首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Introduced species frequently show geographic differentiation, and when differentiation mirrors the ancestral range, it is often taken as evidence of adaptive evolution. The mouse-ear cress (Arabidopsis thaliana) was introduced to North America from Eurasia 150-200 years ago, providing an opportunity to study parallel adaptation in a genetic model organism. Here, we test for clinal variation in flowering time using 199 North American (NA) accessions of A. thaliana, and evaluate the contributions of major flowering time genes FRI, FLC, and PHYC as well as potential ecological mechanisms underlying differentiation. We find evidence for substantial within population genetic variation in quantitative traits and flowering time, and putatively adaptive longitudinal differentiation, despite low levels of variation at FRI, FLC, and PHYC and genome-wide reductions in population structure relative to Eurasian (EA) samples. The observed longitudinal cline in flowering time in North America is parallel to an EA cline, robust to the effects of population structure, and associated with geographic variation in winter precipitation and temperature. We detected major effects of FRI on quantitative traits associated with reproductive fitness, although the haplotype associated with higher fitness remains rare in North America. Collectively, our results suggest the evolution of parallel flowering time clines through novel genetic mechanisms.  相似文献   

2.
Early life‐history transitions are crucial determinants of lifetime survival and fecundity. Adaptive evolution in early life‐history traits involves a complex interplay between the developing plant and its current and future environments. We examined the plant's earliest life‐history traits, dissecting an integrated suite of pregermination processes: primary dormancy, thermal induction of secondary dormancy, and seasonal germination response. We examined genetic variation in the three processes, genetic correlations among the processes, and the scaling of germination phenology with the source populations’ climates. A spring annual life history was associated with genetic propensities toward both strong primary dormancy and heat‐induced secondary dormancy, alone or in combination. Lineages with similar proportions of winter and spring annual life history have both weak primary dormancy and weak thermal dormancy induction. A genetic bias to adopt a spring annual strategy, mediated by rapid loss of primary dormancy and high thermal dormancy induction, is associated with a climatic gradient characterized by increasing temperature in summer and rainfall in winter. This study highlights the importance of considering combinations of multiple genetically based traits along a climatic gradient as adaptive strategies differentiating annual plant life‐history strategies. Despite the genetic‐climatic cline, there is polymorphism for life‐history strategies within populations, classically interpreted as bet hedging in an unpredictable world.  相似文献   

3.
We addressed the question if local adaptation to a thermal gradient is possible in spite of a high gene flow among closely spaced populations of two species of Drosophila from the island of La Gomera (Canary Islands). Variation in multiple traits related to stress resistance in different life stages was measured in both species in flies collected from five localities at different altitudes and thereby with different climatic conditions. Based on microsatellite loci, the populations were not genetically differentiated. However, 18 of the 24 independent traits measured showed significant differentiation among populations of Drosophila buzzatii, but only nine of 25 for Drosophila simulans. This difference in the number of traits might reflect higher habitat specificity and thus higher potential for local adaptation of D. buzzatii than D. simulans. We found clinal variation, as some traits showed significant linear regressions on altitude, but more on altitude cubed.  相似文献   

