首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lingakumar  K.  Kulandaivelu  G. 《Photosynthetica》1998,35(3):335-343
Cyamopsis tetragonoloba L. seedlings were subjected to continuous ultraviolet (UV)-B radiation for 18 h and post-irradiated with "white light" (WL) and UV-A enhanced fluorescent radiations. UV-B treatment alone reduced plant growth, pigment content, and photosynthetic activities. Supplementation of UV-A promoted the overall seedling growth and enhanced the synthesis of chlorophyll and carotenoids with a relatively high photosystem 1 activity. Post UV-B irradiation under WL failed to photoreactive the UV-B damage whereas a positive photoregulatory effect of UV-A was noticed in electron transport rates and low temperature fluorescence emission spectra.  相似文献   

2.
The protective effect and physiochemical mechanism of He-Ne laser illumination on photochemical impairment were evaluated by investigating chlorophyll fluorescence characteristics, photochemical activities of two photosystems, reactive oxygen species (ROS) levels and antioxidant enzyme activities in UV-B stressed-wheat (Triticum aestivum L.) seedlings. The results showed that enhanced UV-B stress significantly inhibited plant growth, reduced photosynthetic pigment content and antioxidant enzyme activities, while increased intracellular ROS levels. Meanwhile, UV-B stress also altered chlorophyll fluorescence characteristics and photochemical activities of seedlings. However, He-Ne laser illumination markedly improved photochemical activities and photosynthetic efficiency of two photosystems through detoxifying excessive ROS productions. Illumination with white fluorescent lamps (W), red light (R), or red light, then far-red light (R + FR) had not alleviated the inhibitory effect of UV-B stress on plant growth, suggesting that He-Ne laser illumination might be responsible for UV-B-stressed seedlings due to its regulation for intracellular ROS levels and plant oxidant/antioxidant balance. Furthermore, the laser alone also showed a positive impact on photochemical activities of photosystem I and photosystem II in plants.  相似文献   

3.
Changes in growth characteristics and photochemical activities inVigna unguiculata L. Walp seedlings maintained at constant temperature of 10, 20, 30 and 40 ‡C under control and ultraviolet-B enhanced radiation (UV-B) were investigated. UV-B retarded the shoot elongation and also leaf expansion to a great extent at 30 ‡C but produced only marginal changes at 20 and 40 ‡C. Similar response was also observed with respect to changes in leaf fresh and dry masses and total chlorophyll (Chl) content under these temperatures. At 10 ‡C the total Chl content was 3-fold higher under the treatment than under control conditions. In seedlings growing at 20 and 30 ‡C the overall photosynthetic electron transport (H2O -> methyl viologen) showed a significant enhancement during the 36-h UV-B treatment and thereafter a gradual reduction. Although a similar trend was found in photosystem 1 (PS1), the inhibition even after 60 h of UV-B treatment was not statistically significant. Photosystem 2 (PS2) activity was inhibited in seedlings treated for 60 h by UV-B at 20 and 30 ‡C. However, no inhibition was observed at 40 ‡C. No detectable photochemical activity was found in seedlings grown at 10 ‡C under either control or UV-B enhanced irradiation although the chloroplasts contained Chl. This work was supported by a Research Associateship to N.N. from the Council of Scientific and Industrial Research (India) and by a grant from the Ministerio de Education y Ciencia (ref. 5894- AM086772).  相似文献   

4.
兰春剑  江洪  黄梅玲  胡莉 《生态学报》2011,31(24):7516-7525
通过对UV-B辐射胁迫下亚热带典型木本杨桐幼苗的生长及光合生理的研究,探讨植物对于UV-B辐射胁迫的生理响应及适应性机理,进而揭示UV-B辐射变化对亚热带森林树种的影响.实验设置UV-B辐射滤光组、自然光对照组以及辐射增强组,选择亚热带典型树种杨桐(Cleyera japonica Thunb.)幼苗为实验材料.研究结果表明:(1)增强UV-B辐射会降低杨桐幼苗的叶绿素含量,而降低辐射则会显著促进叶绿素的增加,且这种胁迫在时间上具有积累性.(2)增强或降低辐射强度都会抑制杨桐地径的生长,增强辐射会产生更显著的抑制;降低辐射强度会对杨桐幼苗的株高生长产生促进作用,反之,则会抑制其生长.3个测定期数据综合分析显示随着处理时间的加长,这种胁迫作用有减小的趋势.(3)对光响应曲线的分析表明相对于自然光条件下的UV-B辐射,降低其强度对杨桐幼苗光合作用有显著的促进作用,反之则会抑制,不过抑制作用并不显著;对于光合特征参数的分析表明增强或降低UV-B辐射会显著降低杨桐幼苗的光饱和点(LSP)和光补偿点(LcP),而对最大净光合速率(Amax)、表观光合量子效率(AQY)、暗呼吸速率(Rd)影响均不显著,表明辐射胁迫对杨桐幼苗利用光能的效率影响不大,从而也并未对杨桐的光合作用产生显著性的伤害,但是由于森林树种的多年生特性,这种影响将是积累性的或延迟的,UV-B所造成的光合作用或光能利用率的微小变化都可能会积累成长期影响.因此,对森林树种进行长期研究是必要的.  相似文献   

