共查询到20条相似文献,搜索用时 8 毫秒
1.
S Pontremoli B Sparatore F Salamino M Michetti E Melloni 《Archives of biochemistry and biophysics》1985,239(2):517-522
Mn2+ (50 microM) satisfies the requirement for activity of the purified Ca2+-dependent neutral proteinase from human erythrocytes. Unlike the activation by Ca2+ [E. Melloni et al. (1984) Biochem. Int. 8, 477-489], the effect of Mn2+ is fully reversible and does not involve autodigestion of the native 80-kDa catalytic subunit. However, the native dimeric proenzyme (procalpain), which contains both the 80-kDa subunit and a smaller 30-kDa subunit, is not activated by Mn2+ alone but also requires the presence of micromolar concentrations of Ca2+. Under these conditions, 40% of the maximum activity is expressed without dissociation of the 80- and 30-kDa subunits. Mn2+, but not micromolar Ca2+, can also partially satisfy the metal requirement of the native 80-kDa subunit isolated after dissociation of the heterodimer. This activity is further enhanced by the addition of 5 microM Ca2+, which is ineffective in the absence of Mn2+. After procalpain is converted to active calpain by incubation with Ca2+ and substrate [S. Pontremoli et al. (1984) Biochem. Biophys. Res. Commun. 123, 331-337] full activity is observed with 5 microM Mn2+, which now substitutes completely for Ca2+. Activation of procalpain by Mn2+ represents a new mechanism for modulation of the Ca2+-dependent proteinase activity. 相似文献
2.
Role of phospholipids in the activation of the Ca2+-dependent neutral proteinase of human erythrocytes 总被引:3,自引:0,他引:3
S Pontremoli E Melloni B Sparatore F Salamino M Michetti O Sacco B L Horecker 《Biochemical and biophysical research communications》1985,129(2):389-395
Activation of the Ca2+-dependent neutral proteinase of human erythrocytes in the presence of Ca2+ and a digestible substrate (Pontremoli, S., Sparatore, B., Melloni, E., Michetti, M. and Horecker, B.L. 1984, Biochem. Biophys. Res. Communs. 123, 331-337) is promoted by phospholipids such as phosphatidylcholine, phosphatidylinositol and phosphatidylserine. The presence of at least one unsaturated fatty acid chain is essential and metabolic derivatives such as dioleylglycerol, phosphorylserine and free fatty acids are ineffective. The most effective promoter was a freshly prepared mixture of phospholipids from human erythrocyte membranes. Activation involves conversion of the 80 kDa proenzyme (procalpain) subunit to the 75 kDa active proteinase and is irreversible. Phospholipids act by producing a large decrease in the concentration of Ca2+ required for the conversion of procalpain to active calpain. 相似文献
3.
Regulation of the Ca2+-dependent neutral proteinases from rabbit liver by an endogenous inhibitor 总被引:1,自引:0,他引:1
E Melloni F Salamino B Sparatore M Michetti S Pontremoli B L Horecker 《Archives of biochemistry and biophysics》1984,232(2):513-519
An endogenous inhibitor of neutral Ca2+-dependent proteinases has been isolated from rabbit liver cytosol. The inhibitor is a heat-stable, 240-kDa, tetrameric protein. It is dissociated into its 60-kDa subunits by high concentrations of Ca2+ (0.1-1 mM), but not by lower concentrations in the physiological range. Inhibition of the 150-kDa proteinase of rabbit liver [Melloni, E., Pontremoli, S., Salamino, F., Sparatore, B., Michetti, M. and Horecker, B.L. (1984) Arch. Biochem. Biophys. 232, 505-512] requires the monomeric form of the inhibitor, and occurs only at the high concentrations of Ca2+ which also cause dissociation of the dimeric 150-kDa proteinase into its 80-kDa subunits. The molecular weight of the inactive proteinase-inhibitor complex was estimated by the equilibrium gel penetration method to be 140 kDa, suggesting that it contains one subunit of proteinase and one of inhibitor. The mechanism of interaction of the inhibitor with the 200-kDa proteinase at high concentrations of Ca2+ is identical to that observed for the 150-kDa proteinase, namely dissociation of both proteinase and inhibitor into subunits and formation of an inactive 160-kDa proteinase-inhibitor complex. However, unlike the 150-kDa proteinase, which does not interact with the inhibitor at low Ca2+ concentrations, the 200-kDa proteinase is also inhibited at low concentrations of Ca2+. Under these conditions, the high-molecular-weight complex (greater than 400 kDa) formed between the tetrameric inhibitor and the dimeric proteinase prevents conversion of the 200-kDa proenzyme to the active, low-Ca2+-requiring form. 相似文献
4.