4.
The dynamics of plant population differentiation may be integral in predicting aspects of introduced species invasion. In the present study, we tested the hypothesis that European populations of Senecio inaequidens (Asteraceae), an invasive species with South African origins, differentiated during migration from two independent introduction sites into divergent altitudinal and climatic zones. We carried out 2 years of common garden experiments with eight populations sampled from Belgian and ten populations from French altitudinal transects. The Belgian transect followed a temperature and precipitation gradient. A temperature and summer drought gradient characterized the French transect. We evaluated differentiation and clinal variation in plants germinated from field-collected seed using the following traits: days to germination, days to flowering, height at maturity, final plant height and aboveground biomass. Results showed that S. inaequidens populations differentiated in growth traits during invasion. During the 1st year of sampling, the results indicated clinal variation for growth traits along both the Belgium and French altitudinal transects. Data from the 2nd year of study demonstrated that with increasing altitude, a reduction in three growth traits, including plant height at maturity, final plant height and aboveground biomass, was detected along the French transect, but no longer along the Belgian one. Phenological traits did not exhibit a clear clinal variation along altitudinal transects. The possible evolutionary causes for the observed differentiation are discussed. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
6.
Y Luo  A Widmer  S Karrenberg 《Heredity》2015,114(2):220-228
Understanding how natural selection and genetic drift shape biological variation is a central topic in biology, yet our understanding of the agents of natural selection and their target traits is limited. We investigated to what extent selection along an altitudinal gradient or genetic drift contributed to variation in ecologically relevant traits in Arabidopsis thaliana. We collected seeds from 8 to 14 individuals from each of 14 A. thaliana populations originating from sites between 800 and 2700 m above sea level in the Swiss Alps. Seed families were grown with and without vernalization, corresponding to winter-annual and summer-annual life histories, respectively. We analyzed putatively neutral genetic divergence between these populations using 24 simple sequence repeat markers. We measured seven traits related to growth, phenology and leaf morphology that are rarely reported in A. thaliana and performed analyses of altitudinal clines, as well as overall QST-FST comparisons and correlation analyses among pair-wise QST, FST and altitude of origin differences. Multivariate analyses suggested adaptive differentiation along altitude in the entire suite of traits, particularly when expressed in the summer-annual life history. Of the individual traits, a decrease in rosette leaf number in the vegetative state and an increase in leaf succulence with increasing altitude could be attributed to adaptive divergence. Interestingly, these patterns relate well to common within- and between-species trends of smaller plant size and thicker leaves at high altitude. Our results thus offer exciting possibilities to unravel the underlying mechanisms for these conspicuous trends using the model species A. thaliana.  相似文献   

7.
Extensive natural variation has been described for the timing of flowering initiation in many annual plants, including the model wild species Arabidopsis (Arabidopsis thaliana), which is presumed to be involved in adaptation to different climates. However, the environmental factors that might shape this genetic variation, as well as the molecular bases of climatic adaptation by modifications of flowering time, remain mostly unknown. To approach both goals, we characterized the flowering behavior in relation to vernalization of 182 Arabidopsis wild genotypes collected in a native region spanning a broad climatic range. Phenotype-environment association analyses identified strong altitudinal clines (0-2600 m) in seven out of nine flowering-related traits. Altitudinal clines were dissected in terms of minimum winter temperature and precipitation, indicating that these are the main climatic factors that might act as selective pressures on flowering traits. In addition, we used an association analysis approach with four candidate genes, FRIGIDA (FRI), FLOWERING LOCUS C (FLC), PHYTOCHROME C (PHYC), and CRYPTOCHROME2, to decipher the genetic bases of this variation. Eleven different loss-of-function FRI alleles of low frequency accounted for up to 16% of the variation for most traits. Furthermore, an FLC allelic series of six novel putative loss- and change-of-function alleles, with low to moderate frequency, revealed that a broader FLC functional diversification might contribute to flowering variation. Finally, environment-genotype association analyses showed that the spatial patterns of FRI, FLC, and PHYC polymorphisms are significantly associated with winter temperatures and spring and winter precipitations, respectively. These results support that allelic variation in these genes is involved in climatic adaptation.  相似文献   

8.
Latitudinal clines are considered a powerful means of investigating evolutionary responses to climatic selection in nature. However, most clinal studies of climatic adaptation in Drosophila have involved species that contain cosmopolitan inversion polymorphisms that show clinal patterns themselves, making it difficult to determine whether the traits or inversions are under selection. Further, although climatic selection is unlikely to act on only one life stage in metamorphic organisms, a few studies have examined clinal patterns across life stages. Finally, clinal patterns of heat tolerance may also depend on the assay used. To unravel these potentially confounding effects on clinal patterns of thermal tolerance, we examined adult and larval heat tolerance traits in populations of Drosophila simulans from eastern Australia using static and dynamic (ramping 0.06 °C min?1) assays. We also used microsatellites markers to clarify whether demographic factors or selection are responsible for population differentiation along clines. Significant cubic clinal patterns were observed for adult static basal, hardened and dynamic heat knockdown time and static basal heat survival in larvae. In contrast, static, hardened larval heat survival increased linearly with latitude whereas no clinal association was found for larval ramping survival. Significant associations between adult and larval traits and climatic variables, and low population differentiation at microsatellite loci, suggest a role for climatic selection, rather than demographic processes, in generating these clinal patterns. Our results suggest that adaptation to thermal stress may be species and life‐stage specific, complicating our efforts to understand the evolutionary responses to selection for increasing thermotolerance.  相似文献   

