首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
All positive-strand RNA viruses assemble their RNA replication complexes on intracellular membranes. Brome mosaic virus (BMV) replicates its RNA in endoplasmic reticulum (ER)-associated complexes in plant cells and the yeast Saccharomyces cerevisiae. BMV encodes RNA replication factors 1a, with domains implicated in RNA capping and helicase functions, and 2a, with a central polymerase-like domain. Factor 1a interacts independently with the ER membrane, viral RNA templates, and factor 2a to form RNA replication complexes on the perinuclear ER. We show that BMV RNA replication is severely inhibited by a mutation in OLE1, an essential yeast chromosomal gene encoding delta9 fatty acid desaturase, an integral ER membrane protein and the first enzyme in unsaturated fatty acid synthesis. OLE1 deletion and medium supplementation show that BMV RNA replication requires unsaturated fatty acids, not the Ole1 protein, and that viral RNA replication is much more sensitive than yeast growth to reduced unsaturated fatty acid levels. In ole1 mutant yeast, 1a still becomes membrane associated, recruits 2a to the membrane, and recognizes and stabilizes viral RNA templates normally. However, RNA replication is blocked prior to initiation of negative-strand RNA synthesis. The results show that viral RNA synthesis is highly sensitive to lipid composition and suggest that proper membrane fluidity or plasticity is essential for an early step in RNA replication. The strong unsaturated fatty acid dependence also demonstrates that modulating fatty acid balance can be an effective antiviral strategy.  相似文献   

2.
The universal membrane association of positive-strand RNA virus RNA replication complexes is implicated in their function, but the intracellular membranes used vary among viruses. Brome mosaic virus (BMV) encodes two mutually interacting RNA replication proteins: 1a, which contains RNA capping and helicase-like domains, and the polymerase-like 2a protein. In cells from the natural plant hosts of BMV, 1a and 2a colocalize on the endoplasmic reticulum (ER). 1a and 2a also direct BMV RNA replication and subgenomic mRNA synthesis in the yeast Saccharomyces cerevisiae, but whether the distribution of 1a, 2a, and active replication complexes in yeast duplicates that in plant cells has not been determined. For yeast expressing 1a and 2a and replicating BMV genomic RNA3, we used double-label confocal immunofluorescence to define the localization of 1a, 2a, and viral RNA and to explore the determinants of replication complex targeting. As in plant cells, 1a and 2a colocalized on and were retained on the yeast ER, with no detectable accumulation in the Golgi apparatus. 1a and 2a were distributed over most of the ER surface, with strongest accumulation on the perinuclear ER. In vivo labeling with bromo-UTP showed that the sites of 1a and 2a accumulation were the sites of nascent viral RNA synthesis. In situ hybridization showed that completed viral RNA products accumulated predominantly in the immediate vicinity of replication complexes but that some, possibly more mature cells also accumulated substantial viral RNA in the surrounding cytoplasm distal to replication complexes. Additionally, we find that 1a localizes to the ER when expressed in the absence of other viral factors. These results show that BMV RNA replication in yeast duplicates the normal localization of replication complexes, reveal the intracellular distribution of RNA replication products, and show that 1a is at least partly responsible for the ER localization and retention of the RNA replication complex.  相似文献   

3.
4.
Brome mosaic virus (BMV) encodes two RNA replication proteins: 1a, which contains RNA capping and helicase-like domains, and 2a, which is related to polymerases. BMV 1a and 2a can direct virus-specific RNA replication in the yeast Saccharomyces cerevisiae, which reproduces the known features of BMV replication in plant cells. We constructed single amino acid point mutations at the predicted capping and helicase active sites of 1a and analyzed their effects on BMV RNA3 replication in yeast. The helicase mutants showed no function in any assays used: they were strongly defective in template recruitment for RNA replication, as measured by 1a-induced stabilization of RNA3, and they synthesized no detectable negative-strand or subgenomic RNA. Capping domain mutants divided into two groups. The first exhibited increased template recruitment but nevertheless allowed only low levels of negative-strand and subgenomic mRNA synthesis. The second was strongly defective in template recruitment, made very low levels of negative strands, and made no detectable subgenomes. To distinguish between RNA synthesis and capping defects, we deleted chromosomal gene XRN1, encoding the major exonuclease that degrades uncapped mRNAs. XRN1 deletion suppressed the second but not the first group of capping mutants, allowing synthesis and accumulation of large amounts of uncapped subgenomic mRNAs, thus providing direct evidence for the importance of the viral RNA capping function. The helicase and capping enzyme mutants showed no complementation. Instead, at high levels of expression, a helicase mutant dominantly interfered with the function of the wild-type protein. These results are discussed in relation to the interconnected functions required for different steps of positive-strand RNA virus replication.  相似文献   