5.
The influence of UV-B radiation from filtered or unfiltered fluorescent sunlamps on early seedling growth and translocation of 65Zn from cotyledons to the shoot was examined in two cultivars of cotton, Acala and Gregg. Ten-day-old seedlings which had been irradiated in the greenhouse for 6 h continuously each day for 14 days with 0.81 or 1.61 W × m-2 UV-B radiation under two unfiltered FS-40 sunlamps, showed pronounced phytotoxic damage. This was characterized at first by bronzing and glazing of the cotyledons and later by upward curling of the leaves and abscission. Leaf expansion, dry matter accumulation, and mobilization of 65Zn from the cotyledons was severely impaired in the young developing shoot under unfiltered UV-B radiation. A significant stress response also was observed in seedlings exposed to 0.61 W × m-2 UV-B radiation through a polystyrene filter and 0.73 W × m-2 UV-B radiation through a cellulose-acetate filter. This stress response was characterized by the formation of a red pigment in the petioles of the cotyledons, reduced leaf expansion, and reduced transport of 65Zn. Control seedlings exposed to 0.03 W × m-2 UV-B radiation through a mylar filter were green, had maximum leaf size and dry-matter accumulation, and had the greatest percentage of 65Zn translocated from the cotyledons.  相似文献   

6.
Enhanced level of UV-B radiation and heavy metals in irrigated soils due to anthropogenic activities are deteriorating the environmental conditions necessary for growth and development of plants. The present study was undertaken to study the individual and interactive effects of heavy metal nickel (NiCl(2)·6H(2)O; 0.01, 0.1, 1.0?mM) and UV-B exposure (0.4 W m(-2); 45?min corresponds to 1.08 KJ m(-2)) on growth performance and photosynthetic activity of pea (Pisum sativum L.) seedlings. Ni treatment at high doses (0.1 and 1.0?mM Ni) and UV-B alone reduced chlorophyll content and photosynthetic activity (oxygen yield, carbon fixation, photorespiration, and PSI, PSII, and whole chain electron transport activities), and declining trends continued with combined doses. In contrast to this, Ni at 0.01?mM appeared to be stimulatory for photosynthetic pigments and photosynthetic activity, thereby enhanced biomass was observed at this concentration. However, combined dose (UV-B + 0.01?mM Ni) caused inhibitory effects. Carotenoids showed different responses to each stress. Nickel at high doses strongly inhibited PSII activity and the inhibition was further intensified when chloroplasts were simultaneously exposed to UV-B radiation. PSI activity appeared to be more resistant to each stress. High doses of Ni (0.1and 1.0?mM) and UV-B alone interrupted electron flow at the oxygen evolving complex. Similar damaging effects were caused by 0.01 and 0.1?mM Ni together with UV-B, but the damage extended to PSII reaction center in case of 1.0?mM Ni in combination with UV-B. In conclusion, the results demonstrate that low dose of Ni stimulated the growth performance of pea seedlings in contrast to its inhibitory role at high doses. However, UV-B alone and together with low as well as high doses of Ni proved to be toxic for P. sativum L.  相似文献   