9.
Hoffmann AA  Weeks AR 《Genetica》2007,129(2):133-147
Drosophila melanogaster invaded Australia around 100 years ago, most likely through a northern invasion. The wide range of climatic conditions in eastern Australia across which D. melanogaster is now found provides an opportunity for researchers to identify traits and genes that are associated with climatic adaptation. Allozyme studies indicate clinal patterns for at least four loci including a strong linear cline in Adh and a non-linear cline in alpha-Gpdh. Inversion clines were initially established from cytological studies but have now been validated with larger sample sizes using molecular markers for breakpoints. Recent collections indicate that some genetic markers (Adh and In(3R)Payne) have changed over the last 20 years reflecting continuing evolution. Heritable clines have been established for quantitative traits including wing length/area, thorax length and cold and heat resistance. A cline in egg size independent of body size and a weak cline in competitive ability have also been established. Postulated clinal patterns for resistance to desiccation and starvation have not been supported by extensive sampling. Experiments under laboratory and semi-natural conditions have suggested selective factors generating clinal patterns, particularly for reproductive patterns over winter. Attempts are being made to link clinal variation in traits to specific genes using QTL analysis and the candidate locus approach, and to identify the genetic architecture of trait variation along the cline. This is proving difficult because of inversion polymorphisms that generate disequilibrium among genes. Substantial gaps still remain in linking clines to field selection and understanding the genetic and physiological basis of the adaptive shifts. However D. melanogaster populations in eastern Australia remain an excellent resource for understanding past and future evolutionary responses to climate change.  相似文献   

10.
In plants, ecologically important life history traits often display clinal patterns of population divergence. Such patterns can provide strong evidence for spatially varying selection across environmental gradients but also may result from nonselective processes, such as genetic drift, population bottlenecks and spatially restricted gene flow. Comparison of population differentiation in quantitative traits (measured as Q(ST) ) with neutral molecular markers (measured as F(ST) ) provides a useful tool for understanding the relative importance of adaptive and nonadaptive processes in the formation and maintenance of clinal variation. Here, we demonstrate the existence of geographic variation in key life history traits in the diploid perennial sunflower species Helianthus maximiliani across a broad latitudinal transect in North America. Strong population differentiation was found for days to flowering, growth rate and multiple size-related traits. Differentiation in these traits greatly exceeds neutral predictions, as determined both by partial Mantel tests and by comparisons of global Q(ST) values with theoretical F(ST) distributions. These findings indicate that clinal variation in these life history traits likely results from local adaptation driven by spatially heterogeneous environments.  相似文献   

11.
Costs of reproduction due to resource allocation trade-offs have long been recognized as key forces in life history evolution, but little is known about their functional or genetic basis. Arabidopsis lyrata, a perennial relative of the annual model plant A. thaliana with a wide climatic distribution, has populations that are strongly diverged in resource allocation. In this study, we evaluated the genetic and functional basis for variation in resource allocation in a reciprocal transplant experiment, using four A. lyrata populations and F2 progeny from a cross between North Carolina (NC) and Norway parents, which had the most divergent resource allocation patterns. Local alleles at quantitative trait loci (QTL) at a North Carolina field site increased reproductive output while reducing vegetative growth. These QTL had little overlap with flowering date QTL. Structural equation models incorporating QTL genotypes and traits indicated that resource allocation differences result primarily from QTL effects on early vegetative growth patterns, with cascading effects on later vegetative and reproductive development. At a Norway field site, North Carolina alleles at some of the same QTL regions reduced survival and reproductive output components, but these effects were not associated with resource allocation trade-offs in the Norway environment. Our results indicate that resource allocation in perennial plants may involve important adaptive mechanisms largely independent of flowering time. Moreover, the contributions of resource allocation QTL to local adaptation appear to result from their effects on developmental timing and its interaction with environmental constraints, and not from simple models of reproductive costs.  相似文献   

