首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We assessed the health status of chimpanzees (Pan troglodytes schweinfurthii) of the Kanyawara group in the Kibale National Park in Western Uganda via noninvasive methods. We conducted visual veterinary inspection, parasitological and urine analysis in association with behavioral observations, causing minimal disturbance or stress to individually recognized chimpanzees. We applied multiple parasitological techniques to 252 stool samples to compare their efficacy in detecting parasitic infection and to increase the power of detecting a wide range of parasites at a more sensitive level. We examined 76 urine samples via a quick detection method to evaluate multiple parameters of urine that indicate organ dysfunction. Results of the different analyses are mutually supportive and provided useful information for monitoring bodily condition and diseases. The multifaceted health evaluation system is a beneficial tool for monitoring long-term and short-term changes in health status due to environmental stress, seasonal dietary change, and disease in wild chimpanzee populations. Use of this method to detect changes in health, when employed together with behavioral observations, may also provide important insights into the potential effects of self-medicative behaviors.  相似文献   

2.
The parasitological typology of lakes is proposed (with example of the Karelia-Kola limnological region). The characteristics of the main types of lakes with allowance of the parasitological data are given. The parasitological typology of lakes is based on studies of the parasite fauna diversity and differs from the trophical classification for lakes proposed by S. V. Gerd (1949).  相似文献   

3.
As a rule, non‐indigenous species (NIS) populations derived from biological invasion events represent a subset of the genetic diversity of the source population. In biological invasions, host–parasite interactions play an important role, and parasitological data for NIS populations can provide useful information such as their area of origin, mechanism of invasion and prospects of success in the new habitat. When both genetic and parasitological data are available, and they suggest the same scenario, the history of an invasion can be inferred with no discrepancy, but when data cannot be reconciled an alternative model should be considered. In this study a comparison of genetic and parasitological data for the Lessepsian migrant the bluespotted cornetfish, Fistularia commersonii, in the Mediterranean Sea presents the opportunity to evaluate the compatibility of information of this nature, and to propose possible invasion scenarios consistent with evidence provided by both criteria.  相似文献   

4.
What fish parasites reveal about their environment Parasitism is widely common in nature and is considered to be one of the most successful ways of life. In contrast, parasitological topics are rarely presented in biology textbooks and curricula, and when they appear, they focus mainly on the human and veterinary pathological aspects of parasitism. However, the ecological effects of parasites are quite multifaceted. In water research, collecting parasitological data of aquatic hosts is comparatively inexpensive and can often be done with the help of a microscope. The additional knowledge that can be gained from such undertakings, however, can be very valuable and may span from new insights into the hostś biology to trophic interactions, biodiversity, and quality of aquatic habitats. However, information on the life cycles and transmission pathways of the various parasite species is required in order to derive the greatest possible benefit from parasitological data to answer water ecology questions.  相似文献   

5.
Interactions among coinfecting parasites have the potential to alter host susceptibility to infection, the progression of disease and the efficacy of disease control measures. It is therefore essential to be able to accurately infer the occurrence and direction of such interactions from parasitological data. Due to logistical constraints, perturbation experiments are rarely undertaken to directly detect interactions, therefore a variety of approaches are commonly used to infer them from patterns of parasite association in observational data. However, the reliability of these various approaches is not known. We assess the ability of a range of standard analytical approaches to detect known interactions between infections of nematodes and intestinal coccidia (Eimeria) in natural small-mammal populations, as revealed by experimental perturbations. We show that correlation-based approaches are highly unreliable, often predicting strong and highly significant associations between nematodes and Eimeria in the opposite direction to the underlying interaction. The most reliable methods involved longitudinal analyses, in which the nematode infection status of individuals at one month is related to the infection status by Eimeria the next month. Even then, however, we suggest these approaches are only viable for certain types of infections and datasets. Overall we suggest that, in the absence of experimental approaches, careful consideration be given to the choice of statistical approach when attempting to infer interspecific interactions from observational data.  相似文献   

