首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study we investigated iron deposition in the hippocampus CA1 area and the corpus striatum pars dorsolateralis in a rat model of cerebral ischemia and ischemic tolerance. Forebrain ischemia was induced by four-vessel occlusion for 5-min as ischemic preconditioning. Two days after the preconditioning or the sham operation, a second ischemia was induced for 20-min. With the use of iron histochemistry, regional changes were examined after 2 to 8 weeks of recirculation following the 20-min ischemia with or without preconditioning. Perl's reaction with DAB intensification demonstrated iron deposits in the CA1 area and in the corpus striatum pars dorsolateralis after 2 weeks of recirculation. These iron deposits gradually increased in density and formed clusters by the 8th week. When the rats were exposed to 5-min ischemia 2 days before lethal 20-min ischemia, the deposition of iron in the CA1 region of the hippocampus and also in the corpus striatum pars dorsolateralis was decreased and produced a minimal number of iron-containing cells between the second and the 8th week of recirculation. Preconditioning with sublethal 5-min ischemia followed by 2 days of reperfusion also prevented the neuronal destruction of the hippocampal CA1 region induced by 20-min ischemia.  相似文献   

2.
We investigated the distribution and time course of expression of two subtypes of prostaglandin E2 (PGE2) receptors, EP2 and EP4, in a rat model of cerebral ischemia and ischemic tolerance. Adult male Sprague-Dawley rats were subjected to either lethal global ischemia (10 min) with or without sublethal ischemic preconditioning (3 min), or ischemia only (3 min). A short 3-min cerebral ischemia and a 3-min ischemia followed by a second lethal ischemia enhanced the expression of EP2 and EP4 receptors in CA1 pyramidal neurons of the hippocampus. In tolerance-acquired CA1 neurons, the immunoreactivities of EP2 and EP4 were upregulated after 4 h and 12 h, respectively. The immunoreactivities were most prominent at 3 days and were sustained for at least 14 days, consistent with results of immunoblotting experiments. However, immunoreactivities for these PGE2 receptors increased in reactive glial cells in the vulnerable CA1 and hilar regions of rats subjected to lethal ischemia without ischemic preconditioning. Most of the EP2 immunoreactivity occurred in microglial cells and some astrocytes, whereas increased immunoreactivity for EP4 was found only in astrocytes. These data suggest that ischemia and the induction of ischemia tolerance have different regulatory effects on the expression of EP2 and EP4 receptors. Moreover, PGE2 may exert its unique pathophysiological functions in relation to delayed neuronal death and ischemic tolerance induction in the rat hippocampus via specific PGE2 receptors.This research was supported by a grant (M103KV010019 04K2201 01930) from the Brain Research Center of the 21st Century Frontier Research Program funded by the Ministry of Science and Technology of the Republic of Korea.  相似文献   

3.
Several studies showed that the up-regulation of glial glutamate transporter-1 (GLT-1) participates in the acquisition of brain ischemic tolerance induced by cerebral ischemic preconditioning or ceftriaxone pretreatment in rats. To explore whether GLT-1 plays a role in the acquisition of brain ischemic tolerance induced by intermittent hypobaric hypoxia (IH) preconditioning (mimicking 5,000?m high-altitude, 6?h per day, once daily for 28?days), immunohistochemistry and western blot were used to observe the changes in the expression of GLT-1 protein in hippocampal CA1 subfield during the induction of brain ischemic tolerance by IH preconditioning, and the effect of dihydrokainate (DHK), an inhibitor of GLT-1, on the acquisition of brain ischemic tolerance in rats. The basal expression of GLT-1 protein in hippocampal CA1 subfield was significantly up-regulated by IH preconditioning, and at the same time astrocytes were activated by IH preconditioning, which appeared normal soma and aplenty slender processes. The GLT-1 expression was decreased at 7?days after 8-min global brain ischemia. When the rats were pretreated with the IH preconditioning before the global brain ischemia, the down-regulation of GLT-1 protein was prevented clearly. Neuropathological evaluation by thionin staining showed that 200?nmol DHK blocked the protective role of IH preconditioning against delayed neuronal death induced normally by 8-min global brain ischemia. Taken together, the up-regulation of GLT-1 protein participates in the acquisition of brain ischemic tolerance induced by IH preconditioning in rats.  相似文献   