12.
Adaptation to latitudinal patterns of environmental variation is predicted to result in clinal variation in leaf traits. Therefore, this study tested for geographic differentiation and plastic responses to vernalization in leaf angle and leaf morphology in Arabidopsis thaliana. Twenty-one European ecotypes were grown in a common growth chamber environment. Replicates of each ecotype were exposed to one of four treatments: 0, 10, 20 or 30 d of vernalization. Ecotypes from lower latitudes had more erect leaves, as predicted from functional arguments about selection to maximize photosynthesis. Lower-latitude ecotypes also had more elongated petioles as predicted by a biomechanical constraint hypothesis. In addition, extended vernalization resulted in shorter and more erect leaves. As predicted by functional and adaptive hypotheses, our results show genetically based clinal variation as well as environmentally induced variation in leaf traits.  相似文献   

13.
A major challenge in evolutionary biology and plant breeding is to identify the genetic basis of complex quantitative traits, including those that contribute to adaptive variation. Here we review the development of new methods and resources to fine-map intraspecific genetic variation that underlies natural phenotypic variation in plants. In particular, the analysis of 107 quantitative traits reported in the first genome-wide association mapping study in Arabidopsis thaliana sets the stage for an exciting time in our understanding of plant adaptation. We also argue for the need to place phenotype-genotype association studies in an ecological context if one is to predict the evolutionary trajectories of plant species.  相似文献   

14.
Understanding how organisms adapt to complex environments is a central goal of evolutionary biology and ecology. This issue is of special interest in the current era of rapidly changing climatic conditions. Here, we investigate clinal variation and plastic responses in life history, morphology and physiology in the butterfly Pieris napi along a pan‐European gradient by exposing butterflies raised in captivity to different temperatures. We found clinal variation in body size, growth rates and concomitant development time, wing aspect ratio, wing melanization and heat tolerance. Individuals from warmer environments were more heat‐tolerant and had less melanised wings and a shorter development, but still they were larger than individuals from cooler environments. These findings suggest selection for rapid growth in the warmth and for wing melanization in the cold, and thus fine‐tuned genetic adaptation to local climates. Irrespective of the origin of butterflies, the effects of higher developmental temperature were largely as expected, speeding up development; reducing body size, potential metabolic activity and wing melanization; while increasing heat tolerance. At least in part, these patterns likely reflect adaptive phenotypic plasticity. In summary, our study revealed pronounced plastic and genetic responses, which may indicate high adaptive capacities in our study organism. Whether this may help such species, though, to deal with current climate change needs further investigation, as clinal patterns have typically evolved over long periods.  相似文献   

15.
Stress resistance characters are valuable tools for the study of acclimation potential, adaptive strategies and biogeographic patterns in species exposed to environmental variability. Water stress is a challenge to terrestrial arthropods because of their small size and relatively high area: volume ratio. Fruit flies have been investigated to record adaptive morphological and physiological traits, as well as to test their responses to stressful factors. In this study, we investigate the ability to cope with water stress, by examining variation in desiccation resistance in a species that lives mainly in desert lands. Specifically, we explored the genetic and ecological basis of desiccation resistance in populations of Drosophila buzzatii from Northern Argentina. We used a common garden experiment with desiccation treatments on a number of isofemale lines from four populations along an aridity gradient. Our results revealed significant among-population differentiation and substantial amounts of genetic variation for desiccation resistance. We also detected significant genotype-by-environment and genotype-by-sex interactions indicative that desiccation resistance responses of the lines assayed were environment- and sex-specific. In addition, we observed clinal variation in female desiccation resistance along gradients of altitude, temperature and humidity; that desiccation resistance is a sexually dimorphic trait, and that sexual dimorphism increased along the aridity and altitudinal gradients. Based on current evidence, we propose that the observed sex-specific responses may reflect different life history traits, and survival and reproductive strategies in different ecological scenarios.  相似文献   

16.
Variation in recruitment and longevity of the purple sea urchin Strongylocentrotus purpuratus (Stimpson) along its latitudinal distribution suggests clinal differences in the life history traits of this species. Two complimentary approaches were employed to assess degree and nature of the intraspecific variation in life history traits. Growth, mortality and recruitment data were gathered in the field and in the laboratory sea urchins were held under the same conditions to determine the extent of plasticity in resource allocation. Both laboratory and field measurements indicate the observed demographic patterns are best attributed to phenotypic responses to varying environmental conditions rather than genetically determined intraspecific differences in life history traits.  相似文献   

