首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Studies were performed to determine the effect of protein phosphorylation mediated by calcium-calmodulin-dependent multifunctional protein kinase II and calcium-phospholipid-dependent protein kinase on Na+/H+ exchange activity. Proteins from the apical membrane of the proximal tubule of the rabbit kidney were solubilized in octyl glucoside and incubated in phosphorylating solutions containing the protein kinase.22Na+ uptake was determined subsequently after reconstitution of the proteins into proteoliposomes. Calcium-calmodulin-dependent multifunction protein kinase II inhibited the amiloride-sensitive component of proton gradient-stimulated Na+ uptake in a dose-dependent manner. The inhibitory effect of this kinase had an absolute requirement for calmodulin, Ca2+, and ATP. Calcium-phospholipid-dependent protein kinase stimulated the amiloride-sensitive component of proton gradient-stimulated Na+ uptake in a dose-dependent manner. The stimulating effect of this kinase had an absolute requirement for ATP, Ca2+, and an active phorbol ester. These experiments indicate that Na+/H+ exchange activity of proteoliposomes reconstituted with proteins from renal brush-border membranes are inhibited by protein phosphorylation mediated by calcium-calmodulin-dependent multifunctional protein kinase II and stimulated by that mediated by calcium-calmodulin-dependent protein kinase.  相似文献   

2.
Blocking either the Na+ channel or the Na+/H+ exchanger (NHE) has been shown to reduce Na+ and Ca2+ overload during myocardial ischemia and reperfusion, respectively, and to improve post-ischemic contractile recovery. The effect of combined blockade of both Na+ influx routes on ionic homeostasis is unknown and was tested in this study. [Na+]i, pHi and energy-related phosphates were measured using simultaneous 23Na- and 31P-NMR spectroscopy in isolated rat hearts. Eniporide (3 μM) and/or lidocaine (200 μM) were administered during 5 min prior to 40 min of global ischemia and 40 min of drug free reperfusion to block the NHE and the Na+ channel, respectively. Lidocaine reduced the rise in [Na+]i during the first 10 min of ischemia, followed by a rise with a rate similar to the one found in untreated hearts. Eniporide reduced the ischemic Na+ influx during the entire ischemic period. Administration of both drugs resulted in a summation of the effects found in the lidocaine and eniporide groups. Contractile recovery and infarct size were significantly improved in hearts treated with both drugs, although not significantly different from hearts treated with either one of them.  相似文献   

3.
The Na(+)/H(+) exchanger (NHE) and/or the Na(+)/HCO(3)(-) cotransporter (NBC) were blocked during ischemia in isolated rat hearts. Intracellular Na(+) concentration ([Na(+)](i)), intracellular pH (pH(i)), and energy-related phosphates were measured by using simultaneous (23)Na and (31)P NMR spectroscopy. Hearts were subjected to 30 min of global ischemia and 30 min of reperfusion. Cariporide (3 microM) or HCO(3)(-)-free HEPES buffer was used, respectively, to block NHE, NBC, or both. End-ischemic [Na(+)](i) was 320 +/- 18% of baseline in HCO(3)(-)-perfused, untreated hearts, 184 +/- 6% of baseline when NHE was blocked, 253 +/- 19% of baseline when NBC was blocked, and 154 +/- 6% of baseline when both NHE and NBC were blocked. End-ischemic pH(i) was 6.09 +/- 0.06 in HCO(3)(-)-perfused, untreated hearts, 5.85 +/- 0.02 when NHE was blocked, 5.81 +/- 0.05 when NBC was blocked, and 5.70 +/- 0.01 when both NHE and NBC were blocked. NHE blockade was cardioprotective, but NBC blockade and combined blockade were not, the latter likely due to a reduction in coronary flow, because omission of HCO(3)(-) under conditions of NHE blockade severely impaired coronary flow. Combined blockade of NHE and NBC conserved intracellular H(+) load during reperfusion and led to massive Na(+) influx when blockades were lifted. Without blockade, both NHE and NBC mediate acid-equivalent efflux in exchange for Na(+) influx during ischemia, NHE much more than NBC. Blockade of either one does not affect the other.  相似文献   