7.
1. The aim of the study was to investigate effects of enhanced UV-B radiation on the balance between biomass production and decay in an ombrotrophic bog which is dominated by one species of Sphagnum ( S. fuscum). This paper concerns production.
2. Enhanced UV-B radiation (simulating 15% ozone depletion under clear sky conditions) was applied by means of fluorescent tubes during two growing seasons.
3. In S. fuscum, shoot density, mass relations and length increment over time were measured and productivity was estimated. Pigment concentration, rates of dark respiration and maximum net photosynthesis were recorded.
4. Sphagnum fuscum productivity was not changed by enhanced UV-B radiation while properties determining production were highly influenced although in opposite directions.
5. Height increment was decreased by 20% in the first growing season and by 31% in the second growing season under enhanced UV-B radiation. After two growing seasons spatial shoot density was decreased by 8% by enhanced UV-B radiation. The shoots became stunted as capitulum dry mass and stem dry mass per unit length were increased by 21 and 17%, respectively, under enhanced UV-B radiation.
6. Dark respiration was significantly decreased by 31% after growth under enhanced UV-B radiation.
7. The UV-B induced change in shoot biometry together with the reduced spatial shoot density involve potential long-term effects on peat structure with possible feedback on productivity, decomposition and the strength of the system as a carbon sink.  相似文献   

8.
Very few studies have evaluated the effects of UV-B radiation on trees. especially deciduous species. In this study we evaluate the effects of supplemental UV-B radiation on the growth and photosynthetic capacity of sweetgum (Liquidambar styraciflua L.). Sweetgum seedlings were grown for 2 years in the field under either ambient or supplemental UV-B radiation. Artificial UV-B radiation was supplied by fluorescent lamps at a maximum daily supplementation of either 3.1 or 5.0 kJ of biologically effective UV-B radiation. Over the 2-year period, supplemental UV-B radiation had little effect on total plant biomass or photosynthetic capacity. However, subtle changes in leaf physiology, carbon allocation, and growth were observed. Supplemental UV-B radiation reduced photosynthetic capacity only during the first year, while leaf area and biomass were reduced in the second year. Alterations in carbon allocation included an increase in branch number and root to shoot ratio. While these data do not indicate that the productivity of sweetgum would likely be compromised by an increase in solar UV-B radiation, they do suggest that the UV-B portion of the solar spectrum contributes to the regulation of sweetgum growth and development. Therefore the possibility of significant consequences to sweetgum due to possible increases in UV-B radiation cannot be ruled out.  相似文献   

9.
Moorthy  P.  Kathiresan  K. 《Photosynthetica》1998,34(3):465-471
Changes in photosynthesis and biochemical constituents were studied in R. apiculata seedlings grown under solar and solar enhanced UV-B radiation, equivalent to 10, 20, 30, and 40 % stratospheric ozone depletion. The seedlings grown under 10 % UV-B radiation showed an increase of 45 % net photosynthetic rate (PN) and 47 % stomatal conductance, while seedlings grown under 40 % UV-B radiation exhibited a decrease of 59 % PN with simultaneous elevation of 73 % intercellular CO2 concentration. Effects of UV-B on contents of lipids, saccharides, amino acids, and proteins were significant only at high doses of UV-B radiation. The concentration of anthocyanin was reduced with increasing doses of UV-B. The reverse was true with phenols and flavonoids.  相似文献   

10.
Changes in photosynthesis and biochemical constituents were studied in R. apiculata seedlings grown under solar and solar enhanced UV-B radiation, equivalent to 10, 20, 30, and 40 % stratospheric ozone depletion. The seedlings grown under 10 % UV-B radiation showed an increase of 45 % net photosynthetic rate (PN) and 47 % stomatal conductance, while seedlings grown under 40 % UV-B radiation exhibited a decrease of 59 % PN with simultaneous elevation of 73 % intercellular CO2 concentration. Effects of UV-B on contents of lipids, saccharides, amino acids, and proteins were significant only at high doses of UV-B radiation. The concentration of anthocyanin was reduced with increasing doses of UV-B. The reverse was true with phenols and flavonoids.  相似文献   

