首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nuclear and cytoplasmic fractions were isolated from various tissues of the rat by a nonaqueous technique. The high-mobility-group (HMG) proteins were extracted from these fractions with acid and separated by one- and two-dimensional PAGE. The concentrations of high-mobility-group proteins HMG1, HMG2, and HMG17 in the nucleus and cytoplasm were then estimated from the staining intensities of the electrophoretic bands. The cytoplasmic concentrations of these proteins were very low--usually less than 1/30 of those present in the corresponding nuclear fractions. For the tissues studied (liver, kidney, heart, and lung), the concentrations of HMG proteins in the nucleus did not differ significantly from one tissue to another. Averaged over the four tissues investigated, there were 0.28 molecule of HMG1, 0.18 molecule of HMG2, and 0.46 molecule of HMG17 per nucleosome. These values are considerably higher than those that have been reported previously.  相似文献   

2.
Nuclei from Plodia interpunctella larvae contain four major proteins, which are extracted by 5% perchloric acid and 0.35 M NaCl. The proteins have been designated PL1, PL2, PL3, and PL4. The amino acid analyses of these proteins show that they have high proportions of acidic and basic amino acid residues, a property characteristic of the high mobility group (HMG) proteins isolated from vertebrate tissues. Immunological characterization of these proteins clearly shows that PL1, PL2, and PL4 are more closely related to HMG1 dipteran proteins, while PL3 is more closely related to HMGI dipteran proteins. The possible relatedness of these proteins to HMG proteins is discussed.  相似文献   

3.
1. Tammar wallaby (Macropus eugenii, Marsupialia) proteins with similar electrophoretic mobilities to calf non-histone chromosomal proteins HMG 1, 2, 14 and 17 are perchloric acid extracted from whole tissues (liver, kidney, spleen, brain and testis) and purified liver nuclei (using PCA or 0.35 M NaCl). 2. Tammar and calf HMG 1 have similar amino acid compositions. 3. Two testis-specific basic proteins co-extracting with HMG-like proteins from both tammar and red kangaroo (Megaleia rufa) are found in whole testis, purified testis nuclei, but not epididymis. 4. Tammar HMG 2 separates into two components on both acid urea and SDS gels. The larger, more basic protein, HMG 2b, is relatively abundant in proliferating tissues (testis, spleen).  相似文献   

4.
The distribution, quantitation, and synthesis of high mobility group (HMG) proteins during spermatogenesis in the rat have been determined. HMG1, -2, -14, and -17 were isolated from rat testes by Bio-Rex 70 chromatography combined with preparative gel electrophoresis. Amino acid analysis revealed that each rat testis HMG protein was similar to its calf thymus analogue. Tryptic peptide maps of somatic and testis HMG2 showed no differences and, therefore, failed to detect an HMG2 variant. Testis levels of HMG proteins, relative to DNA content, were equivalent to other tissues for HMG1 (13 micrograms/mg of DNA), HMG14 (3 micrograms/mg of DNA), and HMG17 (5 micrograms/mg of DNA). The testis was distinguished in that it contained a substantially higher level of HMG2 than any other rat tissue (32 micrograms/mg of DNA). HMG protein levels were determined from purified or enriched populations of testis cells representing the major stages of spermatogenesis; spermatogonia and early primary spermatocytes, pachytene spermatocytes, early spermatids, and late spermatids; and testicular somatic cells. High levels of HMG2 in the testis were due to pachytene spermatocytes and early spermatids (56 +/- 4 and 47 +/- 6 micrograms/mg of DNA, respectively). Mixtures of spermatogonia and early primary spermatocytes showed lower levels of HMG2 (12 +/- 3 micrograms/mg of DNA) similar to proliferating somatic tissues, whereas late spermatids had no detectable HMG proteins. The somatic cells of the testis, including isolated populations of Sertoli and Leydig cells, showed very low levels of HMG2 (2 micrograms/mg of DNA), similar to those in nonproliferating somatic tissues. HMG proteins were synthesized in spermatogonia and primary spermatocytes, but not in spermatids. Rat testis HMG2 exhibited two bands on acid-urea gels. A "slow" form comigrated with somatic cell HMG2, while the other "fast" band migrated ahead of the somatic form and appeared to be testis-specific. The "fast" form of HMG2 accounted for the large increase of HMG2 levels in rat testes. These results show that the very high level of HMG2 in testis is not associated with proliferative activity as previously hypothesized.  相似文献   