4.
In the myocardium, the Na(+)/H(+) exchanger isoform-1 (NHE1) activity is detrimental during ischemia-reperfusion (I/R) injury, causing increased intracellular Na(+) (Na(i)(+)) accumulation that results in subsequent Ca(2+) overload. We tested the hypothesis that increased expression of NHE1 would accentuate myocardial I/R injury. Transgenic mice were created that increased the Na(+)/H(+) exchanger activity specifically in the myocardium. Intact hearts from transgenic mice at 10-15 wk of age showed no change in heart performance, resting intracellular pH (pH(i)) or phosphocreatine/ATP levels. Transgenic and wild-type (WT) hearts were subjected to 20 min of ischemia followed by 40 min of reperfusion. Surprisingly, the percent recovery of rate-pressure product (%RPP) after I/R improved in NHE1-overexpressing hearts (64 +/- 5% vs. 41 +/- 5% in WT; P < 0.05). In addition, NMR spectroscopy revealed that NHE1 overexpressor hearts contained higher ATP during early reperfusion (levels P < 0.05), and there was no difference in Na(+) accumulation during I/R between transgenic and WT hearts. HOE642 (cariporide), an NHE1 inhibitor, equivalently protected both WT and NHE1-overexpressing hearts. When hearts were perfused with bicarbonate-free HEPES buffer to eliminate the contribution of HCO(3)(-) transporters to pH(i) regulation, there was no difference in contractile recovery after reperfusion between controls and transgenics, but NHE1-overexpressing hearts showed a greater decrease in ATP during ischemia. These results indicate that the basal activity of NHE1 is not rate limiting in causing damage during I/R, therefore, increasing the level of NHE1 does not enhance injury and can have some small protective effects.  相似文献   

5.
We examined two expression systems for studying the Na+/H+ exchanger in the mammalian myocardium. Mammalian NHE1 with a hemagglutinin (HA) tag and was cloned behind the alpha myosin heavy chain promoter. Transgenic mice were made with wild type NHE1 protein or with a hyperactive NHE1 protein mutated at the calmodulin-binding domain. Three lines of transgenic mice were made of each cDNA with expression levels of each type varying from high to low. Higher levels and activity of the Na+/H+ exchanger were associated with decreased long-term survival of mice, and with dilated or hypertrophic cardiomyopathy. The exogenous NHE1 protein was present in freshly made cardiomyocytes from transgenic mice, however, expression from the alpha myosin heavy chain promoter declined rapidly and little exogenous NHE1 was apparent on the fourth day after cardiomyocyte isolation. To express NHE1 protein in isolated cardiomyocytes, we transferred a mutated form of the protein into an adenoviral expression system. Infection of neonatal rat cardiomyocytes resulted in robust expression of the exogenous NHE1 protein. The mutant form of the NHE1 protein could be distinguished from the endogenous Na+/H+ exchanger by its resistance to inhibition by amiloride analogs. Our results suggest that for in vivo studies on intact hearts and animals, expression in transgenic mice is an appropriate system, however for long-term studies on cardiomyocytes, this model is inappropriate due to waning expression from the alpha myosin heavy chain promoter. Therefore, infection by adenovirus is a superior system for long-term studies on cardiomyocytes in culture.  相似文献   