5.
All positive-strand RNA viruses reorganize host intracellular membranes to assemble their replication complexes. Similarly, brome mosaic virus (BMV) induces two alternate forms of membrane-bound RNA replication complexes: vesicular spherules and stacks of appressed double-membrane layers. The mechanisms by which these membrane rearrangements are induced, however, remain unclear. We report here that host ACB1-encoded acyl coenzyme A (acyl-CoA) binding protein (ACBP) is required for the assembly and activity of both BMV RNA replication complexes. ACBP is highly conserved among eukaryotes, specifically binds to long-chain fatty acyl-CoA, and promotes general lipid synthesis. Deleting ACB1 inhibited BMV RNA replication up to 30-fold and resulted in formation of spherules that were ~50% smaller but ~4-fold more abundant than those in wild-type (wt) cells, consistent with the idea that BMV 1a invaginates and maintains viral spherules by coating the inner spherule membrane. Furthermore, smaller and more frequent spherules were preferentially formed under conditions that induce layer formation in wt cells. Conversely, cellular karmella structures, which are arrays of endoplasmic reticulum (ER) membranes formed upon overexpression of certain cellular ER membrane proteins, were formed normally, indicating a selective inhibition of 1a-induced membrane rearrangements. Restoring altered lipid composition largely complemented the BMV RNA replication defect, suggesting that ACBP was required for maintaining lipid homeostasis. Smaller and more frequent spherules are also induced by 1a mutants with specific substitutions in a membrane-anchoring amphipathic α-helix, implying that the 1a-lipid interactions play critical roles in viral replication complex assembly.  相似文献   

6.
Lee WM  Ahlquist P 《Journal of virology》2003,77(23):12819-12828
Multifunctional RNA replication protein 1a of brome mosaic virus (BMV), a positive-strand RNA virus, localizes to the cytoplasmic face of endoplasmic reticulum (ER) membranes and induces ER lumenal spherules in which viral RNA synthesis occurs. We previously showed that BMV RNA replication in yeast is severely inhibited prior to negative-strand RNA synthesis by a single-amino-acid substitution in the ole1w allele of yeast Δ9 fatty acid (FA) desaturase, which converts saturated FAs (SFAs) to unsaturated FAs (UFAs). Here we further define the relationships between 1a, membrane lipid composition, and RNA synthesis. We show that 1a expression increases total membrane lipids in wild-type (wt) yeast by 25 to 33%, consistent with recent results indicating that the numerous 1a-induced spherules are enveloped by invaginations of the outer ER membrane. 1a did not alter total membrane lipid composition in wt or ole1w yeast, but the ole1w mutation selectively depleted 18-carbon, monounsaturated (18:1) FA chains and increased 16:0 SFA chains, reducing the UFA-to-SFA ratio from ~2.5 to ~1.5. Thus, ole1w inhibition of RNA replication was correlated with decreased levels of UFA, membrane fluidity, and plasticity. The ole1w mutation did not alter 1a-induced membrane synthesis, 1a localization to the perinuclear ER, or colocalization of BMV 2a polymerase, nor did it block spherule formation. Moreover, BMV RNA replication templates were still recovered from cell lysates in a 1a-induced, 1a- and membrane-associated, and nuclease-resistant but detergent-susceptible state consistent with spherules. However, unlike nearby ER membranes, the membranes surrounding spherules in ole1w cells were not distinctively stained with osmium tetroxide, which interacts specifically with UFA double bonds. Thus, in ole1w cells, spherule-associated membranes were locally depleted in UFAs. This localized UFA depletion helps to explain why BMV RNA replication is more sensitive than cell growth to reduced UFA levels. The results imply that 1a preferentially interacts with one or more types of membrane lipids.  相似文献   