11.
In this review all recent field studies on the effects of UV-B radiation on bryophytes are discussed. In most of the studies fluorescent UV-B tubes are used to expose the vegetation to enhanced levels of UV-B radiation to simulate stratospheric ozone depletion. Other studies use screens to filter the UV-B part of the solar spectrum, thereby comparing ambient levels of UV-B with reduced UV-B levels, or analyse effects of natural variations in UV-B arising from stratospheric ozone depletion. Nearly all studies show that mosses are well adapted to ambient levels of UV-B radiation since UV-B hardly affects growth parameters. In contrast with outdoor studies on higher plants, soluble UV-B absorbing compounds in bryophytes are typically not induced by enhanced levels of UV-B radiation. A few studies have demonstrated that UV-B radiation can influence plant morphology, photosynthetic capacity, photosynthetic pigments or levels of DNA damage. However, there is only a limited number of outdoor studies presented in the literature. More additional, especially long-term, experiments are needed to provide better data for statistical meta-analyses. A mini UV-B supplementation system is described, especially designed to study effects of UV-B radiation at remote field locations under harsh conditions, and which is therefore suited to perform long-term studies in the Arctic or Antarctic. The first results are presented from a long-term UV-B supplementation experiment at Signy Island in the Maritime Antarctic.  相似文献   

12.
Ultraviolet-B radiation is known to harm most photosynthetic organisms with the exception of several studies of photosynthetic eukaryotes in which UV-B showed positive effects. In this study, we investigated the effect of acclimation to low UV-B radiation on growth and photosynthesis of the cyanobacterium Nostoc sphaeroides. Exposure to 0.08 W m−2 UV-B plus low visible light for 14 d significantly increased the growth rate and biomass production by 16% and 30%, respectively, compared with those under visible light alone. The UV-B acclimated cells showed an approximately 50% increase in photosynthetic efficiency (α) and photosynthetic capacity (Pmax), a higher PSI/PSII fluorescence ratio, an increase in PSI content and consequently enhanced cyclic electron flow, relative to those of non-acclimated cells. Both the primary quinone-type acceptor and plastoquinone pool re-oxidation were up-regulated in the UV-B acclimated cells. In parallel, the UV-B acclimated colonies maintained a higher rate of D1 protein synthesis following exposure to elevated intensity of UV-B or visible light, thus functionally mitigating photoinhibition. The present data provide novel insight into photosynthetic acclimation to low UV-B radiation and suggest that UV-B may act as a positive ecological factor for the productivity of some photosynthetic prokaryotes, especially during twilight periods or in shaded environments.  相似文献   

13.
In the southeast of the Qinghai–Tibetan Plateau of China, dragon spruce (Picea asperata) is a key species and widely used in reforestation processes in the area. The paper mainly studied the effects of ultraviolet-B (UV-B) on growth, physiology and nitrogen nutrition of 3- and 6-year-old dragon spruce seedlings. The experimental design included ambient UV-B (control) and enhanced UV-B (+UV-B, a 30% increase). Enhanced UV-B significantly decreased growth, needle and root nitrogen concentration, needle nitrate reductase activity and increased UV-B absorbing compounds and malondialdehyde (MDA) content of two old dragon spruce seedlings. Glutamine synthetase activity was not affected by enhanced UV-B in two old dragon spruce seedlings. On the other hand, different old seedlings also exhibited different physiological responses to enhanced UV-B radiation. Chlorophyll content, carotenoids content and soluble protein content in 3-year-old seedlings significantly reduced by enhanced UV-B, but those in 6-year-old seedlings were not affected by enhanced UV-B. Proline content of 6-year-old seedlings were increased by enhanced UV-B. Compared with the 3-year-old seedlings, the 6-year-old seedlings showed lower reduction of growth and MDA content, and accumulated more proline and UV-B absorbing compounds for protecting seedlings under enhanced UV-B. The results implicated that 3-year-old seedlings were more sensitivity to enhanced UV-B than 6-year-old seedlings.  相似文献   

14.
One-year old loblolly pine ( Pinus taeda L.) seedlings were grown in an unshaded greenhouse for 7 months under 4 levels of ultraviolet-B (UV-B) radiation simulating stratospheric ozone reductions of 16, 25 and 40% and included a control with no UV-B radiation. Periodic measurements were made of growth and gas exchange characteristics and needle chlorophyll and UV-B-absorbing-compound concentrations. The effectiveness of UV-B radiation on seedling growth and physiology varied with the UV-B irradiance level. Seedlings receiving the lowest supplemental UV-B irradiance showed reductions in growth and photosynthetic capacity after only 1 month of irradiation. These reductions persisted and resulted in lower biomass production, while no increases in UV-B-absorbing compounds in needles were observed. Seedlings receiving UV-B radiation which simulated a 25% stratospheric ozone reduction showed an increase in UV-B-absorbing-compound concentrations after 6 months, which paralleled a recovery in photosynthesis and growth after an initial decrease in these characteristics. The seedlings grown at the highest UV-B irradiance (40% stratospheric ozone reduction) showed a more rapid increase in the concentration of UV-B-absorbing compounds and no effects of UV-B radiation on growth or photosynthetic capacity until after 4 months at this irradiance. Changes in photosynthetic capacity were probably the result of direct effects on light-dependent processes, since no effects were observed on either needle chlorophyll concentrations or stomatal conductance. Further studies are necessary to determine whether these responses persist and accumulate over subsequent years.  相似文献   