6.
Na+/H+ antiporters   总被引:41,自引:0,他引:41  
Na+/H+ antiports or exchange reactions have been found widely, if not ubiquitously, in prokaryotic and eukaryotic membranes. In any given experimental system, the multiplicity of ion conductance pathways and the absence of specific inhibitors complicate efforts to establish that the antiport observed actually results from the activity of a specific secondary porter which catalyzes coupled exchanged of the two ions. Nevertheless, a large body of evidence suggests that at least some prokaryotes possess a delta psi-dependent, mutable Na+/H+ antiporter which catalyzes Na+ extrusion in exchange for H+; in other bacterial species, the antiporter my function electroneutrally, at least at some external pH values. The bacterial Na+/H+ antiporter constitutes a critical limb of Na+ circulation, functioning to maintain a delta mu Na+ for use by Na+-coupled bioenergetic processes. The prokaryotic antiporter is also involved in pH homeostasis in the alkaline pH range. Studies of mutant strains that are deficient in Na+/H+ antiporter activity also indicate the existence of a relationship, e.g., a common subunit or regulatory factor, between the Na+/H+ antiporter and Na+/solute symporters in several bacterial species. In eukaryotes, an electroneutral, amiloride-sensitive Na+/H+ antiport has been found in a wide variety of cell and tissue types. Generally, the normal direction of the antiport appears to be that of Na+ uptake and H+ extrusion. The activity is thus implicated as part of a complex system for Na+ circulation, e.g., in transepithelial transport, and might have some role in acidification in the renal proximal tubule. In many experimental systems, the Na+/H+ antiport appears to influence intracellular pH. In addition to a role in general pH homeostasis, such Na+-dependent changes in intracellular pH could be part of the early events in a variety of differentiating and proliferative systems. Reconstitution and structural studies, as well as detailed analysis of gene loci and products which affect the antiport activity, are in their very early stages. These studies will be important in further clarification of the precise structural nature and role(s) of the Na+/H+ antiporters. In neither prokaryotes nor eukaryotes systems is there yet incontrovertible evidence that a specific protein carrier, that catalyzes Na+/H+ antiport, is actually responsible for any of the multitude of effects attributed to such antiporters. The Na+-H+ exchange might turn out to be side reactions of other porters or the additive effects of several conductance pathways; or, as appears most likely in at least some bacteria and in renal tissue, the antiporter may be a discrete, complex carr  相似文献   

7.
Protein kinase C (PKC) is considered crucial for hormonal Na+/H+ exchanger (NHE1) activation because phorbol esters (PEs) strongly activate NHE1. However, here we report that rather than PKC, direct binding of PEs/diacylglycerol to the NHE1 lipid-interacting domain (LID) and the subsequent tighter association of LID with the plasma membrane mainly underlies NHE1 activation. We show that (i) PEs directly interact with the LID of NHE1 in vitro, (ii) like PKC, green fluorescent protein (GFP)-labeled LID translocates to the plasma membrane in response to PEs and receptor agonists, (iii) LID mutations markedly inhibit these interactions and PE/receptor agonist-induced NHE1 activation, and (iv) PKC inhibitors ineffectively block NHE1 activation, except staurosporin, which itself inhibits NHE1 via LID. Thus, we propose a PKC-independent mechanism of NHE1 regulation via a PE-binding motif previously unrecognized.  相似文献   

8.
The human leukemic cell line, HL-60, differentiates in response to tumor-promoting phorbol esters. Recently, we have reported that one of the first events evoked by phorbol esters in HL-60 cells is the stimulation of Na+-dependent H+ efflux. In efforts to determine whether stimulation of Na+/H+ exchange by phorbol esters is coupled to induction of cellular differentiation, we found that 1) amiloride, a frequently used inhibitor of Na+/H+ exchange, rapidly inhibits phorbol ester-stimulated protein phosphorylation in vivo and protein kinase C-mediated phosphorylation in vitro, both with potency similar to that with which amiloride inhibits Na+/H+ exchange; 2) an amiloride analog, dimethylamiloride, is a far more potent inhibitor of Na+/H+ exchange than is amiloride, while being no more potent than amiloride in inhibiting phorbol ester/protein kinase C-mediated phosphorylation; and 3) at concentrations sufficient to completely inhibit Na+/H+ exchange, amiloride blocked phorbol ester-induced adhesion of HL-60 cells (adhesion being a property indicative of the differentiated state), but dimethylamiloride (as well as ethylisopropylamiloride, another very potent amiloride analog) did not. Thus, dimethylamiloride represents a potential tool for distinguishing protein kinase C-coupled from Na+/H+ exchange-coupled events in phorbol ester-stimulated cells.  相似文献   

