首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Russell JB 《Anaerobe》2005,11(3):177-184
Ruminal lysine degradation is a wasteful process that deprives the animal of an essential amino acid. Mixed ruminal bacteria did not deaminate lysine (50 mM) at a rapid rate, but lysine degrading bacteria could be enriched if Trypticase (5 mg/mL) was also added. Lysine degrading isolates produced acetate, butyrate and ammonia, were non-motile, stained Gram-negative and could also utilize lactate, glucose, maltose or galactose as an energy source for growth. Lactate was converted to acetate and propionate, and 16S rDNA indicated that their closest relatives were Fusobacterium necrophorum. Growing cultures produced ammonia at rates as high as 2400 nmol/mg protein/mL/min. Washed cell suspensions took up (14)C lysine (3 microM) at an initial rate of 6 nmol/mg protein/min, and glucose addition did not affect the transport. Cells washed aerobically had the same transport rate as those handled anaerobically, but only if the transport buffer contained sodium. The affinity constant for sodium was 8 mM, and sodium could not be replaced by lithium. Cells treated with the sodium/proton antiporter, monensin (5 microM), did not take up lysine, but a protonophore that inhibited growth (tetrachlorosalicylanilide, 10 microM) had no effect. An artificial membrane potential created by potassium diffusion did not increase the rate of lysine transport, and an Eadie-Hofstee plot indicated the transport rate was directly proportional to the lysine concentration. Decreasing the pH from 6.7 to 5.5 caused an 85% decrease in the rate of lysine transport. The addition of F. necrophorum JB2 (130 microg protein/mL) to mixed ruminal bacteria increased lysine degradation 10-fold, but only if the pH was 6.7 and monensin was not present. Further work will be needed to see if dietary lysine enriches fusobacteria in vivo.  相似文献   

2.
More monensin-sensitive, ammonia-producing bacteria from the rumen   总被引:4,自引:0,他引:4  
Two monensin-sensitive bacteria which utilized carbohydrates poorly and grew rapidly on amino acids were isolated from the bovine rumen. The short rods (strain SR) fermented arginine, serine, lysine, glutamine, and threonine rapidly (greater than 158 nmol/mg of protein per h) and grew faster on casein digest containing short peptides than on free amino acids ().34 versus 0.29 h(-1)). Gelatin hydrolysate, an amino acid source containing an abundance of long peptides, was unable to support growth or ammonia production, but there was a large increase in ammonia production if strain SR was cocultured with peptidase-producing ruminal bacteria (Bacteroides ruminicola or Streptococcus bovis). Cocultures showed no synergism with short peptides. Strain SR washed out of continuous culture ().1 h(-1)) at pH 5.9. The irregularly shaped organisms (strain F) deaminated glutamine, histidine, glutamate, and serine rapidly (greater than 137 nmol/mg of protein per min) and grew faster on free amino acids than on short peptides ().43 versus 0.21 h(-1)). When strain F was provided with casein or gelatin hydrolysate and cocultured with peptidase-producing bacteria, there was a more than additive increase in ammonia production. Strain F grew in continuous culture (0.1 h(-1)) when the pH was as low as 5.3. The irregularly shaped cells and short rods were present at less than 10(9)/ml in vivo, but they ahd very high specific activities of ammonia production (greater than 310 nmol of ammonia/mg of protein per min) and could play an important role in ruminal amino acid fermentation.  相似文献   