6.
We investigated the factors mediating selection acting on two MHC class II genes (DQA and DRB) in water vole (Arvicola scherman) natural populations in the French Jura Mountains. Population genetics showed significant homogeneity in allelic frequencies at the DQA1 locus as opposed to neutral markers (nine microsatellites), indicating balancing selection acting on this gene. Moreover, almost exhaustive screening for parasites, including gastrointestinal helminths, brain coccidia and antibodies against viruses responsible for zoonoses, was carried out. We applied a co-inertia approach to the genetic and parasitological data sets to avoid statistical problems related to multiple testing. Two alleles, Arte-DRB-11 and Arte-DRB-15, displayed antagonistic associations with the nematode Trichuris arvicolae, revealing the potential parasite-mediated selection acting on DRB locus. Selection mechanisms acting on the two MHC class II genes thus appeared different. Moreover, overdominance as balancing selection mechanism was showed highly unlikely in this system.  相似文献   

7.
The slow growth‐high mortality hypothesis (SG‐HG) predicts that slower growing herbivores suffer greater mortality due to a prolonged window of vulnerability. Given diverse plant–herbivore–natural enemy systems resulting from different feeding ecologies of herbivores and natural enemies, this hypothesis might not always be applicable to all systems. This is evidenced by mixed support from empirical data. In this study, a meta‐analysis of the SG‐HM hypothesis for insects was conducted, aiming to find conditions that favor or reject SG‐HM. The analysis revealed significant within‐ and between‐group heterogeneity for almost all explanatory variables and overall did not support SG‐HM. In this analysis, SG‐HM was supported when any of the following 5 conditions was met: (1) host food consisted of artificial diet; (2) herbivore growth was measured as larval mass; (3) herbivores were generalists; (4) no or multiple species of natural enemies were involved in the study; and (5) parasitoids (i.e., parasitic insects) involved in the study were gregarious. SG‐HM was rejected when any of the following 5 conditions was met: (1) herbivores were from the order Hymentoptera; (2) parasitoids from more than 1 order caused herbivore mortality; (2) parasitoids were specialists; (3) parasitoids were solitary; (4) parasitoids were idiobionts or koinobionts; and (5) single species of natural enemy caused mortality of specialist herbivores. All known studies investigated herbivore mortality for a short period of their life cycle. Researchers are encouraged to monitor herbivore mortality during the entire window of susceptibility or life cycle using life tables. Studies involving multiple mortality factors (i.e., both biotic and abiotic) or multiple natural enemy species are also encouraged since herbivores in nature face a multitude of risks during the entire life cycle. More comprehensive studies may increase our understanding of factors influencing the relationships between herbivore growth and mortality.  相似文献   

8.
Identifying factors influencing infection patterns among hosts is critical for our understanding of the evolution and impact of parasitism in natural populations. However, the correct estimation of infection parameters depends on the performance of detection and quantification methods. In this study, we designed a quantitative PCR (qPCR) assay targeting the 18 S rRNA gene to estimate prevalence and intensity of Hepatozoon infection and compared its performance with microscopy and PCR. Using qPCR, we also compared various protocols that differ in the biological source and the extraction methods. Our results show that the qPCR approach on DNA extracted from blood samples, regardless of the extraction protocol, provided the most sensitive estimates of Hepatozoon infection parameters; while allowed us to differentiate between mixed infections of Adeleorinid (Hepatozoon) and Eimeriorinid (Schellackia and Lankesterella), based on the analysis of melting curves. We also show that tissue and saline methods can be used as low-cost alternatives in parasitological studies. The next step was to test our qPCR assay in a biological context, and for this purpose we investigated infection patterns between two sympatric lacertid species, which are naturally infected with apicomplexan hemoparasites, such as the genera Schellackia (Eimeriorina) and Hepatozoon (Adeleorina). From a biological standpoint, we found a positive correlation between Hepatozoon intensity of infection and host body size within each host species, being significantly higher in males, and higher in the smaller sized host species. These variations can be associated with a number of host intrinsic factors, like hormonal and immunological traits, that require further investigation. Our findings are relevant as they pinpoint the importance of accounting for methodological issues to better estimate infection in parasitological studies, and illustrate how between-host factors can influence parasite distributions in sympatric natural populations.  相似文献   