4.
1. We investigated the immunohistochemical alterations of BDNF, NGF, HSP 70 and ubiquitin in the hippocampus 1 h to 14 days after transient cerebral ischemia in gerbils. We also examined the effect of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor pitavastatin against the changes of BDNF, NGF, HSP 70 and ubiquitin in the hippocampus after cerebral ischemia in the hippocampus after ischemia. 2. The transient cerebral ischemia was carried out by clamping the carotid arteries with aneurismal clips for 5 min. 3. In the present study, the alteration of HSP 70 and ubiquitin immunoreactivity in the hippocampal CA1 sector was more pronounced than that of BDNF and NGF immunoreactivity after transient cerebral ischemia. In double-labeled immunostainings, BDNF, NGF and ubiquitin immunostaining was observed both in GFAP-positive astrocytes and MRF-1-positive microglia in the hippocampal CA1 sector after ischemia. Furthermore, prophylactic treatment with pitavastatin prevented the damage of neurons with neurotrophic factor and stress proteins in the hippocampal CA1 sector after ischemia. 4. These findings suggest that the expression of stress protein including HSP 70 and ubiquitin may play a key role in the protection against the hippocampal CA1 neuronal damage after transient cerebral ischemia in comparison with the expression of neurotrophic factor such as BDNF and NGF. The present findings also suggest that the glial BDNF, NGF and ubiquitin may play some role for helping surviving neurons after ischemia. Furthermore, our present study indicates that prophylactic treatment with pitavastatin can prevent the damage of neurons with neurotrophic factor and stress proteins in the hippocampal CA1 sector after transient cerebral ischemia. Thus our study provides further valuable information for the pathogenesis after transient cerebral ischemia. The first two authors contributed equally  相似文献   

5.
Although ischemic preconditioning of the heart and brain is a well-documented neuroprotective phenomenon, the mechanism underlying the increased resistance to severe ischemia induced by a preceding mild ischemic exposure remains unclear. In this study we have determined the effect of ischemic preconditioning on ischemia/reperfusion-associated translation inhibition in the neocortex and hippocampus of the rat. We studied the effect of the duration on the sublethal ischemic episode (3, 4, 5 or 8 min), as well as the amount of time elapsed between sublethal and lethal ischemia on the cell death 7 days after the last ischemic episode. In addition, the rate of protein synthesis in vitro and expression of the 72-kD heat shock protein (hsp) were determined under the different experimental conditions. Our results suggest that two different mechanisms are essential for the acquisition of ischemic tolerance, at least in the CA1 sector of hippocampus. The first mechanism implies a highly significant reduction in translation inhibition after lethal ischemia, especially at an early time of reperfusion, in both vulnerable and nonvulnerable neurons. For the acquisition of full tolerance, a second mechanism, highly dependent on the time interval between preconditioning (sublethal ischemia) and lethal ischemia, is absolutely necessary; this second mechanism involves synthesis of protective proteins, which prevent the delayed death of vulnerable neurons.  相似文献   

6.
Kitagawa K 《The FEBS journal》2007,274(13):3210-3217
Cerebral ischemia triggers robust phosphorylation of cAMP response element-binding protein (CREB) and CRE-mediated gene expression in neurons. Glutamate receptor activation and subsequent calcium influx may activate CREB shortly after ischemia. CREB activation leads to expression of genes encoding neuroprotective molecules, such as the antiapoptotic protein Bcl-2, and contributes to survival of neurons after ischemic insult. Recent studies have suggested that CREB may be involved in acquisition of ischemic tolerance, a phenomenon that occurs after sublethal ischemic stress. CREB activation is also involved in the survival of newborn neurons in the dentate gyrus of the hippocampus after ischemia. Therefore, CREB-related therapeutics may be promising for brain protection and endogenous neurogenesis and could promote functional recovery in ischemic stroke patients. This minireview summarizes our current understanding for the role of CREB in regulating CRE-mediated gene expression during cerebral ischemia.  相似文献   