3.
More monensin-sensitive, ammonia-producing bacteria from the rumen.   总被引:10,自引:9,他引:1       下载免费PDF全文
Two monensin-sensitive bacteria which utilized carbohydrates poorly and grew rapidly on amino acids were isolated from the bovine rumen. The short rods (strain SR) fermented arginine, serine, lysine, glutamine, and threonine rapidly (greater than 158 nmol/mg of protein per h) and grew faster on casein digest containing short peptides than on free amino acids ().34 versus 0.29 h(-1)). Gelatin hydrolysate, an amino acid source containing an abundance of long peptides, was unable to support growth or ammonia production, but there was a large increase in ammonia production if strain SR was cocultured with peptidase-producing ruminal bacteria (Bacteroides ruminicola or Streptococcus bovis). Cocultures showed no synergism with short peptides. Strain SR washed out of continuous culture ().1 h(-1)) at pH 5.9. The irregularly shaped organisms (strain F) deaminated glutamine, histidine, glutamate, and serine rapidly (greater than 137 nmol/mg of protein per min) and grew faster on free amino acids than on short peptides ().43 versus 0.21 h(-1)). When strain F was provided with casein or gelatin hydrolysate and cocultured with peptidase-producing bacteria, there was a more than additive increase in ammonia production. Strain F grew in continuous culture (0.1 h(-1)) when the pH was as low as 5.3. The irregularly shaped cells and short rods were present at less than 10(9)/ml in vivo, but they ahd very high specific activities of ammonia production (greater than 310 nmol of ammonia/mg of protein per min) and could play an important role in ruminal amino acid fermentation.  相似文献   

4.
Effects of Thymol on Ruminal Microorganisms   总被引:2,自引:0,他引:2  
Thymol (5-methyl-2-isopropylphenol) is a phenolic compound that is used to inhibit oral bacteria. Because little is known regarding the effects of this compound on ruminal microorganisms, the objective of this study was to determine the effects of thymol on growth and lactate production by the ruminal bacteria Streptococcus bovis JB1 and Selenomonas ruminantium HD4. In addition, the effect of thymol on the in vitro fermentation of glucose by mixed ruminal microorganisms was investigated. Neither 45 nor 90 μg/ml of thymol had any significant effect on growth or lactate production by S. bovis JB1, but 180 μg/ml of thymol completely inhibited growth and lactate production. In the case of S. ruminantium HD4, 45 μg/ml of thymol had little effect on growth and lactate production; however, 90 μg/ml of thymol completely inhibited growth of S. ruminantium HD4. Thymol also decreased glucose uptake by whole cells of both bacteria. When mixed ruminal microorganisms were incubated in medium that contained glucose, 400 μg/ml of thymol increased final pH and the acetate to propionate ratio and decreased concentrations of methane, acetate, propionate, and lactate. In conclusion, thymol was a potent inhibitor of glucose fermentation by S. bovis JB1 and S. ruminantium HD4. Even though thymol treatment decreased methane and lactate concentrations and increased final pH in mixed ruminal microorganism fermentations of glucose, concentrations of acetate and propionate were also reduced. Received: 13 May 2000 / Accepted: 14 June 2000  相似文献   

5.
The effect of pH on ruminal methanogenesis   总被引:3,自引:0,他引:3  
Abstract: When a fistulated cow was fed an all forage diet, ruminal pH remained more or less constant (6.7 to 6.9). The ruminal pH of a concentrate-fed cow decreased dramatically in the period soon after feeding, and the pH was as low as 5.45. Mixed ruminal bacteria from the forage-fed cow converted CO2 and H2 to methane, but the ruminal fluid from the concentrate-fed cow did not produce methane. When the pH of the ruminal fluid from the concentrate-fed cow was adjusted to pH 7.0, methane was eventually detected, and the absolute rate constant of methane production was as high as the one observed with ruminal fluid from the forage fed cow (0.32 h−1). Based on the zero-time intercepts of methane production, it appeared that the concentrate-fed cow had fewer methanogens than the forage-fed cow. When the mixed ruminal bacteria were incubated in a basal medium containing 100 mM acetate, methanogenesis was pH-dependent, and no methane was detected at pH values less than 6.0. Because the removal of acetic acid completely reversed the inhibition of methanogenesis, it appeared that volatile fatty acids were causing the pH-dependent inhibition. Based on these results, concentrate diets that lower ruminal pH may provide a practical means of decreasing ruminal methane production.  相似文献   