9.
Basolateral membrane vesicles from rat jejunal enterocytes, especially purified of brush-border contamination, were used for Na+ uptake. The basolateral membrane vesicles are osmotically active and under our experimental conditions Na+ binding is much lower than transport. An outwardly directed proton gradient stimulates Na+ uptake at both 5 microM and 5 mM concentrations. The proton gradient effect can be inhibited completely by 2 mM amiloride and partially by either FCCP or NH4Cl (NH3 diffusion). Membrane potential effects can be excluded by having valinomycin plus K+ on both sides of the vesicles. These results suggest that there is an Na+/H+ exchanger in the basolateral membrane of rat enterocytes.  相似文献   

10.
Summary pH gradient-dependent sodium transport in highly purified rat parotid basolateral membrane vesicles was studied under voltage-clamped conditions. In the presence of an outwardly directed H+ gradient (pHin=6.0, pHout=8.0)22Na uptake was approximately ten times greater than uptake measured at pH equilibrium (pHin=pHout=6.0). More than 90% of this sodium flux was inhibited by the potassium-sparing diuretic drug amiloride (K 1 =1.6 m) while the transport inhibitors furosemide (1mm), bumetanide (1mm) SITS (0.5mm) and DIDS (0.1mm) were without effect. This transport activity copurified with the basolateral membrane marker K+-stimulatedp-nitrophenyl phosphatase. In addition22Na uptake into the vesicles could be driven against a concentration gradient by an outwardly directed H+ gradient. pH gradient-dependent sodium flux exhibited a simple Michaelis-Menten-type dependence on sodium concentration cosistent with the existence of a single transport system withK M =8.0mm at 23°C. A component of pH gradient-dependent, amiloride-sensitive sodium flux was also observed in rabbit parotid basolateral membrane vesicles. These results provide strong evidence for the existence of a Na+/H+ antiport in rat and rabbit parotid acinar basolateral membranes and extend earlier less direct studies which suggested that such a transporter was present in salivary acinar cells and might play a significant role in salivary fluid secretion.  相似文献   

11.
12.
Na+/H+ antiporters are universal devices involved in the Na+ and H+ circulation of both eukaroyotes and prokaryotes, thus playing an essential role in the pH and Na+ homeostasis of cells. This review focuses on the major impact of the application of molecular biology tools in the study of the antiporters. These tools permit the verification of the role of the antiporters and provide insights into their unique biology. A novel signal transduction to Na+ involvingnhaR, a positive regulator, controls the expression ofnhaA inE. coli. A pH sensor regulates the activity of Na+/H+ antiporters, both in eukaryotes and prokaryotes. A most intricate signal transduction to pH involving phosphorylation steps controls the activity ofnhel in higher mammals. The identification of Histidine 226 in the pH sensor of NhaA is a step forward towards the understanding of the pH regulation of these proteins.  相似文献   

13.
钠氢交换蛋白是一类存在于细胞膜表面的离子转运泵蛋白家族.它负责将细胞内H 与胞外Na 按照1:1的比例进行交换来调控细胞内pH的动态平衡,影响细胞的容积、运动、分化、凋亡和营养吸收,从而参与许多复杂的生理和病理过程.迄今为止,钠氢交换蛋白家族已发现有9个成员,各亚型间具有结构相似性和组织分布特异性.深入研究NHE的结构、功能及基因表达调控,将为人和哺乳动物的营养生理、疾病治疗提供新的思路和方法.  相似文献   

14.
15.
The Na+ transport pathways of normal rat thymocytes were investigated. Na+ conductance was found to be lower than K+ conductance, which is consistent with reported values of membrane potential. In contrast, the isotopically measured Na+ permeability was greater than 10-fold higher than that of K+, which indicates that most of the flux is electroneutral. Cotransport with Cl- (or K+ and Cl-) and countertransport with Ca2+ were ruled out by ion substitution experiments and use of inhibitors. Countertransport for Na+ or H+ through the amiloride-sensitive antiport accounts for only 15-20% of the resting influx. In the presence of amiloride, 22Na+ uptake was increased in Na+-loaded cells, which suggests the existence of Na+/Na+ countertransport. Cytoplasmic pH determinations using fluorescent probes indicated that under certain conditions this amiloride-resistant system will also exchange Na+ for H+, as evidenced by an internal Na+- dependent acidification is proportional to internal [Na+] but inversely related to extracellular [Na+]. Moreover, 22Na+ uptake is inhibited by increasing external [H+]. The results support the existence of a substantial amiloride-insensitive, electroneutral cation exchange system capable of transporting Na+ and H+.  相似文献   