9.
Meta and/or combined QTL analysis from multiple studies can improve quantitative trait loci (QTL) position estimates compared to the individual experiments. Hereby we present results of a meta-analysis of QTL on chicken chromosome 9, 14 and 18 using data from three separate experiments and joint QTL analysis for chromosome 14 and 18. Meta QTL analysis uses information from multiple QTLs studies. Joint QTL analysis is based on combining raw data from different QTL experimental populations. QTLs under the study were related to specific antibody response to keyhole lymphet hemocyanin (KLH), and natural antibodies to environmental antigens, lipopolisaccharide (LPS) and lipoteichoic acid (LTA). Meta QTL analysis resulted in narrowing down the confidence interval for two QTLs on GGA14. The first one for natural antibodies against LTA and the second one for specific antibody response toward KLH. Also, a confidence interval of a QTL for natural antibodies against LPS located on GGA18 was narrowed down. Combined QTL analysis was successful for two QTLs: for specific antibody response toward KLH on GGA14, and for natural antibodies against LPS on GGA18. The greatest statistical power for QTL detection in joint analysis was achieved when raw data from segregating half–sib families from different populations under the study was used.  相似文献   

10.
Masami Fujiwara  Michael S. Mohr 《Oikos》2009,118(11):1712-1720
Individual organisms are affected by various natural and anthropogenic environmental factors throughout their life history. This is reflected in the way population abundance fluctuates. Consequently, observed population dynamics are often produced by the superimposition of multiple environmental signals. This complicates the analysis of population time-series. Here, a multivariate time-series method called maximum autocorrelation factor analysis (MAFA) was used to extract underlying signals from multiple population time series data. The extracted signals were compared with environmental variables that were suspected to affect the populations. Finally, a simple multiple regression analysis was applied to the same data set, and the results from the regression analysis were compared with those from MAFA. The extracted signals with MAFA were strongly associated with the environmental variables, suggesting that they represent environmental factors. On the other hand, with the multiple regression analysis, one of the important signals was not identifiable, revealing the shortcoming of the conventional approach. MAFA summarizes data based on their lag-one autocorrelation. This allows the identification of underlying signals with a small effect size on population abundance during the observation. It also uses multiple time series collected in parallel; this enables us to effectively analyze short time series. In this study, annual spawning adult counts of Chinook salmon at various locations within the Klamath Basin, California, were analyzed.  相似文献   

11.
Dynamics of the infection with pathogen trematodes of Brachyphallus crenatus (Rud., 1802) and Lecithaster gibbosus (Rud., 1802) in larvae and juvenile herring reared in experimental conditions and in those which were caught in the sea has been observed. Simultaneous infection of juvenile herring in natural environments and in experimental conditions has been noted. The parasitological examination of the material suggests the degree of natural mortality of larvae in the sea. The total rate of the juvenile herring infection in nature ranges from 22 to 92%.  相似文献   

12.
The diagnosis of visceral leishmaniasis (VL) is performed using multiple methods encompassing parasitological, serological and nucleic acid-based diagnostic tools, each method with its own unique advantages and disadvantages. Conventional parasitological methods are risky for the patient and require skilled personnel to collect specimens from spleen or bone marrow, and hence they are not generally available in impoverished areas. Polymerase chain reaction (PCR) has been validated as an excellent alternative to microscopy in terms of sensitivity and specificity. Here, we evaluate four different PCR assays targeting ITS1, ITS2, mini-exon and small subunit-rRNA (SSUrRNA) using DNA extracted from peripheral blood buffy coat in order to avoid more invasive processes. A total of 61 VL patients and 75 non-VL infected control individuals were enrolled. The VL patients were confirmed to be positive for Leishmania amastigotes in splenic smears by microscopy. Sensitivities of the PCR targeting ITS1, ITS2, SSUrRNA and mini-exon were 96.7%, 91.8%, 88.5% and 34.4%, respectively, while the specificity was 98.7% for all methods. Nested PCR for ITS1 resulted in 100% sensitivity. The efficacy of each PCR was evaluated with various Leishmania amastigote parasite loads in each spleen smear, graded from 1 + to 5 +. The PCR targeting ITS1 showed 100% sensitivity for the detection of Leishmania donovani in all samples from grades ≥ 3, ≥ 4, and ≥ 5, respectively. The restriction fragment length polymorphism observed in ITS1 amplicons digested by HaeIII classified the parasite into L. donovani complex. The ITS1 PCR was found to be equal to conventional, but very invasive and risky parasitological diagnoses and superior to other PCR based methods in sensitivity and examination of genetic heterogeneity. We recommend the PCR targeting ITS1 using peripheral blood buffy coat DNA as an alternate, less invasive diagnostic choice for the confirmation of L. donovani infection.  相似文献   