6.
An in vitro study was conducted to determine the effect of different types of fibre supplemented with sunflower oil on ruminal fermentation and formation of conjugated linoleic acids (CLA) by mixed ruminal microorganisms. Cell wall components extracted from wheat straw (representing lignified fibre), soybean hulls (representing easily digestible fibre), and purified cellulose were used as substrates. Sunflower oil was supplemented at the same level for all three types of fibre. After 24 h of incubation, ruminal fermentation parameters (including 24 h gas production, pH value, concentration of ammonia nitrogen and volatile fatty acids) and the concentration of long chain fatty acids in the culture fluid were determined. Results showed that the type of fibre influenced ruminal fermentation traits and the biohydrogenation of unsaturated C18 fatty acids in vitro. Composition of LCFA and profile of CLA were altered by the fibre type. Compared to the digestible fibre and purified cellulose, lignified fibre significantly increased the production of cis-9, trans-11 CLA and total CLA (sum of cis-9, trans-11 CLA, trans-10, cis-12 CLA, trans-9, trans-11 CLA, and cis-9, cis-11 CLA) by ruminal microorganisms. It was concluded that ruminal fermentation and production of CLA can be affected by the type of dietary fibre.  相似文献   

7.
Ruminal amino acid degradation is a nutritionally wasteful process that produces excess ruminal ammonia. Monensin inhibited the growth of monensin-sensitive, obligate amino acid-fermenting bacteria and decreased the ruminal ammonia concentrations of cattle. 16S rRNA probes indicated that monensin inhibited the growth of Peptostreptococcus anaerobius and Clostridium sticklandii in the rumen. Clostridium aminophilum was monensin sensitive in vitro, but C. aminophilum persisted in the rumen after monensin was added to the diet. An in vitro culture system was developed to assess the competition of C. aminophilum, P. anaerobius, and C. sticklandii with predominant ruminal bacteria (PRB). PRB were isolated from a 10(8) dilution of ruminal fluid and maintained as a mixed population with a mixture of carbohydrates. PRB did not hybridize with the probes to C. aminophilum, P. anaerobius, or C. sticklandii. PRB deaminated Trypticase in continuous culture, but the addition of C. aminophilum, P. anaerobius, and C. sticklandii caused a more-than-twofold increase in the steady-state concentration of ammonia. C. aminophilum, P. anaerobius, and C. sticklandii accounted for less than 5% of the total 16S rRNA and microbial protein. Monensin eliminated P. anaerobius and C. sticklandii from continuous cultures, but it could not inhibit C. aminophilum. The monensin resistance of C. aminophilum was a growth rate-dependent, inoculum size-independent phenomenon that could not be maintained in batch culture. On the basis of these results, we concluded that the feed additive monensin cannot entirely counteract the wasteful amino acid deamination of obligate amino acid-fermenting ruminal bacteria.  相似文献   

8.
Differential carbohydrate media and anaerobic replica plating techniques were used to assess the degrees of diurnal variations in the direct and viable cell counts as well as the carbohydrate-specific subgroups within the mixed rumen bacterial populations in cattle fed maintenance (metabolizable energy) levels of either a high-forage or a high-concentrate diet once daily. The rumen was sampled at 1 h before feeding and 2, 4, 8, 12, and 16 h after feeding, and selected microbiological parameters of the isolated bacterial populations were assessed. Corresponding samples of ruminal fluid were assayed for fermentation acids, carbohydrate, ammonia, and pH changes. The data showed that regardless of diet, total bacterial numbers remained fairly constant throughout the day. The number of viable bacteria declined 40 to 60% after feeding and then increased to a maximum at 16 h postfeeding. Changes occurred in the carbohydrate-specific subgroups within the bacterial populations, and some of the changes were consistent with a predicted scheme of ruminal feedstuff carbohydrate fermentation. Regardless of diet, however, soluble-carbohydrate-utilizing bacteria predominated at all times. Xylan-xylose and pectin subgroups respectively comprised about one-half and one-third of the population when the high-forage diet was given. These subgroups, along with the cellulolytics, constituted lesser proportions of the population when the high-concentrate diet was given. The cellulolytic subgroup was the least numerous of all subgroups regardless of diet but followed a diurnal pattern similar to that predicted for cellulose fermentation. There were few diurnal variations or differences in bacterial cell compositions and ruminal fluid parameters between diets. The observed similarities and dissimilarities of the rumen bacterial populations obtained when the two diets were given are discussed. The data are consistent with the versatility and constancy of the rumen as a stable, mature microbial system under the specific low-level feeding regimens used.  相似文献   