7.
RNA replication of all positive-strand RNA viruses is closely associated with intracellular membranes. Brome mosaic virus (BMV) RNA replication occurs on the perinuclear region of the endoplasmic reticulum (ER), both in its natural plant host and in the yeast Saccharomyces cerevisiae. The only viral component in the BMV RNA replication complex that localizes independently to the ER is 1a, a multifunctional protein with an N-terminal RNA capping domain and a C-terminal helicase-like domain. The other viral replication components, the RNA polymerase-like protein 2a and the RNA template, depend on 1a for recruitment to the ER. We show here that, in membrane extracts, 1a is fully susceptible to proteolytic digestion in the absence of detergent and thus, a finding consistent with its roles in RNA replication, is wholly or predominantly on the cytoplasmic face of the ER with no detectable lumenal protrusions. Nevertheless, 1a association with membranes is resistant to high-salt and high-pH treatments that release most peripheral membrane proteins. Membrane flotation gradient analysis of 1a deletion variants and 1a segments fused to green fluorescent protein (GFP) showed that sequences in the N-terminal RNA capping module of 1a mediate membrane association. In particular, a region C-terminal to the core methyltransferase homology was sufficient for high-affinity ER membrane association. Confocal immunofluorescence microscopy showed that even though these determinants mediate ER localization, they fail to localize GFP to the narrow region of the perinuclear ER, where full-length 1a normally resides. Instead, they mediate a more globular or convoluted distribution of ER markers. Thus, additional sequences in 1a that are distinct from the primary membrane association determinants contribute to 1a's normal subcellular distribution, possibly through effects on 1a conformation, orientation, or multimerization on the membrane.  相似文献   

8.
The central portion of the brome mosaic virus (BMV) 2a protein represents the most conserved element among the related RNA replication components of a large group of positive-strand RNA viruses of humans, animals, and plants. To characterize the functions of the 2a protein, mutations were targeted to a conserved portion of the 2a gene, resulting in substitutions between amino acids 451 and 484. After the temperature profile of wild-type BMV RNA replication was defined, RNA replication by nine selected mutants was tested in barley protoplasts at permissive (24 degrees C) and nonpermissive (34 degrees C) temperatures. Four mutants did not direct RNA synthesis at either temperature. Various levels of temperature-sensitive (ts) replication occurred in the remaining five mutants. For two ts mutants, no viral RNA synthesis was detected at 34 degrees C, while for two others, an equivalent reduction in positive- and negative-strand RNA accumulation was observed. For one mutant, positive-strand accumulation was preferentially reduced over negative-strand accumulation at 34 degrees C. Moreover, this mutant and another displayed preferential suppression of genomic over subgenomic RNA accumulation at both 24 and 34 degrees C. The combination of phenotypes observed suggests that the 2a protein may play a role in the differential initiation of specific classes of viral RNA in addition to a previously suggested role in RNA elongation.  相似文献   

9.
Brome mosaic virus (BMV) and cowpea chlorotic mottle virus (CCMV) are related positive-strand RNA viruses with tripartite genomes. RNA replication by either virus requires genomic RNAs 1 and 2, which encode protein 1a and the polymeraselike, 94-kilodalton 2a protein, respectively. Proteins 1a and 2a share extensive sequence similarity with proteins encoded by a wide range of other positive-strand RNA viruses of animals and plants. Heterologous combinations of BMV and CCMV RNAs 1 and 2 do not support viral RNA replication, and although BMV RNA2 is amplified in CCMV-infected cells, CCMV RNA2 is not amplified by BMV. Construction of hybrids by precise exchange of segments between BMV and CCMV RNA2 has now allowed preliminary mapping of such virus-specific replication functions in RNA2 and the 2a protein. The ability to support replication in trans with BMV RNA1 segregated with a 5' BMV RNA2 fragment encoding the first 358 2a gene amino acids, while a 5' fragment extending over 281 BMV 2a codons transferred only cis-acting competence for RNA2 amplification in cells coinfected with wild-type BMV. Successful trans-acting function with CCMV RNA1 segregated with a CCMV RNA2 3' fragment that included the last 206 2a gene codons. Thus, the less conserved N- and C-terminal 2a segments appear to be involved in required interaction(s) of this polymeraselike protein with the 1a protein or RNA1 or both. Moreover, when individual hybrid RNA2 molecules that function with either BMV or CCMV RNA1 were tested, BMV- and CCMV-specific differences in recognition and amplification of RNA3 templates appeared to segregate with RNA1.  相似文献   