7.
Abstract: The effect of pentobarbital on the induction of heat shock protein (HSP) 70 and heat shock cognate protein (HSC) 70 mRNAs after transient global ischemia in gerbil brains was investigated by in situ hybridization using cloned cDNA probes selective for each mRNA species. In sham control brains, HSP70 mRNA was scarcely present, whereas HSC70 mRNA was present in most cell populations. After a 5-min occlusion of bilateral common carotid arteries, HSP70 and HSC70 mRNAs were induced together in several cells and were especially dense in hippocampal dentate granule cells at 3 h, but the strong hybridization of the mRNAs continued only in hippocampal CA1 cells by 2 days. At 7 days after the ischemia, CA1 neuronal cell death was apparent, and the HSP70 mRNA disappeared and HSC70 mRNA content returned to the sham level, except for in the CA1 cells. Pretreatment with pentobarbital (40 mg/kg, i.p.) greatly reduced or inhibited the induction of HSP70 and HSC70 mRNAs at both early (3-h) and late (2-day) phases after ischemia. The drug also prevented CA1 cell death at 7 days along with the maintenance of expression of HSC70 mRNA at the sham control level. Hypothermic effects of pentobarbital were noted at 30 and 60 min after the reperfusion, whereas at 2 h there was no statistical significance between the control and drug-treated groups. The great reduction of HSP70 and HSC70 mRNA induction at both early and late phases after ischemia suggests that pentobarbital reduces intra- and/or postischemic stress and may protect CA1 cells from ischemic damage. These effects of the drug may be mainly due to its specific action rather than its hypothermic effects.  相似文献   

8.
1. The present study was designed to examine the regional expression of HSP72/73 protein after a 7.5-min period of cerebral ischemia and to compare the distribution of HSP neurons with the localization of irreversible neuronal degeneration as analyzed by silver impregnation technique.2. During 6–24 hr after cerebral ischemia clear-cut neuronal argyrophilia developed in several brain regions including the hippocampal hilus, nucleus reticularis thalami, and colliculi inferiores. With the exception of the hippocampal hilus, the structures which showed silver impregnability were HSP72 negative at 6–24 hr.3. Despite the clear HSP72 expression seen in hippocampal CA1 neurons, a significant loss of these neurons was seen at 7 days after ischemia.4. These data show that in some structures the presence of HSP72 is indicative of higher resistance of these neurons to ischemia-induced degeneration, however, the process of delayed neuronal degeneration appears to be independent of the accelerated synthesis of HSP72 seen during the early period of reflow.  相似文献   

9.
In ischemic tolerance experiment, when we applied 5-min ischemia 2 days before 30-min ischemia, we achieved a remarkable (95.8%) survival of CA1 neurons. However, when we applied 5-min ischemia itself, without following lethal ischemia, we found out 45.8% degeneration of neurons in the CA1. This means that salvage of 40% CA1 neurons from postischemic degeneration was initiated by the second pathophysiological stress. These findings encouraged us to hypothesize that the second pathophysiological stress used 48 h after lethal ischemia can be efficient in prevention of delayed neuronal death. Our results demonstrate that whereas 8 min of lethal ischemia destroys 49.9% of CAI neurons, 10 min of ischemia destroys 71.6% of CA1 neurons, three different techniques of the second pathophysiological stress are able to protect against both: CA1 damage as well as spatial learning/memory dysfunction. Bolus of norepinephrine (3.1 μmol/kg i.p.) used two days after 8 min ischemia saved 94.2%, 6 min ischemia applied 2 days after 10 min ischemia rescued 89.9%, and an injection of 3-nitropropionic acid (20 mg/kg i.p.) applied two days after 10 min ischemia protected 77.5% of CA1 neurons. Thus, the second pathophysiological stress, if applied at a suitable time after lethal ischemia, represents a significant therapeutic window to opportunity for salvaging neurons in the hippocampal CA1 region against delayed neuronal death.  相似文献   