15.
In the southeast of the Qinghai-Tibetan Plateau of China, Mono Maple is a common species in reforestation processes. The paper mainly investigated the changes in morphological, photosynthetic and physiological responses of Mono Maple seedlings to UV-B radiation, nitrogen supply and their combination. The experimental design included two levels of UV-B treatments (ambient UV-B, 11.02 KJ m−2 day−1; enhanced UV-B, 14.33 KJ m−2 day−1) and two nitrogen levels (0; 20 g N m−2 a−1)—to determine whether the adverse effects of UV-B on plants are eased by nitrogen supply. Enhanced UV-B caused a marked decline in growth parameters, net photosynthetic rate, and photosynthetic pigments, whereas it induced an increase in reaction oxygen species (hydrogen peroxide accumulation and the rate of superoxide radical production) and malondialdehyde content. Enhance UV-B also induced an increase in antioxidant compounds of Mono Maple, such as UV-B absorbing compounds, proline content, and activities of antioxidant enzymes (peroxidase, superoxide dimutase and catalase). On the other hand, nitrogen supply caused an increase in some growth parameters, net photosynthetic rate, photosynthetic pigments and antioxidant compounds (peroxidase, proline content and UV-B absorbing compounds), and reduced the content of reaction oxygen species (H2O2 accumulation, the rate of O2production) and malondialdehyde content under ambient UV-B. However, under enhanced UV-B, nitrogen supply inhibited some growth parameters, and increased H2O2 accumulation, the rate of O2production and MDA content, though proline content, UV-B absorbing compounds and activities of POD and SOD increased. These results implied that enhanced UV-B brought harmful effects on Mono Maple seedlings and nitrogen supply made plants more sensitive to enhanced UV-B, though increased some antioxidant activity.  相似文献   

16.
镉和增强紫外线-B辐射复合作用对大豆生长的影响   总被引:15,自引:5,他引:10  
研究了Cd^2+和增强紫外线-B(UV-B)辐射以及二者复合胁迫(Cd+UV-B)对大豆生长、光合作用、抗氧化酶活性和吲哚乙酸(IAA)氧化酶活性的影响,结果表明,UV-B辐射对大豆生长较CA^2+有更明显的抑制作用,主要是降低了光合作用,生物量减小;抑制节间的分化和伸长,节间减少,株高降低。UV-B辐射对POD、SOD活性有显著诱导作用,而Cd^2+明显颉颃UV-B对POD活性的诱导并抑制IAA氧化酶活性.在复合作用下,植物体内IAA氧化酶和POD活性较UV-B单独作用下显著降低,这两种酶活性降低会引起植物体内IAA含量升高,同时光合作用略有升高,这是株高和生物量较UV-B作用下有所增加的重要原因,复合胁迫还增强了对根伸长生长的抑制作用,根长度较对照显著降低(P<0.05)。IAA氧化酶和POD活性变化以及光合强度变化与大豆株高和生物量变化密切相关,这也是复合胁迫影响大豆生长状况的重要因素。  相似文献   

17.
Sterilized seeds of Isatis indigotica (Brassicacae) were divided into four groups based on irradiation pretreatments. These control groups (C) were non irradiated, He–Ne laser treated seeds (L), UV-B treated seeds (B) and He–Ne laser followed by UV-B radiation treated seeds (LB). Laser radiation was provided by He–Ne laser, UV-B radiation was provided by filtered Qin brand 30 W fluorescent sun lamps. Malondialdehyde (MDA), proline, UV-B absorbing compounds and ascorbic acid (AsA) concentrations, as well as, the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) were measured in the cotyledons of seedlings from all the four irradiation treatments. The result indicate that UV-B radiation enhanced the concentration of MDA while decreasing the activities of SOD, CAT, POD and the concentration of AsA in the seedlings compared with the controls. The concentration of MDA decreased, while the activities of SOD, CAT, POD and the concentration of AsA increased in seedling treated with He–Ne laser and UV-B compared to UV-B alone. The concentration of proline and UV absorbing compounds increased progressively with treatments i.e. UV-B irradiation, He–Ne laser irradiation, and He–Ne laser irradiation followed by UV-B irradiation compared to the controls. The present data suggest that Isatis indigotica seedlings derived from laser stimulated seeds showed improved resistance to elevated UV-B.  相似文献   