10.
Price BD  Roeder M  Ahlquist P 《Journal of virology》2000,74(24):11724-11733
Flock house virus (FHV), a positive-strand RNA animal virus, is the only higher eukaryotic virus shown to undergo complete replication in yeast, culminating in production of infectious virions. To facilitate studies of viral and host functions in FHV replication in Saccharomyces cerevisiae, yeast DNA plasmids were constructed to inducibly express wild-type FHV RNA1 in vivo. Subsequent translation of FHV replicase protein A initiated robust RNA1 replication, amplifying RNA1 to levels approaching those of rRNA, as in FHV-infected animal cells. The RNA1-derived subgenomic mRNA, RNA3, accumulated to even higher levels of >100,000 copies per yeast cell, compared to 10 copies or less per cell for 95% of yeast mRNAs. The time course of RNA1 replication and RNA3 synthesis in induced yeast paralleled that in yeast transfected with natural FHV virion RNA. As in animal cells, RNA1 replication and RNA3 synthesis depended on FHV RNA replicase protein A and 3'-terminal RNA1 sequences but not viral protein B2. Additional plasmids were engineered to inducibly express RNA1 derivatives with insertions of the green fluorescent protein (GFP) gene in subgenomic RNA3. These RNA1 derivatives were replicated, synthesized RNA3, and expressed GFP when provided FHV polymerase in either cis or trans, providing the first demonstration of reporter gene expression from FHV subgenomic RNA. Unexpectedly, fusing GFP to the protein A C terminus selectively inhibited production of positive- and negative-strand subgenomic RNA3 but not genomic RNA1 replication. Moreover, changing the first nucleotide of the subgenomic mRNA from G to T selectively inhibited production of positive-strand but not negative-strand RNA3, suggesting that synthesis of negative-strand subgenomic RNA3 may precede synthesis of positive-strand RNA3.  相似文献   

11.
12.
The Saccharomyces cerevisiae heat-shock protein (Hsp)40, Ydj1p, is involved in a variety of cellular activities that control polypeptide fate, such as folding and translocation across intracellular membranes. To elucidate the mechanism of Ydj1p action, and to identify functional partners, we screened for multicopy suppressors of the temperature-sensitive ydj1-151 mutant and identified a yeast Hsp110, SSE1. Overexpression of Sse1p also suppressed the folding defect of v-Src kinase in the ydj1-151 mutant and partially reversed the alpha-factor translocation defect. SSE1-dependent suppression of ydj1-151 thermosensitivity required the wild-type ATP-binding domain of Sse1p. However, the Sse1p mutants maintained heat-denatured firefly luciferase in a folding-competent state in vitro and restored human androgen receptor folding in sse1 mutant cells. Because the folding of both v-Src kinase and human androgen receptor in yeast requires the Hsp90 complex, these data suggest that Ydj1p and Sse1p are interacting cochaperones in the Hsp90 complex and facilitate Hsp90-dependent activity.  相似文献   