10.
Xuan A  Long D  Li J  Ji W  Hong L  Zhang M  Zhang W 《Life sciences》2012,90(11-12):463-468
AimsA growing number of studies demonstrate that valproic acid (VPA), an anti-convulsant and mood-stabilizing drug, is neuroprotective against various insults. This study investigated whether treatment of ischemic stroke with VPA ameliorated hippocampal cell death and cognitive deficits. Possible mechanisms of action were also investigated.Main methodsGlobal cerebral ischemia was induced to mimic ischemia/reperfusion (I/R) damage. The pyramidal cells within the CA1 field were stained with cresyl violet. Cognitive ability was measured 7 days after I/R using a Morris water maze. The anti-inflammatory effects of VPA on microglia were also investigated by immunohistochemistry. Pro-inflammatory cytokine production was determined using enzyme-linked immunosorbent assays (ELISA). Western blot analysis was performed to determine the levels of acetylated H3, H4 and heat shock protein 70 (HSP70) in extracts from the ischemic hippocampus.Key findingsVPA significantly increased the density of neurons that survived in the CA1 region of the hippocampus on the 7th day after transient global ischemia. VPA ameliorated severe deficiencies in spatial cognitive performance induced by transient global ischemia. Post-insult treatment with VPA also dramatically suppressed the activation of microglia but not astrocytes, reduced the number of microglia, and inhibited other inflammatory markers in the ischemic brain. VPA treatment resulted in a significant increase in levels of acetylated histones H3 and H4 as well as HSP70 in the hippocampus.SignificanceOur results indicated that VPA protected against hippocampal cell loss and cognitive deficits. Treatment with VPA following cerebral ischemia probably involves multiple mechanisms of action, including inhibition of ischemia-induced cerebral inflammation, inhibition of histone deacetylase (HDAC) and induction of HSP.  相似文献   

11.
Ischemic tolerance, the phenomenon where a sublethal ischemic preconditioning protects the brain against a subsequent lethal ischemia, has been widely studied. Studies have been done on cerebral blood flow levels prior to the lethal ischemia, but the hemodynamic pattern after global ischemia with ischemic preconditioning has not been reported. Sequential changes in regional cerebral blood flow (rCBF) in gerbil hippocampus after 5 min global ischemia with or without 2 min ischemic preconditioning were studied to determine if ischemic preconditioning affects rCBF. Four different treatments were given: (1) sham-operated, (2) 2 min ischemia, (3) non-preconditioned, and (4) preconditioned. Groups (1) and (2) (both groups n = 5) were given a 24-h recovery period and the rCBF was measured for baseline values. 24 h after sham-operation (3) and 2 min ischemia (4), gerbils were subjected to 5 min ischemia followed by 1 h, 6 h, 1-day or 7-day reperfusion periods (all groups n = 5). Although no regional difference was observed in the recovery pattern of rCBF, the values of rCBF were significantly higher in the preconditioned group throughout whole brain regions including hippocampus. These results indicate that ischemic preconditioning facilitated the recovery of rCBF after 5 min global ischemia. It needs further study to determine whether the protecting effects of preconditioning relate to the early recovery of rCBF or not. However, our results could be interpreted that the early recovery of rCBF may lead to benefits for cell survival in the CA1 neuron, probably facilitating other protecting mechanisms.  相似文献   

12.
肢体缺血预处理减轻大鼠海马缺血/再灌注损伤   总被引:10,自引:0,他引:10  
目的:探讨肢体缺血预处理(LIP)对大鼠全脑缺血/再灌注损伤的影响.方法: 36只大鼠椎动脉凝闭后随机分为假手术(Control)组、脑缺血组、肢体缺血组、LIP 0 d组(LIP后即刻行脑缺血)、LIP 1 d组(LIP后1 d行脑缺血)和LIP 2 d组(LIP后2 d行脑缺血).重复夹闭大鼠双侧股动脉3次(每次10 min,间隔10 min)作为LIP,夹闭颈总动脉进行全脑缺血8 min后再灌注.硫堇染色观察海马CA1区组织学分级及锥体神经元密度以判断海马损伤程度.结果:脑缺血组海马CA1区锥体神经元损伤严重,与Control组比较,组织学分级明显升高,神经元密度明显降低(P<0.01).LIP 0 d组海马CA1区神经元损伤较脑缺血组明显减轻,组织学分级明显降低,神经元密度明显升高(P<0.01).而LIP 1 d组和LIP 2 d组大鼠海马CA1区锥体细胞缺失较多,仍有明显的组织损伤.结论:LIP可减轻随后立即发生的脑缺血/再灌注损伤,但对间隔1 d后的脑缺血/再灌注损伤无显著对抗作用.  相似文献   