16.
Summary The present studies were designed to test our previous suggestion that Na+/H+ exchange was activated by muscarinic stimulation of rat parotid acinar cells. Consistent with this hypothesis, we demonstrate here that intact rat parotid acini stimulated with the muscarinic agonist carbachol in HCO 3 -free medium show an enhanced recovery from an acute acid load as compared to similarly challenged untreated preparations. Amiloride-sensitive22Na uptake, due to Na+/H+ exchange, was also studied in plasma membrane vesicles prepared from rat parotid acini pretreated with carbachol. This uptake was stimulated twofold relative to that observed in vesicles from control (untreated) acini. This stimulation was time dependent, requiring 15 min of acinar incubation with carbachol to reach completion, and ws blocked by the presence of the muscarinic antagonist atropine (2×10–5 m) in the pretreatment medium. The effect of carbachol was dose dependent withK 0.53×10–6 m. Stimulation of the exchanger was also seen in vesicles prepared from acini pretreated with the -adrenergic agonist epinephrine, but not with the -adrenergic agonist isoproterenol, or with substance P. Kinetic analysis indicated that the stimulation induced by carbachol was due to an alkaline shift in the pH responsiveness of the exchanger in addition to an increasedapparent transport capacity. Taken together with previous results from this and other laboratories, these results strongly suggest that the Na+/H+ exchanger and its regulation are intimately involved in the fluidsecretory response of the rat parotid.  相似文献   

17.
The effect of the potent anticancer drug cisplatin, cis-diamminedichloroplatinum (II) (CDDP), on H+ -ATPase and Na+/H+ exchanger in rat renal brush-border membrane was examined. To measure H+ transport by vacuolar H+ -ATPase in renal brush-border membrane vesicles, we employed a detergent-dilution procedure, which can reorientate the catalytic domain of H+ -ATPase from an inward-facing configuration to outward-facing one. ATP-driven H+ pump activity decreased markedly in brush-border membrane prepared from rats two days after CDDP administration (5 mg/kg, i.p.). In addition, N-ethylmaleimide and bafilomycin A1 (inhibitors of vacuolar H+ -ATPase)-sensitive ATPase activity also decreased in these rats. The decrease in ATP-driven H+ pump activity was observed even at day 7 after the administration of CDDP. Suppression of ATP-driven H+ pump activity was also observed when brush-border membrane vesicles prepared from normal rats were pretreated with CDDP in vitro. In contrast with H+ -ATPase, the activity of Na+/H+ exchanger, which was determined by measuring acridine orange fluorescence quenching, was not affected by the administration of CDDP. These results provide new insights into CDDP-induced renal tubular dysfunctions, especially such as proximal tubular acidosis and proteinuria.  相似文献   