13.
We show that brome mosaic virus (BMV) RNA replication protein 1a, 2a polymerase, and a cis-acting replication signal recapitulate the functions of Gag, Pol, and RNA packaging signals in conventional retrovirus and foamy virus cores. Prior to RNA replication, 1a forms spherules budding into the endoplasmic reticulum membrane, sequestering viral positive-strand RNA templates in a nuclease-resistant, detergent-susceptible state. When expressed, 2a polymerase colocalizes in these spherules, which become the sites of viral RNA synthesis and retain negative-strand templates for positive-strand RNA synthesis. These results explain many features of replication by numerous positive strand RNA viruses and reveal that these viruses, reverse transcribing viruses, and dsRNA viruses share fundamental similarities in replication and may have common evolutionary origins.  相似文献   

14.
Ydj1 is a Saccharomyces cerevisiae Hsp40 molecular chaperone that functions with Hsp70 to promote polypeptide folding. We identified Ydj1 as being important for maintaining steady-state levels of protein kinases after screening several chaperones and cochaperones in gene deletion mutant strains. Pulse-chase analyses revealed that a portion of Tpk2 kinase was degraded shortly after synthesis in a ydj1Delta mutant, while the remainder was capable of maturing but with reduced kinetics compared to the wild type. Cdc28 maturation was also delayed in the ydj1Delta mutant strain. Ydj1 protects nascent kinases in different contexts, such as when Hsp90 is inhibited with geldanamycin or when CDC37 is mutated. The protective function of Ydj1 is due partly to its intrinsic chaperone function, but this is minor compared to the protective effect resulting from its interaction with Hsp70. SIS1, a type II Hsp40, was unable to suppress defects in kinase accumulation in the ydj1Delta mutant, suggesting some specificity in Ydj1 chaperone action. However, analysis of chimeric proteins that contained the chaperone modules of Ydj1 or Sis1 indicated that Ydj1 promotes kinase accumulation independently of its client-binding specificity. Our results suggest that Ydj1 can both protect nascent chains against degradation and control the rate of kinase maturation.  相似文献   

15.
16.
In Escherichia coli and mitochondria, the molecular chaperone DnaJ is required not only for protein folding but also for selective degradation of certain abnormal polypeptides. Here we demonstrate that in the yeast cytosol, the homologous chaperone Ydj1 is also required for ubiquitin-dependent degradation of certain abnormal proteins. The temperature-sensitive ydj1-151 mutant showed a large defect in the overall breakdown of short-lived cell proteins and abnormal polypeptides containing amino acid analogs, especially at 38 degrees C. By contrast, the degradation of long-lived cell proteins, which is independent of ubiquitin, was not altered nor was cell growth affected. The inactivation of Ydj1 markedly reduced the rapid, ubiquitin-dependent breakdown of certain beta-galactosidase (beta-gal) fusion polypeptides. Although degradation of N-end rule substrates (arginine-beta-gal and leucine-beta-gal) and the B-type cyclin Clb5-beta-gal occurred normally, degradation of the abnormal polypeptide ubiquitin-proline-beta-gal (Ub-P-beta-gal) and that of the short-lived normal protein Gcn4 were inhibited. As a consequence of reduced degradation of Ub-P-beta-gal, the beta-gal activity was four to five times higher in temperature-sensitive ydj1-151 mutant cells than in wild-type cells; thus, the folding and assembly of this enzyme do not require Ydj1 function. In wild-type cells, but not in ydj1-151 mutant cells, this chaperone is associated with the short-lived substrate Ub-P-beta-gal and not with stable beta-gal constructs. Furthermore, in the ydj1-151 mutant, the ubiquitination of Ub-P-beta-gal was blocked and the total level of ubiquitinated protein in the cell was reduced. Thus, Ydj1 is essential for the ubiquitin-dependent degradation of certain proteins. This chaperone may facilitate the recognition of unfolded proteins or serve as a cofactor for certain ubiquitin-ligating enzymes.  相似文献   