18.
The effect of ultraviolet-B (UV-B) enhanced fluorescent radiation on protein profile and protein synthesis has been investigated in Vigna sinensis L. cv. Walp seedlings growing at various temperatures. In seedlings growing at 30°C, UV-B radiation decreased the level of several proteins as seen in Coomassie brilliant blue stained gel. However, fluorography of the same gel indicates induction of three sets of proteins in the range of 70. 53 and 16 k Da. Such induction under UV-B enhanced radiation resembled that found after heat shock treatments. In seedlings at 10 and 20°C, induction of such proteins varied both qualitatively and quantitatively. At 40°C. UV-B enhanced radiation caused a cumulative effect with temperature. Strong induction of specific proteins by UV-B radiation in seedlings growing under normal temperature indicates a possible protective role.  相似文献   

19.
Inhibition of photosynthetic activity by UV-B radiation in radish seedlings   总被引:1,自引:0,他引:1  
Inhibition of primary photosynthetic reactions by UV-B radiation (280 nm-320 nm) was demonstrated in radish leaves ( Raphanus sativus cv. Saxa Treib). Detached radish cotyledons from 10-day-old seedlings were irradiated with continuous white light and increasing UV-B irradiances using cut-off filters with increasing transmission for shorter wavelengths (WG 360, WG 345, WG 320, WG 305, WG 295, WG 280). Photosynthetic activity measured in terms of chlorophyll fluorescence induction (Kautsky effect) after 2, 4, 6, 8 and 24 h irradiation decreased in a wavelength dependent way with increasing UV-B irradiance and irradiation time.
Radish seedlings grown for 10 days from the time of germination under the same UV-B irradiation conditions exhibited similar reductions of the variable fluorescence as detached cotyledons irradiated for short time periods. They additionally had lower initial fluorescence at high UV-B radiation levels, although the chlorophyll content per leaf area increased. In contrast to short term experiments, the plastoquinone and flavonoid content increased with increasing UV-B irradiance when based on leaf area.  相似文献   

20.
Three-year-old birch (Betula pendula Roth.) seedlings were exposed, in the field, to supplemental levels of UV-B radiation. Control seedlings were exposed to ambient levels of UV radiation, using arrays of unenergized lamps. A control for UV-A radiation was also included in the experiment. Enhanced UV-B radiation had no significant effects on height growth, and shoot and root biomass of birch seedlings. Leaf expansion rate increased transiently in the middle of the growing period in enhanced UV-B- and UV-A-exposed plants; however, final leaf size and relative growth rate remained unaffected. Leaf thickness and spongy intercellular spaces were increased in UV-B-exposed seedlings along with increased density of glandular trichomes. At the ultrastructural level, enhanced UV-B increased the number of cytoplasmic lipid bodies, and abnormal membrane whorls were found. Both enhanced UV-B and UV-A radiation induced swelling of chloroplast thylakoids. Stomatal density and conductance were significantly increased by elevated UV-B radiation. UV-A radiation increased the length and width of stomata, whereas UV-B radiation had only a marginal effect on stomatal size. UV-A and enhanced UV-B radiation attenuated the appearance of necrotic spots in autumn, probably caused by the fungus Pyrenopeziza betulicola, suggesting a direct harmful effect of UV on pathogens or reduced susceptibility to pathogens in UV-exposed seedlings. Secondary metabolite analysis showed increases in (+)-catechin, quercetin, cinnamic acid derivative, apigenin and pentagalloylglucose in birch leaves under enhanced UV-B radiation. Negative correlations between apigenin, and particularly quercetin concentrations and lipid peroxidation levels indicated an antioxidant role of secondary metabolites in birch leaves exposed to UV-B radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号