A protein inhibitor of the Ca2+-dependent proteinase has been purified from bovine cardiac muscle by using the following steps in succession: salting out 17,600 X gmax supernatants from muscle homogenates in 50 mM Tris acetate, pH 7.5, 4 mM EDTA between 25 and 65% ammonium sulfate saturation; eluting between 25 and 120 mM KCl from a DEAE-cellulose column at pH 7.5; salting out between 30 and 60% ammonium sulfate saturation; Ultrogel-22 gel permeation chromatography at pH 7.5; heating to 80 degrees C followed by immediate cooling to 0 degree C; 6% agarose gel permeation chromatography in 4 M urea, pH 7.5; and elution from a phenyl-Sepharose hydrophobic column between 0.7 and 0.5 M ammonium sulfate. Approximately 1.16-1.69 mg of purified Ca2+-dependent proteinase inhibitor are obtained from 1 kg of bovine cardiac muscle, fresh weight. Bovine cardiac Ca2+-dependent proteinase inhibitor has an Mr of 115,000 as measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, a pI of 4.85-4.95, very little alpha-helical structure, a very low specific absorbance of 1.647 (A1% 280), and very low contents of histidine, tryptophan, phenylalanine, and tyrosine. Bovine cardiac Ca2+-dependent proteinase inhibitor probably contains a single polypeptide chain in nondenaturing solvents. One 115-kDa inhibitor polypeptide inactivates 10 110-kDa millimolar Ca2+-requiring proteinase (millimolar Ca2+-dependent proteinase) molecules in assays of purified proteins. Inhibition of millimolar proteinase by the proteinase inhibitor did not change in the pH range 6.2-8.6. The inhibitor requires Ca2+ to bind to millimolar Ca2+-dependent proteinase. The Ca2+ concentration required for one-half-maximum binding of millimolar Ca2+-dependent proteinase to the inhibitor was 0.53 mM, compared with a Ca2+ concentration of 0.92 mM required for one-half maximum activity of millimolar Ca2+-dependent proteinase in the absence of the proteinase inhibitor. Unless millimolar Ca2+-dependent proteinase is located subcellularly in a different place than the proteinase inhibitor or unless the proteinase/inhibitor interaction is regulated, millimolar proteinase could never be active in situ. 相似文献
5.
6.
Activation by hemoglobin of the Ca2+-requiring neutral proteinase of human erythrocytes: structural requirements 总被引:4,自引:0,他引:4
S Pontremoli B Sparatore E Melloni M Michetti B L Horecker 《Biochemical and biophysical research communications》1984,123(1):331-337
The proenzyme form of the Ca2+-requiring neutral proteinase of human erythrocytes (procalpain) is converted to the active proteinase (calpain) by low concentrations of Ca2+ in the presence of appropriate substrates such as beta-hemoglobin or heme-free beta-globin chains. Modification of these substrates by limited proteolysis with calpain abolishes their ability to promote the conversion of procalpain. A similar requirement for the presence of unmodified beta-hemoglobin or heme-free beta-globin chains is observed for the autocatalytic inactivation of calpain. The conversion of procalpain to calpain is accompanied by a small decrease in the molecular mass of the catalytic subunit, from 80 kDa to 75 kDa; however, the activation is not accelerated by the addition of a small quantity of calpain. The autocatalytic inactivation of active CANP is related to the disappearance of the 75 kDa subunit and the formation of smaller peptide fragments. 相似文献
7.