13.
《Freshwater Biology》1999,41(4):747-757
1.   The prediction of macroinvertebrate community composition in flowing waters from environmental data has enabled pollution assessments that take account of natural variability. Polluted sites are identified by discrepancies between the observed fauna and the fauna expected at an unpolluted site on the same type of river.
2.   The usual method of prediction involves a sequence of (a) classification of unpolluted reference sites by cluster analysis of macroinvertebrate community data (b) multiple discriminant analysis to relate site clusters to environmental variables, and (c) use of site clusters, discriminant functions and environmental data to estimate the probability of collection of each macroinvertebrate taxon at sites that are to be assessed (test sites).
3.   This paper describes an alternative method that does not require classification and predicts abundance rather than probability of occurrence. The main steps are (a) multiple regression of biological differences between pairs of reference sites on differences in physical variables (b) use of the multiple regression relationship to predict the biological similarity of a test site to each reference site, and (c) estimation of the expected fauna at the test site as a weighted mean of the faunas at the reference sites. The predicted similarities of the test site to each reference site are used to derive the weightings.
4.   The method is illustrated using macroinvertebrate and environmental data collected in the upper Murrumbidgee River catchment as part of Australia's Monitoring River Health Initiative. In comparison with a classification-based analysis of these data, macroinvertebrate indices generated by the new method showed a greater distinction between human-disturbed and undisturbed test sites, and a similar or higher degree of correlation with physical and chemical indicators of human disturbance.  相似文献   

14.
In the frame of an integrated biological effect monitoring programme, the parasite community of flounder (Platichthys flesus) was investigated at different locations in the German Bight from 1995 to 2000. In order to assess the impact of environmental contamination caused by anthropogenic activities on the parasite community, selected parasitological parameters that displayed significant differences between the sampling sites were subjected to correlation analyses with site-specific contamination and individual pollution loads of their fish hosts. In addition, correlation analyses were conducted with the responses of selected genetic, biochemical, histopathological, physiological and immunological parameters of fish, used as potential biomarkers. In total, 802 flounder were analysed for these parameters. Information on the chemical background at the sampling sites was derived from sediment samples and from 120 samples of blue mussel (Mytilus edulis) tissue, collected at each of the sampling sites. Based on chemical data available from the sediment and blue mussel samples, a pollution gradient could be established between the sampling sites for individual contaminants. The relative abundance of Acanthochondria cornuta, Cucullanus heterochrous and Zoogonoides viviparus, and the community measures species richness and number of heteroxenous species decreased with increasing concentrations of individual heavy metals or hydrocarbons in sediment and blue mussel samples. Most of the parasitological parameters significantly reflected the established site-specific contamination gradient, when data were pooled over all sampling campaigns. Significant correlations were also found with the contamination level of individual flounder. The parasitological parameters included the parasite species Lepeophtheirus pectoralis and Lernaeocera branchialis, which were not correlated to site-specific contamination. Several biomarkers were significantly correlated to the abundance of parasitic copepods A. cornuta, Lernaeocera branchialis and Lepeophtheirus pectoralis and to parasite community parameters. The results showed that the abundance of several metazoan parasite species, species richness and parasite diversity were reduced in contaminated habitats, and that differences between sites were not only related to natural factors, such as salinity, but also to pollution-induced stress. Thus, it can be concluded that the parasite community of fish responds to the level of pollution at a specific site as well as to residues of xenobiotics in individual fish. These findings give indications that the parasite community of fish is a valuable parameter for the assessment of ecological consequences of chemical contamination in aquatic habitats.  相似文献   

15.

