3-glucanase of B. circulans KA-304. The gene of chitinase A was cloned. It consisted of 903 nucleotides encoding 301 amino acid residues, including a putative signal peptide (35 amino acid residues). The deduced N-terminal moiety of chitinase A showed sequence homology with the chitin-binding domain of chitinase F from Streptomyces coelicolor and chitinase 30 from Streptomyces olivaceoviridisis. The C-terminal moiety also showed high sequence similarity to the catalytic domain of several Streptomyces family 19 chitinases as well as that of chitinase I of B. circulans KA-304. Recombinant chitinase A was expressed in Escherichia coli Rosetta-gami B (DE 3). The properties of the recombinant enzyme were almost the same as those of chitinase A purified from a culture filtrate of S. cyaneus SP-27. The recombinant enzyme was superior to B. circulans KA-304 chitinase I not only in respect to protoplast forming activity in a mixture containing alpha-1,3-glucanase, but also to antifungal activity and powder chitin-hydrolyzing activity.  相似文献   

18.
Homology between chitinases that are induced by TMV infection of tobacco   总被引:1,自引:0,他引:1  
Recently, four chitinases have been detected in tobacco mosaic virus (TMV) infected tobacco: two acidic chitinases that were identified as pathogenesis-related (PR) proteins P and Q and two basic chitinases (Legrand et al., Proc.Natl. Acad. Sci. USA, in press). Here, it was shown that P and Q are closely serologically related but not related to other known acidic tobacco PR proteins. Antisera to P and Q were used to characterize translation products of TMV-induced mRNAs that were hybrid-selected with cDNA clones described previously (Hooft van Huijsduijnen et al., EMBO J 5: 2057–2061, 1986). In this way cDNA clones corresponding to the acidic and basic chitinases were identified. The partial amino acid sequences of the acidic and basic tobacco chitinases that were represented in the clones, showed an approximately 70% homology to each other and to the sequence of a bean chitinase. Although the acidic and basic chitinases differ in apparent molecular weight, they were found to have homologous C-termini.Hybridization of cDNA probes to genomic blots indicated that the acidic and basic chitinases are each encoded by two to four genes in the amphidiploid genome of Samsun NN tobacco. A similar complexity was found for the genes encoding the tobacco PR protein that is homologous to the sweet-tasting protein thaumatin and to the bifunctional trypsin/-amylase inhibitor from maize.  相似文献   

19.
Kelley PM  Tolan DR 《Plant physiology》1986,82(4):1076-1080
A cDNA library was synthesized from maize anaerobic root mRNA and screened with cDNA specific to the anaerobically induced Zea mays cytoplasmic aldolase. At least 1% of the cDNA of the library corresponded to maize cytoplasmic aldolase. The sequence of four overlapping cDNA clones encoded a protein of molecular weight 38,611 homologous to aldolase. These cDNAs were polymorphic at three bases and one of these cDNAs had a different, shorter 3′-untranslated region. No known eukaryotic poly(A) addition site was detected. The derived amino acid sequences of maize was compared to the sequence of aldolase of trypanosome, Drosophila, and two mammalian isozymes, A and B. Of these, maize cytoplasmic aldolase was found to have the highest homology (55%) with rabbit aldolase A.  相似文献   

20.
The lysosomal beta-hexosaminidases (N-acetyl-beta-glucosaminidase, EC 3.2.1.30) occur as two major isozymes, hexosaminidase A (alpha beta a beta b) and hexosaminidase B (2(beta a beta b)). To facilitate the investigations of the biosynthesis and structure of the enzymes and the nature of mutation in Tay-Sachs disease, we have isolated cDNA clones coding for the alpha-subunit. The polypeptide chains of hexosaminidase A (30 mg) were digested with trypsin, and peptides were isolated by reverse phase high pressure liquid chromatography and their amino acid sequences determined. One of alpha-chain peptides contained a string of seven amino acids from which two sets of oligonucleotides were specified. They were used to screen the SV40-transformed human fibroblast cDNA library of Okayama and Berg. Three cDNA clones, designated pHexA, identified from among 5 X 10(5) clones screened, contained the deduced amino-acid sequences of five alpha-chain peptides. Genomic DNA homologous to pHexA cDNA mapped to human chromosome 15 in somatic cell hybrids, as expected for the pre-alpha-polypeptide. Two of the clones contained identical polyadenylation sites, while the third was polyadenylated about 450 base pairs downstream. The two types of clones were found to correspond to a major 2.0-kilobase pair and a minor 2.3-kilobase pair mRNA species. Blot hybridizations of mRNA and DNA from Tay-Sachs variant fibroblasts revealed absence or reduction of levels of both mRNA species among infantile and juvenile variants, but no observable DNA alterations. Alignment of the pre-alpha- and pre-beta-polypeptides revealed 55% nucleotide and 57% amino acid homology. These data suggest a common origin of the HEXA and HEXB genes and account for the similar substrate specificities of the alpha-dimer subunit, hexosaminidase S, and hexosaminidase B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号