Activation of the Ca2+-ATPase of human erythrocyte membrane by an endogenous Ca2+-dependent neutral protease 总被引:1,自引:0,他引:1
Limited proteolysis of the plasma membrane calcium transport ATPase (Ca2+-ATPase) from human erythrocytes by trypsin produces a calmodulin-like activation of its ATP hydrolytic activity and abolishes its calmodulin sensitivity. We now demonstrate a similar kind of activation of the human erythrocyte membrane Ca2+-ATPase by calpain (calcium-dependent neutral protease) isolated from the human red cell cytosol. Upon incubation of red blood cell membranes with purified calpain in the presence of Ca2+ the membrane-bound Ca2+-ATPase activity was increased and its sensitivity to calmodulin was lost. In contrast to the action of other proteases tested, proteolysis by calpain favors activation over inactivation of the Ca2+-ATPase activity, except at calpain concentrations more than 2 orders of magnitude higher. Exogenous calmodulin protects the Ca2+-ATPase against calpain-mediated activation at concentrations which also activate the Ca2+-ATPase activity. Calcium-dependent proteolytic modification of the Ca2+-ATPase could provide a mechanism for the irreversible activation of the membrane-bound enzyme. 相似文献
8.
Binding to erythrocyte membrane is the physiological mechanism for activation of Ca2+-dependent neutral proteinase 总被引:6,自引:0,他引:6
S Pontremoli E Melloni B Sparatore F Salamino M Michetti O Sacco B L Horecker 《Biochemical and biophysical research communications》1985,128(1):331-338
In the presence of micromolar concentrations of Ca2+ the catalytic 80 kDa subunit of human erythrocyte procalpain binds to the cytosolic surface of the erythrocyte membrane. Binding is rapid, highly specific and is reversed by the removal of Ca2+. In the bound form the 80 kDa catalytic subunit undergoes a rapid conversion to calpain, the active 75 kDa Ca2+-requiring proteinase. The activated proteinase produces extensive degradation of membrane components, particularly of band 4.1 and 2.1 proteins. Binding to membranes may represent an obligatory physiological mechanism for the conversion of procalpain to calpain. 相似文献
9.
10.
E Melloni F Salamino B Sparatore M Michetti S Pontremoli 《Biochimica et biophysica acta》1984,788(1):11-16
Human erythrocyte Ca2+-dependent neutral proteinase catalyzes a limited proteolysis of isolated globin chains. The rate of hydrolysis is very rapid using heme-deprived alpha- or beta-globin chains and is reduced to one-fifth with their corresponding native forms. In both cases, the proteinase specifically cleaves a single peptide bond, this resulting in the removal from the amino-terminus end of an octapeptide in beta-globin and of an undecapeptide in alpha-globin. Both peptides have been isolated, their amino acid composition has been characterized and the susceptible site of cleavage has been identified. Hemoglobin variants show a different rate of digestion as compared to that of normal chains. The alpha-Hasharon [alpha 47(CE5) Asp----His] undergoes rapid digestion, while the beta-G San Josè chain [beta 7(A4) Glu----Gly], which carries the mutation near the site of cleavage, reveals a high degree of resistance to proteolytic degradation by the neutral proteinase. 相似文献
11.
An endogenous inhibitor of calcium activated neutral proteinase has been purified from human placenta. The procedure included
chromatography on DEAE cellulose, Ultrogel AcA 22 and milli calcium activated neutral proteinase-sepharose in succession.
Endogenous calcium activated neutral proteinase inhibitor was a tetramer with identical subunits of molecular weight 68 kDa.
It was specific for milli calcium activated neutral proteinase (Calpain II) which is inhibited by the formation of an inactive
enzyme-inhibitor complex and not by sequestering Ca2+ from the medium. Although micro calcium activated neutral proteinase (Calpain I) was not inhibited by endogenous calcium
activated neutral proteinase inhibitor, it was protected from autolysis in the presence of the inhibitor. The placental endogenous
calcium activated neutral proteinase inhibitor thus regulates Ca2+ activated proteolysis by ensuring micro calcium activated neutral proteinase activity, while inhibiting milli calcium activated
neutral proteinase. 相似文献
12.