5.
Extraction with HClO(4) provides an easy method for efficient enrichment of both histone H1 and HMG proteins from a variety of tissues. Usually, the histone and the HMG proteins are the most abundant components of the extracts, however, other proteins have frequently been observed but only seldom studied in more detail. Here we describe a study aimed at global characterization of HClO(4) extractable proteins from breast cancer cell lines. We report identification of 150 unique proteins by liquid chromatography tandem mass spectrometry including almost all major histone H1 variants and canonical members of the HMG protein families. In the extracts, diverse proteins with HMG-like amino acid composition were identified and their post-translational modifications were mapped. Importantly, those include multiple proteins known or supposed to be related to cell proliferation and cancer. Since purification of these proteins as well as low abundant variants of histone and HMG proteins is difficult due to their metabolic instability, characterization of these proteins from crude extracts can facilitate studies aimed at better understanding of their function.  相似文献   

6.
Non-histone chromosomal proteins HMG14 and HMG17 were isolated from chicken erythrocyte nuclei. The proteins were characterized by amino acid analysis and by N-terminal sequence analyses. Comparison with the corresponding data for the calf thymus proteins shows that 11% of the residues in HMG14 protein and 5% of the residues in HMG17 protein differ between the two species. Proteins HMG14 and HMG17 therefore do not appear to exhibit the evolutionary stability shown by the nucleosome core histones. Detailed evidence for the amino acid sequence data has been deposited as Supplementary Publication SUP 50101 (4 pages) at the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies may be obtained on the terms given in Biochem. 4. (1978) 169, 5.  相似文献   

7.
The low-molecular-mass high-mobility-group (HMG) proteins from young rat thymus nuclei were fractionated by high-performance liquid chromatography. Two proteins analogous to calf HMG14 and HMG17 were found together with a third major component HMGI similar to that found in HeLa cells [Lund et al. (1983) FEBS Lett. 152, 163-167]. HMGI has as amino acid composition similar to but distinct from HMG14 and HMG17. The three proteins form a family of proteins with HMG14 having an amino acid composition intermediate between HMG17 and HMGI. HMGI is present in proliferating fibroblasts and embryos but is present in very low levels in rat liver, a non-dividing tissue, supporting the notion that HMGI is required for proliferating cells. Fibroblasts transformed with avian sarcoma virus have high levels of HMGI and an additional band HMGI' but the presence of HMGI and HMGI' is not dependent on a functional src gene product.  相似文献   

8.
9.
The high mobility group or HMG proteins are nonhistone chromosomal proteins that have been found in relatively high amounts in nuclei of many tissues. A number of studies have shown that some of these proteins are preferentially associated with actively transcribed regions of the genome and may play a role in maintaining these regions in an active state. In this study, we undertook an investigation of the high mobility group proteins from the sea urchin, Stronglyocentrotus purpuratus. Initially the putative sea urchin HMGs were extracted from isolated nuclei of hatching blastula-stage embryos with 5% perchloric acid (PCA). The major proteins in this extract were characterized according to their electrophoretic mobility, amino acid composition, and association with isolated deoxyribonucleoprotein particles. The results indicate there is only one "major" sea urchin HMG protein, termed P2 in this paper. An estimate of the amount of P2 in relation to the inner histones, however, was low compared to what has been found for other HMG proteins. Of the other major 5% PCA-extractable proteins, one was identified as the cleavage stage H1. Another protein apparently resulted from H3 contamination in the 5% PCA extract, and the fourth major protein did not have all the characteristics of an HMG. In particular, it was not found associated with nucleosomal particles. The HMG proteins from other developmental stages were then examined. Five percent PCA extracts of nuclei from unfertilized eggs, 2-cell, 16-cell, hatching blastula, gastrula, and pluteus stages were analyzed on SDS- and acetic acid-urea gels. This analysis indicated that P2 exists in two different forms differing slightly in charge. The less basic form was found in the egg, 2-cell and 16-cell extracts. At the hatching blastula stage, both forms were present and by pluteus stage, the more basic form predominated. It appears that P2 is undergoing a developmental change from a less to more basic form. The presence of P2 in the 5% PCA extract of egg nuclei is proof that P2 does not initially appear sometime during embryogenesis but is already in the egg nucleus prior to fertilization.  相似文献   

10.
The effect of nonhistone protein HMG1 and HMG2 from pig thymus on the in vitro nucleosome assembly has been examined with plasmid pSV2-gpt DNA and pig thymus core histones in the presence of DNA topoisomerase I. In the absence of core histones, the direct binding of HMG proteins could induce negative superhelical turns in DNA at low ionic strength, but not at physiological ionic strength. The nucleosome formation in the higher histone-to-DNA ratios at physiological ionic strength was not facilitated by HMG proteins, in contrast to poly(L-glutamic acid). HMG proteins suppressed the nucleosome assembly in the moderate histone-to-DNA ratios, resulting in the reduction of fully supercoiled DNA topoisomers. The suppression by HMG proteins was not cancelled by poly(L-glutamic acid). These suggest that the highly acidic carboxy terminal of HMG proteins does not act as an assembly factor, and that the HMG proteins, on the contrary, suppress the nucleosome formation, probably by binding to DNA in a way to inhibit the assembly into core particles.  相似文献   