17.
Environmental gradients represent an ideal framework for studying adaptive variation in the life history of plant species. However, on very steep gradients, largely contrasting conditions at the two gradient ends often limit the distribution of the same species across the whole range of environmental conditions. Here, we study phenotypic variation in a winter annual crucifer Biscutella didyma persisting along a steep gradient of increasing rainfall in Israel. In particular, we explored whether the life history at the arid end of the gradient indicates adaptations to drought and unpredictable conditions, while adaptations to the highly competitive environment prevail at the mesic Mediterranean end. We examined several morphological and reproductive traits in four natural populations and in populations cultivated in standard common environment. Plants from arid environments were faster in phenological development, more branched in architecture and tended to maximize reproduction, while the Mediterranean plants invested mainly in vertical vegetative growth. Differences between cultivation and field in diaspore production were very large for arid populations as opposed to Mediterranean ones, indicating a larger potential to increase reproduction under favorable conditions. Our overall findings indicate two strongly opposing selective forces at the two extremes of the aridity gradient, which result in contrasting strategies within the studied annual plant species.  相似文献   

18.
Understanding the biogeographic and phylogenetic basis to interspecific differences in species’ functional traits is a central goal of evolutionary biology and community ecology. We quantify the extent of phylogenetic influence on functional traits and life‐history strategies of Australian freshwater fish to highlight intercontinental differences as a result of Australia's unique biogeographic and evolutionary history. We assembled data on life history, morphological and ecological traits from published sources for 194 Australian freshwater species. Interspecific variation among species could be described by a specialist–generalist gradient of variation in life‐history strategies associated with spawning frequency, fecundity and spawning migration. In general, Australian fish showed an affinity for life‐history strategies that maximise fitness in hydrologically unpredictable environments. We also observed differences in trait lability between and within life history, morphological and ecological traits where in general morphological and ecological traits were more labile. Our results showed that life‐history strategies are relatively evolutionarily labile and species have potentially evolved or colonised in freshwaters frequently and independently allowing them to maximise population performance in a range of environments. In addition, reproductive guild membership showed strong phylogenetic constraint indicating that evolutionary history is an important component influencing the range and distribution of reproductive strategies in extant species assemblages. For Australian freshwater fish, biogeographic and phylogenetic history contribute to broad taxonomic differences in species functional traits, while finer scale ecological processes contribute to interspecific differences in smaller taxonomic units. These results suggest that the lability or phylogenetic relatedness of different functional traits affects their suitability for testing hypothesis surrounding community level responses to environmental change.  相似文献   

19.
Thermotolerance traits vary across geographical gradients but there is a lack of clinal variation in some Drosophila species. Thus, it is not clear whether thermotolerance or other correlated traits are the target of natural selection. In order to test selection responses, we investigated body melanization and thermotolerance traits in six altitudinal populations of Drosophila melanogaster . Based on rearing different geographical populations under uniform growth conditions at 21 °C (common garden experiments), clinal variations for cold resistance are in the direction opposite to heat resistance along an altitudinal gradient, that is darker flies from highland populations evidenced higher levels of cold resistance while lowland populations showed higher heat resistance. Phenotypic plastic responses for body melanization at 17–28 °C showed significant correlations with thermotolerance traits. At 17 °C, regression coefficients as a function of altitude are highly significant and positive for cold resistance but negative for heat knockdown. However, for flies reared at 28 °C, there is no elevational change in melanization as well as thermotolerance traits. Thus, both genetic and plastic changes of body melanization and thermotolerance traits suggest a correlated selection response. Further, within-population analyses of body melanization (based on dark, intermediate and light color phenotypes) showed significant associations with thermotolerance traits. Correlated variations in body melanization and thermal tolerances are associated with climatic thermal variability ( T cv) but not with T min. or T max. along an altitudinal gradient.  相似文献   

20.
Identifying the particular gene or genes underlying a specific adaptation is a major challenge in modern biology. Currently, the study of naturally occurring variation in Arabidopsis thaliana provides a bridge between functional genetics and evolutionary analyses. Nevertheless, the use of A. thaliana to study adaptation is limited to those traits that have undergone selection. Therefore, to understand fully the genetics of adaptation, the vast arsenal of genetic resources developed in A. thaliana must be extended to other species that display traits absent in this model species. Here, we discuss how A. thaliana resources can significantly enhance the study of heavy-metal tolerance and hyperaccumulation in the wild species Arabidopsis halleri.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号