18.
Summary We have studied the kinetic properties of rabbit red cell (RRBC) Na+/Na+ and Na+/H+ exchanges (EXC) in order to define whether or not both transport functions are conducted by the same molecule. The strategy has been to determine the interactions of Na+ and H+ at the internal (i) and external (o) sites for both exchanges modes. RRBC containing varying Na i and H l were prepared by nystatin and DIDS treatment of acid-loaded cells. Na+/Na+ EXC was measured as Na o -stimulated Na+ efflux and Na+/H+ EXC as Na o -stimulated H+ efflux and pH o -stimulated Na+ influx into acid-loaded cells.The activation of Na+/Na+ EXC by Na o at pH i 7.4 did not follow simple hyperbolic kinetics. Testing of different kinetic models to obtain the best fit for the experimental data indicated the presence of high (K m 2.2 mM) and low affinity (K m 108 mM) sites for a single- or two-carrier system. The activation of Na+/H+ EXC by Na o (pH i 6.6, Na i <1 mM) also showed high (K m 11 mM) and low (K m 248 mM) affinity sites. External H+ competitively inhibited Na+/Na+ EXC at the low affinity Na o site (K H 52 nM) while internally H+ were competitive inhibitors (pK 6.7) at low Na i and allosteric activators (pK 7.0) at high Na i .Na+/H+ EXC was also inhibited by acid pH o and allosterically activated by H i (pK 6.4). We also established the presence of a Na i regulatory site which activates Na+/H+ and Na+/Na+ EXC modifying the affinity for Na o of both pathways. At low Na i , Na+/Na+ EXC was inhibited by acid pH i and Na+/H+ stimulated but at high Na i , Na+/Na+ EXC was stimulated and Na+/H+ inhibited being the sum of both pathways kept constant. Both exchange modes were activated by two classes of Na o sites,cis-inhibited by external H o , allosterically modified by the binding of H+ to a H i regulatory site and regulated by Na i . These findings are consistent with Na+/Na+ EXC being a mode of operation of the Na+/H+ exchanger.Na+/H+ EXC was partially inhibited (80–100%) by dimethyl-amiloride (DMA) but basal or pH i -stimulated Na+/Na+ EXC (pH i 6.5, Na i 80 mM) was completely insensitive indicating that Na+/Na+ EXC is an amiloride-insensitive component of Na+/H+ EXC. However, Na+ and H+ efflux into Na-free media were stimulated by cell acidification and also partially (10 to 40%) inhibited by DMA: this also indicates that the Na+/H+ EXC might operate in reverse or uncoupled modes in the absence of Na+/Na+ EXC.In summary, the observed kinetic properties can be explained by a model of Na+/H+ EXC with several conformational states, H i and Na i regulatory sites and loaded/unloaded internal and external transport sites at which Na+ and H+ can compete. The occupancy of the H+ regulatory site induces a conformational change and the occupancy of the Na i regulatory site modulates the flow through both pathways so that it will conduct Na+/H+ and/or Na+/Na+ EXC depending on the ratio of internal Na+:H+.  相似文献   

19.
We examined the myocardial form of the Na+/H+ exchanger. A partial length cDNA clone was isolated from a rabbit cardiac library and it encoded for a Na+/H+ exchange protein. In comparison with the human Na+/H+ exchanger, the sequence of the 5' end of the cDNA was highly conserved, much more than the 3' region, while the deduced amino acid sequence was also highly conserved. To further characterize the myocardial Na+/H+ exchange protein, we examined Western blots of isolated sarcolemma with antibody produced against a fusion protein of the Na+/H+ exchanger. The antibodies reacted with a sarcolemma protein of 50 kDa and with a protein of 70 kDa. The results show that the rabbit myocardium does possess a Na+/H+ exchanger protein homologous to the known human Na+/H+ exchanger.  相似文献   

20.
Extremely alkalophilic bacteria that grow optimally at pH 10.5 and above are generally aerobic bacilli that grow at mesophilic temperatures and moderate salt levels. The adaptations to alkalophily in these organisms may be distinguished from responses to combined challenges of high pH together with other stresses such as salinity or anaerobiosis. These alkalophiles all possess a simple and physiologically crucial Na+ cycle that accomplishes the key task of pH homeostasis. An electrogenic, secondary Na+/H+ antiporter is energized by the electrochemical proton gradient formed by the proton-pumping respiratory chain. The antiporter facilitates maintenance of a pHin that is two or more pH units lower than pHout at optimal pH values for growth. It also largely converts the initial electrochemical proton gradient formed by respiration into an electrochemical sodium gradient that energizes motility as well as a plethora of Na+/solute symporters. These symporters catalyze solute accumulation and, importantly, reentry of Na+. The extreme nonmarine alkalophiles exhibit no primary sodium pumping dependent upon either respiration or ATP. ATP synthesis is not part of their Na+ cycle. Rather, the specific details of oxidative phosphorylation in these organisms are an interesting analogue of the same process in mitochondria, and may utilize some common features to optimize energy transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号