9.
The objective of this study was to evaluate changes in ruminal microorganisms and fermentation parameters due to dietary supplementation of soybean and linseed oil alone or in combination. Four dietary treatments were tested in a Latin square designed experiment using four primiparous rumen-cannulated dairy cows. Treatments were control (C, 60 : 40 forage to concentrate) or C with 4% soybean oil (S), 4% linseed oil (L) or 2% soybean oil plus 2% linseed oil (SL) in a 4 × 4 Latin square with four periods of 21 days. Forage and concentrate mixtures were fed at 0800 and 2000 h daily. Ruminal fluid was collected every 2 h over a 12-h period on day 19 of each experimental period and pH was measured immediately. Samples were prepared for analyses of concentrations of volatile fatty acids (VFA) by GLC and ammonia. Counts of total and individual bacterial groups (cellulolytic, proteolytic, amylolytic bacteria and total viable bacteria) were performed using the roll-tube technique, and protozoa counts were measured via microscopy in ruminal fluid collected at 0, 4 and 8 h after the morning feeding. Content of ruminal digesta was obtained via the rumen cannula before the morning feeding and used immediately for DNA extraction and quantity of specific bacterial species was obtained using real- time PCR. Ruminal pH did not differ but total VFA (110 v. 105 mmol/l) were lower (P < 0.05) with oil supplementation compared with C. Concentration of ruminal NH3-N (4.4 v. 5.6 mmol/l) was greater (P < 0.05) due to oil compared with C. Compared with C, oil supplementation resulted in lower (P < 0.05) cellulolytic bacteria (3.25 × 108 v. 4.66 × 108 colony-forming units (CFU)/ml) and protozoa (9.04 × 104 v. 12.92 × 104 cell/ml) colony counts. Proteolytic bacteria (7.01 × 108 v. 6.08 × 108 CFU/ml) counts, however, were greater in response to oil compared with C (P < 0.05). Among oil treatments, the amount of Butyrivibrio fibrisolvens, Fibrobacter succinogenes and Ruminococcus flavefaciens in ruminal fluid was substantially lower (P < 0.05) when L was included. Compared to C, the amount of Ruminococcus albus decreased by an average of 40% regardless of oil level or type. Overall, the results indicate that some ruminal microorganisms, except proteolytic bacteria, are highly susceptible to dietary unsaturated fatty acids supplementation, particularly when linolenic acid rich oils were fed. Dietary oil effects on ruminal fermentation parameters seemed associated with the profile of ruminal microorganisms.  相似文献   