Background

Chagas disease is caused by the flagellate protozoan Trypanosoma cruzi (T. cruzi). It is endemic in Latin American countries outside the Caribbean. The current criterion for cure in the chronic phase of the disease is the negativization of at least two serological tests such as enzyme-linked immunosorbent assay (ELISA), indirect immunofluorescence assay (IIF) and indirect hemagglutination assay (IHA). The serological evolution of treated subjects with chronic T. cruzi infection is variable. Treatment failure is indicated by a positive parasitological and/or molecular test (persistence of parasitemia).

Objectives

To summarize the pattern of response to treatment of parasitological, molecular and serological tests performed during the follow-up of subjects with chronic T. cruzi infection.

Methods

Electronic searches in relevant databases and screening of citations of potentially eligible articles were accomplished. Organizations focusing on neglected infectious diseases were asked for help in identifying relevant studies.Included studies were randomized controlled trials (RCTs), quasi-RCTs, and cohort studies involving adults and children with chronic infection who received trypanocidal treatment (benznidazole or nifurtimox) and were followed over time. The assessment of risk of bias was performed separately for each study design. The Cochrane Collaboration’s tool and the guidelines developed by Hayden et al. were used. Two reviewers extracted all data independently. A third review author was consulted in case of discordant opinion.Additional analyses were defined in ad-hoc basis. Scatter plots for percentage of positive parasitological and molecular tests and for negative serological tests were developed by using the lowess curve technique. Heterogeneity was measured by I2.The protocol was registered in PROSPERO, an international prospective register of systematic review protocols (Registration Number CRD42012002162).

Results

Out of 2,136 citations screened, 54 studies (six RCTs and 48 cohort studies) were included. The smoothed curves for positive xenodiagnosis and positive polymerase chain reaction (PCR) were characterized by a sharp decrease at twelve month posttreatment. Afterwards, they reached 10–20% and 40% for xenodiagnosis and PCR, respectively. The smoothed curves for negative conventional serological tests increased up to 10% after 48 months of treatment. In the long-term, the rate of negativization was between 20% and 45%.The main sources of bias identified across cohort studies were the lack of control for confounding and attrition bias. In general, RCTs were judged as low risk of bias in all domains. The level of heterogeneity across included studies was moderate to high.Additional analysis were incomplete because of the limited availability of data. In this regard, the country of origin of study participants might affect the results of parasitological and molecular tests, while the level of risk of bias might affect serological outcomes. Subgroup analysis suggested that seronegativization occurs earlier in children compared to adults.

Conclusions

We acknowledge that there is a dynamic pattern of response based on parasitological, molecular and serological tests in subjects chronically infected with T. cruzi after treatment. Our findings suggest a trypanocidal effect in the long-term follow-up.Further research is needed to explore potential sources of heterogeneity and to conduct reliable subgroup analysis.  相似文献   

16.
Experimental approaches are among the most powerful tools available to biologists, yet in many disciplines their results have been questioned due to an underrepresentation of female animal subjects. In parasitology, experiments are crucial to understand host-parasite interactions, parasite development, host immune responses, as well as the efficacy of different control methods. However, distinguishing between species-wide and sex-specific effects requires the balanced inclusion of both male and female hosts in experiments and the reporting of results for each sex separately. Here, using data from over 3600 parasitological experiments on helminth-mammal interactions published in the past four decades, we investigate patterns of male versus female subject use and result reporting practices in experimental parasitology. We uncover multiple effects of the parasite taxon used, the type of host used (rats and mice for which subject selection is fully under researcher control versus farm animals), the research subject area and the year of publication, on whether host sex is even specified, whether one or both host sexes have been used (and if only one then which one), and whether the results are presented separately for each host sex. We discuss possible reasons for biases and unjustifiable selection of host subjects, and for poor experimental design and reporting of results. Finally, we make some simple recommendations for increased rigour in experimental design and to reset experimental approaches as a cornerstone of parasitological research.  相似文献   