13.
Zhao HG  Li WB  Sun XC  Li QJ  Ai J  Li DL 《中国应用生理学杂志》2007,23(1):19-23,I0002
目的:探讨神经途径在肢体缺血预处理(limbi schemic preconditioning,LIP)抗脑缺血/再灌注损伤中的作用。方法:脑缺血采用四血管闭塞模型,重复短暂夹闭放松大鼠双侧股动脉3次作为LIP。将凝闭椎动脉的大鼠随机分为sham组、脑缺血组、股神经切断+脑缺血组、LIP+脑缺血组、股神经切断+LIP+脑缺血组。于Sham手术和脑缺血后7d处死大鼠,硫堇染色观察海马CA1区锥体神经元迟发性死亡的变化。于Sham手术和脑缺血后6h心脏灌注固定大鼠,免疫组化法测定海马CAI区c-Fos表达的变化。结果:硫堇染色结果显示,与sham组比较。脑缺血组和股神经切断+脑缺血组大鼠海马CAI区均有明显组织损伤。LIP+脑缺血组CAI区无明显细胞缺失,神经元密度明显高于脑缺血组(P〈0.01)。而股神经切断+LIP+脑缺血组大鼠海马CA1区明显损伤,锥体细胞缺失较多,与LIP+脑缺血组组比较,神经元密度显著降低(P〈O.01),提示LIP前切断双侧股神经取消了LIP抗脑缺血/再灌注损伤作用。c—Fos免疫组化染色结果显示,Sham组海马CAI区未见明显的c-Fos蛋白表达。脑缺血组海马CAI区偶见c—Fm的阳性表达。LIP+脑缺血组c—Fos表达增强,数量增加,与Sham组和脑缺血组比较。c-Fos阳性细胞数和光密度均明显升高(P〈0.01)。而股神经切断+LIP+脑缺血组c-Fos表达明显减少,仅见少量弱阳性e-Fos表达。结论:LIP可通过神经途径发挥抗脑缺血/再灌注损伤作用,而LIP诱导c—Fos表达增加可能是LIP诱导脑缺血耐受神经途径的一个环节。  相似文献   

14.
We investigate the effect of rosiglitazone, a ligand for peroxisome proliferator-activated receptor-gamma (PPARgamma) with anti-inflammatory and anti-oxidative actions, on hippocampal injury and its roles in mitochondrial uncoupling protein 2 (UCP2) expression caused by transient global ischemia (TGI) in rats. Increased UCP2 expression was observed in mitochondria of hippocampal CA1 2-24h after TGI/reperfusion, with maximal expression levels at 6-18h. Administration of rosiglitazone to hippocampus 30min prior to the onset of TGI further enhanced mitochondrial UCP2 expression 2-6h following TGI/reperfusion. Rats subjected to TGI/reperfusion displayed a significant increase in lipid peroxidation, based on increased malondialdehyde (MDA) levels, in hippocampal CA1 mitochondria 2-6 h after reperfusion. Rosiglitazone significantly attenuated TGI/reperfusion-induced lipid peroxidation and suppressed hippocampal CA1 neuronal death based on the surviving neuronal counts. In conclusion, our results provide correlative evidence for the "PPARgamma-->UCP2-->neuroprotection" cascade in ischemic brain injury.  相似文献   

15.
Bax is a pro-apoptotic Bcl-2 family protein that regulates programmed cell death through homodimerization and through heterodimerization with Bcl-2. Bax alpha is encoded by six exons and undergoes alternative splicing. Bax kappa, a splice variant of Bax with conserved BH1, BH2 and BH3 binding domains and a C-terminal transmembrane domain (TM), but with an extra 446-bp insert between exons 1 and 2 leading to loss of an N-terminal ART domain, was identified from an ischemic rat brain cDNA library. Expression of Bax kappa mRNA and protein was up-regulated in hippocampus after cerebral ischemic injury. The increased Bax kappa mRNA was distributed mainly in selectively vulnerable hippocampal CA1 neurons that are destined to die after global ischemia. Overexpression of Bax kappa protein in HN33 mouse hippocampal neuronal cells induced cell death, which was partially abrogated by co-overexpression of Bcl-2. Moreover, co-overexpression of Bax kappa and Bax alpha increased HN33 cell death. The results suggest that the Bax kappa may have a role in ischemic neuronal death.  相似文献   