10.
When mixed ruminal bacteria were inoculated into semicontinuous cultures (25% transfer every other day) containing lactate, dulcitol, pectin, or xylose and Trypticase (1 g/liter) as the sole nitrogen source, the specific activity of ammonia production increased. The greatest enrichment was observed with lactate and xylose, and in these cases the specific rate of ammonia production was eightfold higher than that of the ruminal fluid control (approximately 35 nmol of ammonia per mg of protein per min). Isolates with different morphologies were obtained from each of the enrichments, but in no case did the specific activity of any isolate exceed that of the mixed ruminal bacteria. If Trypticase (15 g/liter) was used as the only energy and nitrogen source, there was an even greater increase in ammonia production, and two monensin-sensitive bacteria, a Peptostreptococcus species and a Clostridium species, were obtained. The Peptostreptococcus species was unable to grow on any of 25 carbohydrate or carbohydrate derivatives tested; but the Clostridium species was able to use glucose, maltose, fructose, cellobiose, trehalose, sorbitol, and salicin as energy sources. Neither organism was able to grow in the absence of an amino acid source, but growth rates on Trypticase were greater than 0.35/h. The specific activities of ammonia production were 346 and 427 nmol/mg of protein per min for strains of Peptostreptococcus and Clostridium, respectively. Megasphaera elsdenii and Bacteroides ruminicola, previously isolated ruminal ammonia producers, had specific activities of only 11 and 19 nmol of ammonia per mg of protein per min, respectively. The most probable number of Clostridium species in ruminal fluid was less than 10(3)/ml, but the Peptostreptococcus species was present at 10(8)/ml.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
A monensin-sensitive ruminal peptostreptococcus was able to grow rapidly (growth rate of 0.5/h) on an enzymatic hydrolysate of casein, but less than 23% of the amino acid nitrogen was ever utilized. When an acid hydrolysate was substituted for the enzymatic digest, more than 31% of the nitrogen was converted to ammonia and cell protein. Coculture experiments and synergisms with peptide-degrading strains of Bacteroides ruminicola and Streptococcus bovis indicated that the peptostreptococcus was unable to transport certain peptides or hydrolyze them extracellularly. Leucine, serine, phenylalanine, threonine, and glutamine were deaminated at rates of 349, 258, 102, 95, and 91 nmol/mg of protein per min, respectively. Deamination rates for some other amino acids were increased when the amino acids were provided as pairs of oxidized and reduced amino acids (Stickland reactions), but these rates were still less than 80 nmol/mg of protein per min. In continuous culture (dilution rate of 0.1/h), bacterial dry matter and ammonia production decreased dramatically at a pH of less than 6.0. When dilution rates were increased from 0.08 to 0.32/h (pH 7.0), ammonia production increased while production of bacterial dry matter and protein decreased. These rather peculiar kinetics resulted in a slightly negative estimate of maintenance energy and could not be explained by a change in fermentation products. Approximately 80% of the cell dry matter was protein. When corrections were made for cell composition, the yield of ATP was higher than the theoretical maximum value. It is possible that mechanisms other than substrate-level phosphorylation contributed to the energetics of growth.  相似文献   

12.
A monensin-sensitive ruminal peptostreptococcus was able to grow rapidly (growth rate of 0.5/h) on an enzymatic hydrolysate of casein, but less than 23% of the amino acid nitrogen was ever utilized. When an acid hydrolysate was substituted for the enzymatic digest, more than 31% of the nitrogen was converted to ammonia and cell protein. Coculture experiments and synergisms with peptide-degrading strains of Bacteroides ruminicola and Streptococcus bovis indicated that the peptostreptococcus was unable to transport certain peptides or hydrolyze them extracellularly. Leucine, serine, phenylalanine, threonine, and glutamine were deaminated at rates of 349, 258, 102, 95, and 91 nmol/mg of protein per min, respectively. Deamination rates for some other amino acids were increased when the amino acids were provided as pairs of oxidized and reduced amino acids (Stickland reactions), but these rates were still less than 80 nmol/mg of protein per min. In continuous culture (dilution rate of 0.1/h), bacterial dry matter and ammonia production decreased dramatically at a pH of less than 6.0. When dilution rates were increased from 0.08 to 0.32/h (pH 7.0), ammonia production increased while production of bacterial dry matter and protein decreased. These rather peculiar kinetics resulted in a slightly negative estimate of maintenance energy and could not be explained by a change in fermentation products. Approximately 80% of the cell dry matter was protein. When corrections were made for cell composition, the yield of ATP was higher than the theoretical maximum value. It is possible that mechanisms other than substrate-level phosphorylation contributed to the energetics of growth.  相似文献   