O Scharff 《Biochimica et biophysica acta》1976,443(2):206-218
The kinetics of Ca2+ activation of membrane-bound (Ca2+ + Mg2+)-dependent ATPase (ATP phosphohydrolase EC 3.6.1.3) from human erythrocytes was studied. The ATPase from membrane prepared in the presence of 0.7-500muM Ca2+ showed positively cooperative behaviour and a Km for Ca2+ of between 1 and 4 muM. If the membranes were prepared in the absence of Ca2+ the Km increased, and an enzyme model with at least four calcium-binding sites accounted for the kinetic change assuming that one calcium-binding site decreased its affinity. Mg2+ or Mg-ATP could not replace Ca2+. Continuous-flow centrifugation involving a shear stress on membranes was necessary to obtain the high affinity ATPase activity. Using ordinary centrifugation the Ca2+-prepared membranes behaved as membranes prepared in the absence of Ca2+. The Ca2+-stimulated ATPase from membranes prepared without Ca2+ showed reduced maximum activity, but dialyzed, membrane-free hemolysates, whether prepared with Ca2+ present or not, recovered the activity when the hemolysate was present during the ATPase assay. It is suggested that the different Ca2+-affinities of the Ca2+-stimulated ATPase correspond to two different states of the calcium-pump. 相似文献
13.
Specific activity of the cytoplasmic Ca2+-dependent serine proteinase (ISP1) in exponentially growing cultures decreased with increasing growth temperature. On the other hand, a temperature shift-up applied to a non-growing population incubated in a sporulation medium induced a rise of its activity. The ISP1 activity was assayed in the presence of 30 mmol/L CaCl2 to release the enzyme inhibition and/or stimulate its processing. Immunoblotting applied to the 1-D SDS-PAGE electrophoretogram detected the ISP1 in growing cells mainly in bands withM of 41 and 38 kDa. The intensity of the latter decreased with increasing growth temperature. In nongrowing cells another intensively reacting band ofM 40 kDa appeared. In contrast to the commonly accepted opinion that starvation brings about a rise of the ISP1 synthesis or activation, its increase during incubation in sporulation medium was found only in cells pregrown at 35 and 42°C, where the enzyme activity in growing culture was low. No increase of the ISP1 specific activity in sporulation medium was detected in cells pregrown at 24 or 31°C, where the activity in growing cells was high. 相似文献
14.
15.
The millimolar Ca2+-requiring form of the Ca2+-dependent proteinase from chicken breast skeletal muscle contains two subunit polypeptides of 80 and 28 kDa, just as the analogous forms of this proteinase from other tissues do. Incubation with Ca2+ at pH 7.5 causes rapid autolysis of the 80-kDa polypeptide to 77 kDa and of the 28-kDa polypeptide to 18 kDa. Autolysis of the 28-kDa polypeptide is slightly faster than autolysis of the 80-kDa polypeptide and is 90-95% complete after 10 s at 0 degrees C. Autolysis for 15 s at 0 degrees C converts the proteinase from a form requiring 250-300 microM Ca2+ to one requiring 9-10 microM Ca2+ for half-maximal activity, without changing its specific activity. The autolyzed proteinase has a slightly lower pH optimum (7.7 vs. 8.1) than the unautolyzed proteinase. The autolyzed proteinase is not detected in tissue extracts made immediately after death; therefore, the millimolar Ca2+-requiring proteinase is largely, if not entirely, in the unautolyzed form in situ. 相似文献
16.
E. Melloni B. Sparatore F. Salamino M. Michetti S. Pontremoli 《Biochemical and biophysical research communications》1982,106(3):731-740
A calcium dependent soluble neutral proteinase has been purified to homogeneity from human erythrocytes. The proteinase is composed of two different polypeptide chains of approximate molecular weight of 80 k and 30 k daltons. Maximum activity is expressed at 50 μM Ca2+. The enzyme is regulated by reversible binding to a natural inhibitor, also present in the cytosolic compartment. The formation of the enzyme-inhibitor complex is dependent on high Ca2+ concentrations and is reversed by chelating agents. The proteinase is inhibited by leupeptin, chymostatin, antipain and free hemin and has a marked specificity for native or denatured human globin chains. 相似文献
17.