11.
The distribution of high mobility group (HMG) proteins has been studied in the liver, brain, kidney, lung, spleen, testis, thymus, and heart of young (19 weeks) and old (118 weeks) rats. These proteins were extracted with perchloric acid, fractionated by CM-Sephadex column chromatography, and analysed by acetic acid-urea polyacrylamide slab gel electrophoresis. As compared with that in young rats, the level of total HMG proteins in the old increased in liver and lung, decreased in thymus, heart, brain, and kidney, and remained unchanged in spleen and testis. In particular, the levels of HMG 1 and 2 were maximum in the thymus of young rats and dropped drastically in the old. However, the amount of HMG 17 was high in the spleen of both young and old rats, though it was comparatively higher in the former. Such age-dependent variation in the level of HMG proteins of different tissues denotes indirectly differences in the functional state of chromatin, and in growth and activity of cells, during aging.  相似文献   

12.
Chromosomal high-mobility-group (HMG) proteins have been examined as substrates for calcium/phospholipid-dependent protein kinase C. Protein kinase C from rat brain phosphorylated efficiently both HMG 14 and HMG 17 derived from calf thymus and the reactions were calcium/phospholipid-dependent. About 1 mol of 32P was incorporated per mol of HMG 14 and HMG 17. Phosphopeptide mapping suggested that the same major site was phosphorylated in both proteins at serine. The apparent Km values for HMG 14 and HMG 17 were about 5 μM. HMG 14, HMG 17 and the five histone H1 subtypes prepared from rat thymus, liver and spleen were phosphorylated by the kinase. HMG 14 and HMG 17 from transformed human lymphoblasts (Wi-L2) were also phosphorylated in a calcium/phospholipid-dependent manner. HMG 1 and HMG 2 from the tissues examined were found to be poor substrates for the kinase.  相似文献   

13.
14.
High-mobility group chromosomal proteins of wheat   总被引:4,自引:0,他引:4  
Four proteins have been extracted from purified chromatin of wheat embryos with 0.35 M NaCl. These proteins are soluble in 2% (w/v) trichloroacetic acid and thus meet the original operational requirements to be classified as "high-mobility group" (HMG) chromosomal proteins. The proteins have been characterized by one- and two-dimensional electrophoresis, amino acid analysis, and peptide mapping. Three of the proteins (HMGb, c, and d) share the mammalian HMG characteristic of being rich in both acidic and basic amino acid residues. Unlike their putative mammalian counterparts, these plant HMG proteins contain less than 7 mol % proline. The fourth wheat protein (HMGa) is rich in both proline and in basic amino acid residues. This wheat protein, however, contains only about half the proportion of acidic residues found in mammalian HMG proteins--a characteristic also found in the trout testis HMG protein, H6. Comparative peptide maps show that none of the wheat HMG proteins are degradation products of other HMG proteins or the H1 histones. The peptide maps have not, however, been useful in establishing homologies with mammalian HMG proteins. Wheat HMG proteins are released from DNase I-treated nuclei and co-isolate with micrococcal nuclease-sensitive chromatin fractions. Similar observations concerning the HMG proteins of vertebrate animals have been considered consistent with a role for these proteins as structural components of actively transcribed chromatin.  相似文献   

15.
Liver slices from young (20 weeks) and old (117 weeks) rats were incubated with [methyl-14C]methionine in the absence or presence of spermine or sodium butyrate. The high-mobility-group (HMG) non-histone proteins were extracted from the liver with perchloric acid and separated by acid-urea polyacrylamide slab gel electrophoresis. Methylation of HMG proteins decreased drastically in old rats. Whereas spermine inhibited the methylation of total HMG proteins in young rats, it had no effect in old age. On the contrary, sodium butyrate did not change the incorporation of methyl groups into total HMG proteins of young rats, but inhibited that of old rats. Particularly, the incorporation of [14C]methyl groups into HMG 2 was enhanced but into other HMGs it was reduced by both effectors in young and old age. Such discrepancies in the methylation of HMG proteins and their differential modulation by spermine and butyrate might affect the higher-order organization of chromatin and consequently destabilize the expression of genes during aging.  相似文献   