17.
The multidomain RNA replication protein 1a of brome mosaic virus (BMV), a positive-strand RNA virus in the alphavirus-like superfamily, plays key roles in assembly and function of the viral RNA replication complex. 1a, which encodes RNA capping and helicase-like domains, localizes to endoplasmic reticulum membranes, recruits BMV 2a polymerase and viral RNA templates, and forms membrane-bound, capsid-like spherules in which RNA replication occurs. cis-acting signals necessary and sufficient for RNA recruitment by 1a have been mapped in BMV genomic RNA2 and RNA3. Both signals comprise an extended stem-loop whose apex matches the conserved sequence and structure of the TPsiC stem-loop in tRNAs (box B). Mutations show that this box B motif is crucial to 1a responsiveness of wild-type RNA2 and RNA3. We report here that, unexpectedly, some chimeric mRNAs expressing the 2a polymerase open reading frame from RNA2 were recruited by 1a to the replication complex and served as templates for negative-strand RNA synthesis, despite lacking the normally essential, box B-containing 5' signal. Further studies showed that this template recruitment required high-efficiency translation of the RNA templates. Moreover, multiple small frameshifting insertion or deletion mutations throughout the N-terminal region of the open reading frame inhibited this template recruitment, while an in-frame insertion did not. Providing 2a in trans did not restore template recruitment of RNAs with frameshift mutations. Only those deletions in the N-terminal region of 2a that abolished 2a interaction with 1a abolished template recruitment of the RNA. These and other results indicate that this alternate pathway for 1a-dependent RNA recruitment involves 1a interaction with the translating mRNA via the 1a-interactive N-terminal region of the nascent 2a polypeptide. Interaction with nascent 2a also may be involved in 1a recruitment of 2a polymerase to membranes.  相似文献   

18.
The heat shock protein (Hsp) 70/Hsp40 chaperone system plays an essential role in cell physiology, but few of its in vivo functions are known. We report that biogenesis of Axl1p, an insulinase-like endoprotease from yeast, is dependent upon the cytosolic Hsp40 protein Ydj1p. Axl1 is responsible for cleavage of the P2 processing intermediate of pro-a-factor, a mating pheromone, to its mature form. Mutant ydj1 strains exhibited a severe mating defect, which correlated with a 90% reduction in a-factor secretion. Reduced levels of a-factor export were caused by defects in the endoproteolytic processing of P2, which led to its intracellular accumulation. Defective P2 processing correlated with the reduction in the steady state level of active Axl1p. Two mechanisms were uncovered to explain why Axl1p activity was diminished in ydj1 strains. First, AXL1 mRNA levels were reduced ydj1 strains. Second, the half-life of newly synthesized Axl1p was greatly diminished in ydj1 strains. Collectively, these data indicate Ydj1p functions to promote AXL1 mRNA accumulation and in addition appears to facilitate the proper folding of nascent Axl1p. This study is the first to suggest a role for Ydj1p in RNA metabolism and identifies Axl1p as an in vivo substrate of the Hsp70/Ydj1p chaperone system.  相似文献   

19.
20.
The assembly of viral RNA replication complexes on intracellular membranes represents a critical step in the life cycle of positive-strand RNA viruses. We investigated the role of the cellular chaperone heat shock protein 90 (Hsp90) in viral RNA replication complex assembly and function using Flock House virus (FHV), an alphanodavirus whose RNA-dependent RNA polymerase, protein A, is essential for viral RNA replication complex assembly on mitochondrial outer membranes. The Hsp90 chaperone complex transports cellular mitochondrial proteins to the outer mitochondrial membrane import receptors, and thus we hypothesized that Hsp90 may also facilitate FHV RNA replication complex assembly or function. Treatment of FHV-infected Drosophila S2 cells with the Hsp90-specific inhibitor geldanamycin or radicicol potently suppressed the production of infectious virions and the accumulation of protein A and genomic, subgenomic, and template viral RNA. In contrast, geldanamycin did not inhibit the activity of preformed FHV RNA replication complexes. Hsp90 inhibitors also suppressed viral RNA and protein A accumulation in S2 cells expressing an FHV RNA replicon. Furthermore, Hsp90 inhibition with either geldanamycin or RNAi-mediated chaperone downregulation suppressed protein A accumulation in the absence of viral RNA replication. These results identify Hsp90 as a host factor involved in FHV RNA replication and suggest that FHV uses established cellular chaperone pathways to assemble its RNA replication complexes on intracellular membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号