13.
When mixed ruminal bacteria were inoculated into semicontinuous cultures (25% transfer every other day) containing lactate, dulcitol, pectin, or xylose and Trypticase (1 g/liter) as the sole nitrogen source, the specific activity of ammonia production increased. The greatest enrichment was observed with lactate and xylose, and in these cases the specific rate of ammonia production was eightfold higher than that of the ruminal fluid control (approximately 35 nmol of ammonia per mg of protein per min). Isolates with different morphologies were obtained from each of the enrichments, but in no case did the specific activity of any isolate exceed that of the mixed ruminal bacteria. If Trypticase (15 g/liter) was used as the only energy and nitrogen source, there was an even greater increase in ammonia production, and two monensin-sensitive bacteria, a Peptostreptococcus species and a Clostridium species, were obtained. The Peptostreptococcus species was unable to grow on any of 25 carbohydrate or carbohydrate derivatives tested; but the Clostridium species was able to use glucose, maltose, fructose, cellobiose, trehalose, sorbitol, and salicin as energy sources. Neither organism was able to grow in the absence of an amino acid source, but growth rates on Trypticase were greater than 0.35/h. The specific activities of ammonia production were 346 and 427 nmol/mg of protein per min for strains of Peptostreptococcus and Clostridium, respectively. Megasphaera elsdenii and Bacteroides ruminicola, previously isolated ruminal ammonia producers, had specific activities of only 11 and 19 nmol of ammonia per mg of protein per min, respectively. The most probable number of Clostridium species in ruminal fluid was less than 10(3)/ml, but the Peptostreptococcus species was present at 10(8)/ml.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
When mixed rumen microorganisms were incubated in media containing the amino acid source Trypticase, both monensin and carbon monoxide (a hydrogenase inhibitor) decreased methane formation and amino acid fermentation. Both of the methane inhibitors caused a significant increase in the ratio of intracellular NADH to NAD. Studies with cell extracts of rumen bacteria and protozoa indicated that the ratio of NADH to NAD had a marked effect on the deamination of reduced amino acids, in particular branched-chain amino acids. Deamination was inhibited by the addition of NADH and was stimulated by methylene blue, an agent that oxidizes NADH. Neutral and oxidized amino acids were unaffected by NADH. The addition of small amounts of 2-oxoglutarate greatly enhanced the deamination of branched-chain amino acids and indicated that transamination via glutamate dehydrogenase was important. Formation of ammonia from glutamate was likewise inhibited by NADH. These experiments indicated that reducing-equivalent disposal and intracellular NADH/NAD ratio were important effectors of branched-chain amino acid fermentation.  相似文献   

15.
When mixed rumen microorganisms were incubated in media containing the amino acid source Trypticase, both monensin and carbon monoxide (a hydrogenase inhibitor) decreased methane formation and amino acid fermentation. Both of the methane inhibitors caused a significant increase in the ratio of intracellular NADH to NAD. Studies with cell extracts of rumen bacteria and protozoa indicated that the ratio of NADH to NAD had a marked effect on the deamination of reduced amino acids, in particular branched-chain amino acids. Deamination was inhibited by the addition of NADH and was stimulated by methylene blue, an agent that oxidizes NADH. Neutral and oxidized amino acids were unaffected by NADH. The addition of small amounts of 2-oxoglutarate greatly enhanced the deamination of branched-chain amino acids and indicated that transamination via glutamate dehydrogenase was important. Formation of ammonia from glutamate was likewise inhibited by NADH. These experiments indicated that reducing-equivalent disposal and intracellular NADH/NAD ratio were important effectors of branched-chain amino acid fermentation.  相似文献   

16.
Streptococcus bovis JB1 cells energized with glucose transported glutamine at a rate of 7 nmol/mg of protein per min at a pH of 5.0 to 7.5; sodium had little effect on the transport rate. Because valinomycin-treated cells loaded with K and diluted into Na (pH 6.5) to create an artificial delta psi took up little glutamine, it appeared that transport was driven by phosphate-bond energy rather than proton motive force. The kinetics of glutamine transport by glucose-energized cells were biphasic, and it appeared that facilitated diffusion was also involved, particularly at high glutamine concentrations. Glucose-depleted cultures took up glutamine and produced ammonia, but the rate of transport per unit of glutamine (V/S) by nonenergized cells was at least 1,000-fold less than the V/S by glucose-energized cells. Glutamine was converted to pyroglutamate and ammonia by a pathway that did not involve a glutaminase reaction or glutamate production. No ammonia production from pyroglutamate was detected. S. bovis was unable to take up glutamate, but intracellular glutamate concentrations were as high as 7 mM. Glutamate was produced from ammonia via a glutamate dehydrogenase reaction. Cells contained high concentrations of 2-oxoglutarate and NADPH that inhibited glutamate deamination and favored glutamate formation. Since the carbon skeleton of glutamine was lost as pyroglutamate, glutamate formation occurred at the expense of glucose. Arginine deamination is often used as a taxonomic tool in classifying streptococci, and it had generally been assumed that other amino acids could not be fermented. To our knowledge, this is the first report of glutamine conversion to pyroglutamate and ammonia in streptococci.  相似文献   