16.
We investigated the relative contribution of COX-1 and/or COX-2 to oxidative damage, prostaglandin E2 (PGE2) production and hippocampal CA1 neuronal loss in a model of 5 min transient global cerebral ischemia in gerbils. Our results revealed a biphasic and significant increase in PGE2 levels after 2 and 24-48 h of reperfusion. The late increase in PGE2 levels (24 h) was more potently reduced by the highly selective COX-2 inhibitor rofecoxib (20 mg/kg) relative to the COX-1 inhibitor valeryl salicylate (20 mg/kg). The delayed rise in COX catalytic activity preceded the onset of histopathological changes in the CA1 subfield of the hippocampus. Post-ischemia treatment with rofecoxib (starting 6 h after restoration of blood flow) significantly reduced measures of oxidative damage (glutathione depletion and lipid peroxidation) seen at 48 h after the initial ischemic episode, indicating that the late increase in COX-2 activity is involved in the delayed occurrence of oxidative damage in the hippocampus after global ischemia. Interestingly, either selective inhibition of COX-2 with rofecoxib or inhibition of COX-1 with valeryl salicylate significantly increased the number of healthy neurons in the hippocampal CA1 sector even when the treatment began 6 h after ischemia. These results provide the first evidence that both COX isoforms are involved in the progression of neuronal damage following global cerebral ischemia, and have important implications for the potential therapeutic use of COX inhibitors in cerebral ischemia.  相似文献   

17.
In this study we have determined the metabolic half-life, protein synthesis and expression of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor subunit GluR2 in the hippocampus of the living rat. Synthesized proteins were pulse labeled in vivo using intracarotid infusion or intrahippocampal injection of L-[(35)S] labeled amino acids, and the GluR2 protein immunoprecipitated in order to measure the tracer incorporation at different survival time-points. A limited time course study suggested a metabolic half-life of 144 and 108 h in the CA1 region in control animals following carotid artery infusion and intrahippocampal injection, respectively. Twenty-four hours following a moderate ischemic insult, GluR2 protein synthesis was decreased significantly in both the CA1 and DG/CA3 region, whereas the total protein synthesis was decreased significantly only in the CA1 region. Twenty-four hours following ischemic tolerance induction, a significant increase in GluR2 expression was found in the CA1 region using quantitative Western blotting, while no change was found in the dentate gyrus (DG)/CA3 or in expression of GluR1 protein. Data from labeling experiments did not reveal the reason for the increased amount of GluR2 in the CA1 region of the tolerant animals. This study shows that following global ischemia the GluR2 synthesis is decreased both in the CA1 and DG/CA3, which, together with the found GluR2 metabolic half-life, contradict a selective loss of GluR2 protein as a triggering mechanism for the delayed CA1 pyramidal cell death. Twenty-four hours following tolerance induction, we found an increased GluR2 expression in the CA1 region, suggesting that GluR2 plays a role in the acquisition of ischemic tolerance. Our study suggests the ability of neurons to regulate the AMPA receptor subunit expression through changes in protein synthesis and stability.  相似文献   

18.
Here we examined the effects of ischemia preconditioning and ketamine, an NMDA receptor antagonist, on the activation and its nucleus translocation of ERK5 in hippocampal CA1 region. Our results showed ERK5 was not activated in rat hippocampus CA1 region. But in cytosol extracts preconditioned with 3 min of sublethal ischaemia, ERK5 activation was enhanced significantly, with two peaks occurring at 3 hr and 3 days, respectively. This activation returned to base level 3 days later. The results lead us to conclude that preconditioning increased the activations of ERK5 during reperfusion after lethal ischemia through NMDA receptor. Preconditioning increased the activation and nucleus translocation of ERK5 during reperfusion after lethal ischemia through the NMDA receptor. These findings might provide some clues to understanding the mechanism underlying ischemia tolerance and to finding clinical therapies for stroke using the endogenous neuroprotection.  相似文献   