The native 108,000 dalton Ca2+-dependent proteinase (CDP) and its 115,000 dalton protein inhibitor (CDPI) were purified from bovine skeletal muscle using native polyacrylamide gel electrophoresis and were used to elicit antibody production in rabbits and BALB/c mice. Polyclonal antibodies were purified as IgG fractions by column chromatography; monoclonal antibodies were produced by the hybridoma technique. Indirect immunofluorescence localization of CDP and CDPI in tissues of Crotalus atrox show both proteins to be ubiquitous. Both occur in the cytoplasm and are absent from the cell membrane and the nucleus; CDPI is also present in the I-band of skeletal muscle. 相似文献
18.
Stringent requirement for Ca2+ in the removal of Z-lines and alpha-actinin from isolated myofibrils by Ca2+-activated neutral proteinase 总被引:3,自引:0,他引:3 下载免费PDF全文
Treatment of isolated myofibrils with Ca2+-activated neutral proteinase (CANP) results in specific removal of Z-line and of alpha-actinin. To investigate the ionic requirement for these processes, we measured Z-line removal by phase-contrast and interference microscopy and alpha-actinin removal by sodium dodecyl sulphate/polyacrylamide-gel electrophoretic analysis of myofibrillar proteins. The proteolytic digestion of native purified proteins was measured directly on polyacrylamide gels and by the fluorescamine technique. We found that the removal of Z-line and alpha-actinin as well as the release of proteolytic degradation products from isolated myofibrils by CANP occur only in the presence of Ca2+; Sr2+, Ba2+, Mn2+, Mg2+, Co2+ and Zn2+ are all ineffective. In contrast with this stringent requirement for Ca2+, the proteolytic activity of CANP measured with denatured casein, native and denatured haemoglobin, native actin and tropomyosin also occurs in the presence of other bivalent cations, in the following order: Ca2+ greater than Sr2+ greater than Ba2+. These data suggest that only Ca2+ can produce the conformational change in myofibrils that renders them susceptible to the action of CANP, whereas its proteolytic activity is stimulated by several bivalent ions. 相似文献
19.
P Cottin J L Azanza P Vidalenc A Ducastaing C Valin A Ouali 《Reproduction, nutrition, development》1981,21(2):309-317
This paper describes the isolation, purification and properties of a specific inhibitor of calcium-activated neutral proteinase (CaANP) in rabbit skeletal muscle. The inhibitor was a thermo-acid-stable protein degraded by trypsin and chymotrypsin and seemed to contain two polypeptide chains with molecular weights of 70 000 and 13 000 daltons. Maximal inhibitory activity was obtained at neutral pH. High salt concentrations were needed to suppressinhibition. Inhibitor concentration had no effect on the optimal Ca++ ion levels for CaANP. These experiments also show that enzyme inhibitor association was instantaneous and did not need any incubation. 相似文献
20.
Inside-out vesicles of human erythrocytes took up Ca2+ against an electrochemical gradient. This Ca2+ uptake was dependent on ATP and was stimulated by calmodulin. Treatment of vesicles with 1 mM-EDTA exposed an apparent low-CA2+-affinity Ca2+-transport component with Kd of about 100 microM-Ca2+ or more. This was converted into a single high-Ca2+-affinity transport activity of Kd about 2.5 microM-Ca2+ in the presence of 2 micrograms of calmodulin/ml, showing that the decrease in transport activity after EDTA treatment was reversible. Vesicles not extracted with EDTA showed mainly apparent high-Ca2+-affinity kinetics even in the absence of added calmodulin. Trifluoperazine (30 microM) and calmodulin-binding protein (20 micrograms/ml) inhibited about 50% of the high-affinity Ca2+ uptake and (Ca2+ + Mg2+)-ATPase (Ca2+-activated, Mg2+-dependent ATPase) activity of these vesicles, indicating that the vesicles isolated by the procedure used retained some calmodulin from the erythrocytes. Comparison of Ca2+ transport and (Ca2+ + Mg2+)-ATPase activities in inside-out vesicles yielded a variable Ca2+/P1 stoichiometric ratio. At low free Ca2+ concentrations (below 20 micro-Ca2+), a Ca2+/P1 ration of about 2 was found, whereas at higher Ca2+ concentrations the stoichiometry was approx. 1. The stoichiometry was not significantly altered by calmodulin. 相似文献