16.
The four major high mobility group proteins HMG 1, 2, 14 and 17, HMG 19B and histone H1(0) were identified in the ram testis by their extraction and solubility characteristics and by their electrophoretic mobilities. HMG 14 and 17 were isolated by chromatography and amino acid analysis revealed that they were similar to their calf thymus analogues. A protein, named 2R and co-extracted with HMG 14, was also purified and analysed. Electrophoretic analyses of the proteins extracted by 0.75 M perchloric acid (PCA) or by 0.35 M NaCl from round and non-round spermatids, separated by centrifugal elutriation, showed that the four major HMG proteins disappear from nuclei in the oldest round spermatids, at the time the nuclear content of protein 2R and histone H1(0) increases in spermatids. Ubiquitin and HMG 19B were present in the round and elongating spermatids, but not in elongated spermatids which contained only protamine. The relation was considered between several protein changes and genetic inactivation and structural reorganization of the spermatid chromatin.  相似文献   

17.
The nuclear HMG1 proteins of higher plants are small non-histone proteins that have DNA-bending activity and are considered architectural factors in chromatin. The occurrence of the chromosomal HMG1 proteins, HMGa, HMGc1/2 and HMGd, in various maize tissues was analyzed, and in the course of these studies a novel HMG1 protein, now termed HMGe, was identified. Purification and characterization of HMGe (Mr 13 655) and cloning of the corresponding cDNA revealed that it displays only moderate similarity to other members of the plant HMG1 protein family. The five maize HMG1 proteins could be detected in kernels, leaves, roots and suspension culture cells, indicating that these proteins can be expressed simultaneously and occur relatively ubiquitously. However, the various HMG1 proteins are present in significantly different quantities with HMGa and HMGc1/2 being the most abundant HMG1 proteins in all tissues tested. Furthermore, the relative amounts of the various HMG1 proteins differ among the tissues examined. The HMG1 proteins were found to be relatively stable proteins in vivo, with HMGc1/2, HMGd and HMGe having a half-life of ca. 50 h in cultured cells, while the half-life of the HMGa protein is ca. 65 h. Collectively, these findings are compatible with the concept that the different plant HMG1 proteins might act as general architectural proteins in concert with site-specific factors in the assembly of certain nucleoprotein structures involved in various biological processes.  相似文献   

18.
19.
The quantitative tissue specificity of the high mobility group (HMG) chromosomal proteins was investigated. Perchloric acid (PCA) extracts of four different chicken tissues and erythrocytes contained three proteins which comigrated on NaDodSO4-polyacrylamide gels with the HMG's 1,2, and E from erythrocyte nuclei. These three HMG's from embryonic skeletal muscle and erythrocytes also comigrated on two-dimensional gels, employing an acid-urea system in the first dimension and an NaDodSO4 system in the second. Interpretation of the two-dimensional gels suggested that the two low molecular weight proteins of this triplet arose from the HMG 2 band of the acid-urea gels. These have been designated HMG 2A and HMG 2B. Three proteins of similar molecular weights were also found in the PCA extracts of calf thymus. They were arranged in a similar but not identical pattern on two-dimensional gels. Thus, these three HMG's appear to be neither tissue nor species specific. In addition, the 2.0% PCA extracts of all chicken tissues examined contain a 38 000-dalton (38K) nuclear protein which coisolates with the HMG's. These four proteins are found in different relative amounts in each of the four chicken tissues and erythrocytes. They are found in the same relative amounts, however, in embryonic skeletal muscles from different chicken strains with widely different highly repetitive sequence content, suggesting that none of these individual proteins is selectively localized to constitutive heterochromatin. The quantitative tissue specificity of the HMG's and the 38K protein, however, suggests that they may participate in regulating cell-specific gene expression.  相似文献   

20.
Chromatography and characterization of the proteins extracted by 5% (w/v) HClO4 from rainbow-trout (Salmo gairdnerii) liver and testis show that the two tissues present a characteristically different spectrum of high-mobility-group (HMG) proteins. A variant subfraction of HMG C is found in liver, but is not detectable in testis, where even the main fraction of HMG C is present in only very low quantity. A protein, F, which appears to be related to protein H6 has similarly been isolated only from liver and not from testis. Quantification of the HMG proteins in total 5%-HClO4 extracts of trout liver and testis nuclei shows that, in relation to DNA, levels of HMG T1 and T2, and D are more than 2-fold, and C, 20-fold higher in liver than in testis. However, these differences do not result merely from the sequential withdrawal of HMG proteins at the same time that histones are replaced by protamines in the developing spermatid, since in testis, at some stages of maturation, levels of H6 are almost 2-fold higher than in liver. The implications of these findings for the function of HMG proteins are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号