17.
A genetic interpretation of the zymograms of 524 Trypanosoma cruzi stocks from various hosts and representing a broad geographical range (United States to Southern Brazil) reveals high genetic variability (only one monomorphic locus out of 15) and suggests that this parasite has a diploid structure. The data do not give any indication of Mendelian sexuality, although many opportunities are present for genetic exchange between extremely different genotypes. The population structure of T. cruzi appears to be multiclonal and complex. The natural clones evidenced by isozyme analysis are numerous (43 different ones are recorded among 121 stocks assayed at 15 gene loci) and exhibit a large range of genotypes, in a nonhierarchical structure; it is not possible to cluster them into a few strictly delimited groups which could represent natural taxa. The available data suggest that the genetic variability of T. cruzi reflects the long separate evolution of multiple clones. It is suggested that long clonal evolution may explain the present biological and medical variability of the causative agent of Chagas' disease.  相似文献   

18.

Background  

Sporadic outbreaks of bovine trypanosomiasis have been reported in Bolivia since 1996 when T. vivax and T. evansi were identified for the first time by parasitological means. However, comprehensive epidemiological information concerning T. vivax and T. evansi in the country is lacking. Current parasitological and serological diagnostic methods for trypanosomiasis have important limitations either in their sensitivity or specificity, which can result in unreliable data when applied in epidemiological studies. PCR assays are a recently developed procedure that might help to overcome the constraints of parasitological and serological assays. Therefore, the objective of this study was to evaluate PCR assays as a diagnostic tool for epidemiological studies in Bolivia.  相似文献   

19.
Rapid and reliable detection and identification of coccidian oocysts are essential for animal health and foodborne disease outbreak investigations. Traditional microscopy and morphological techniques can identify large and unique oocysts, but they are often subjective and require parasitological expertise. The objective of this study was to develop a real-time quantitative PCR (qPCR) assay using melting curve analysis (MCA) to detect, differentiate, and identify DNA from coccidian species of animal health, zoonotic, and food safety concern. A universal coccidia primer cocktail was designed and employed to amplify DNA from Cryptosporidium parvum, Toxoplasma gondii, Cyclospora cayetanensis, and several species of Eimeria, Sarcocystis, and Isospora using qPCR with SYBR Green detection. MCA was performed following amplification, and melting temperatures (T(m)) were determined for each species based on multiple replicates. A standard curve was constructed from DNA of serial dilutions of T. gondii oocysts to estimate assay sensitivity. The qPCR assay consistently detected DNA from as few as 10 T. gondii oocysts. T(m) data analysis showed that C. cayetanensis, C. parvum, Cryptosporidium muris, T. gondii, Eimeria bovis, Eimeria acervulina, Isospora suis, and Sarcocystis cruzi could each be identified by unique melting curves and could be differentiated based on T(m). DNA of coccidian oocysts in fecal, food, or clinical diagnostic samples could be sensitively detected, reliably differentiated, and identified using qPCR with MCA. This assay may also be used to detect other life-cycle stages of coccidia in tissues, fluids, and other matrices. MCA studies on multiple isolates of each species will further validate the assay and support its application as a routine parasitology screening tool.  相似文献   

20.
Bayesian statistics for parasitologists   总被引:3,自引:0,他引:3  
Bayesian statistical methods are increasingly being used in the analysis of parasitological data. Here, the basis of differences between the Bayesian method and the classical or frequentist approach to statistical inference is explained. This is illustrated with practical implications of Bayesian analyses using prevalence estimation of strongyloidiasis and onchocerciasis as two relevant examples. The strongyloidiasis example addresses the problem of parasitological diagnosis in the absence of a gold standard, whereas the onchocerciasis case focuses on the identification of villages warranting priority mass ivermectin treatment. The advantages and challenges faced by users of the Bayesian approach are also discussed and the readers pointed to further directions for a more in-depth exploration of the issues raised. We advocate collaboration between parasitologists and Bayesian statisticians as a fruitful and rewarding venture for advancing applied research in parasite epidemiology and the control of parasitic infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号