19.
一氧化氮合酶抑制剂L-NAME对大鼠脑缺血耐受诱导的影响   总被引:6,自引:0,他引:6  
Liu HQ  Li WB  Feng RF  Li QJ  Chen XL  Zhou AM  Zhao HG  Ai J 《生理学报》2003,55(2):219-224
采用大鼠四血管闭塞全脑缺血耐受模型和脑组织切片形态学方法,观察应用一氧化氮合酶(NOS)抑制剂L—NAME对大鼠海马CAl区脑缺血耐受(BIT)诱导的影响,在整体水平探讨一氧化氮(NO)在BIT诱导中的作用。54只Wistar大鼠凝闭双侧推动脉后分为6组:(1)假手术组(n=6);分离双侧颈总动脉,但不阻断脑血流;(2)损伤性缺血组(n=6):全脑缺血10min;(3)预缺血 损伤性缺血组(n=6):脑缺血预处理(CIP)3min,再灌注72h后行全脑缺血10min;(4)L—NAME组;分别于CIP前1h和后1、12及36h腹腔注射L—NAME(5mg/kg),每个时间点6只动物,其余步骤同预缺血 损伤性缺血组;(5)L—NAME L—精氨酸组(n=6):于CIP前1h腹腔注射L—NAME(5mg/kg)和L—精氨酸(300mg/kg),其它步骤同L—NAME组;(6)L—NAME 损伤性缺血组(n=6):于腹腔注射L—NAME(5mg/kg)72h后行全脑缺血10min。实验结果表明,(1)单纯10min全脑缺血可使海马CAl区组织学分级增加(表明损伤加重),神经元密度降低(P<0.01);(2)预缺血 损伤性缺血组的海马CAl区组织学分级、神经元密度与假手术组相比,无显著性差别(P>0.05);(3)L—NAME组中,应用L—NAME后海马CAl区组织学分级增加,神经元密度降低,与预缺血 损伤性缺血组相比有显著性差异(P<0.05),表明L—NAME可阻断CIP对神经元的保护作用;(4)L—NAME L—精氨酸组与L—NAME组相比,海马CAl区组织损伤明显减轻(P<0.05),但与预缺血 损伤性缺血组相比仍有显著性差别(P<0.05),提示L-精氨酸可部分逆转L—NAME的作用;(5)L—NAME 损伤性缺血组的组织学表现与损伤性缺血组相同(P>0.05)。这些结果表明,在整体情况下N0参与BIT的诱导。与CIP前1h及后1、12h给予L—NAME组相比,CIP后36h给予L—NAME对CIP保护作用的阻断效应明显减弱,提示N0在CIP后较早阶段即开始参与BIT的诱导。  相似文献   

20.
Gene expression plays an important role in determining the fate of neurons after ischemia. To identify additional genes that promote survival or execute programmed cell death in ischemic neurons, a subtractive cDNA library was constructed from hippocampus of rats subjected to global ischemia. With use of a differential screening technique, a cDNA was identified that was up-regulated after ischemia. The cDNA was found to have high homology with human cyclin H at both the nucleotide level (89%) and the amino acid level (93%). Northern blotting detected cyclin H mRNA in nonischemic and ischemic brains. In situ hybridization studies revealed that cyclin H message was found in hippocampal neurons in nonischemic brain. After ischemia, expression was increased primarily in the dentate gyrus and CA3 regions of hippocampus. Expression of cyclin H protein, detected by western blotting of hippocampal tissue, was increased after global ischemia, but expression of cyclins B1 and D1 and other related cell cycle genes (Cdk7 and Cdc2) was not increased. Cyclin H immunoreactivity was found exclusively within neurons. After ischemia, there was increased immunoreactivity within neurons in dentate gyrus, CA3, and cortex. Thus, cyclin H is expressed in normal postmitotic neurons and expression is increased in neurons that are ischemic yet survive. These results suggest that cyclin H may have functions in neurons other than cell cycle regulation, including other known functions such as DNA repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号