17.
The objectives of this study were to examine the effects of chlorhexidine diacetate on growth and L-lactate production by Streptococcus bovis JB1 as well as the effects of this antimicrobial compound on the mixed ruminal microorganism fermentation. Addition of 1.8 μM chlorhexidine diacetate to glucose medium resulted in a lag in growth by S. bovis JB1, and growth was completely inhibited in the presence of 3.6, 9.0, and 18 μM chlorhexidine. When 6.2 μM chlorhexidine diacetate was added to glucose medium after 2 h of incubation, glucose utilization and L-lactate production by S. bovis JB1 were reduced. Phosphoenolpyruvate-dependent phosphorylation of 14C-glucose by toluene-treated cells of S. bovis JB1 was inhibited by increasing concentrations (1.8 to 18 μM) of chlorhexidine, whereas only the 18 μM concentration reduced the membrane potential (ΔΨ). Chlorhexidine diacetate was a potent inhibitor of L-lactate and methane production from glucose fermentation by mixed ruminal microorganisms. However, because chlorhexidine also decreased acetate and propionate concentrations and increased ammonia concentrations in mixed-culture incubations, this antimicrobial compound may have limited application as a ruminant feed additive. Received: 4 November 1997 / Accepted: 22 December 1997  相似文献   

18.
When mixed ruminal bacteria were incubated with a pancreatic casein hydrolysate and free amino acids of a similar composition, rates of ammonia production were much greater for peptides than for amino acids. The pancreatic digest of casein was then fractionated with 90% isopropyl alcohol. Hydrophobic peptides which dissolved in alcohol contained an abundance of phenolic and aliphatic amino acids, while the hydrophilic peptides which were precipitated by alcohol contained a large proportion of the highly charged amino acids. The Km values of the mixed ruminal bacteria for each fraction were similar (0.88 versus 0.98 g/liter), but the Vmax of the hydrophilic peptides was more than twice that of the hydrophobic peptides (18 versus 39 mg of NH3 per g of bacterial protein per h). Pure cultures of ruminal bacteria had a similar preference for hydrophilic peptides and likewise utilized peptides at a faster rate than free amino acids. Since peptide degradation rates differed greatly, hydrophobicity is likely to influence the composition of amino acids passing unfermented to the lower gut of ruminant animals.  相似文献   

19.
When mixed ruminal bacteria were incubated with a pancreatic casein hydrolysate and free amino acids of a similar composition, rates of ammonia production were much greater for peptides than for amino acids. The pancreatic digest of casein was then fractionated with 90% isopropyl alcohol. Hydrophobic peptides which dissolved in alcohol contained an abundance of phenolic and aliphatic amino acids, while the hydrophilic peptides which were precipitated by alcohol contained a large proportion of the highly charged amino acids. The Km values of the mixed ruminal bacteria for each fraction were similar (0.88 versus 0.98 g/liter), but the Vmax of the hydrophilic peptides was more than twice that of the hydrophobic peptides (18 versus 39 mg of NH3 per g of bacterial protein per h). Pure cultures of ruminal bacteria had a similar preference for hydrophilic peptides and likewise utilized peptides at a faster rate than free amino acids. Since peptide degradation rates differed greatly, hydrophobicity is likely to influence the composition of amino acids passing unfermented to the lower gut of ruminant animals.  相似文献   

20.
Beef cattle have been fed ionophores and other antibiotics for more than 20 years to decrease ruminal fermentation losses (e.g methane and ammonia) and increase feed efficiency, and these improvements have been explained by an inhibition of gram-positive ruminal bacteria. Ionophores are not used to treat human disease, but there has been an increased perception that antibiotics should not be used as feed additives. Some bacteria produce small peptides (bacteriocins) that inhibit gram-positive bacteria. In vitro experiments indicated that the bacteriocin, nisin, and the ionophore, monensin, had similar effects on ruminal fermentation. However, preliminary results indicated that mixed ruminal bacteria degraded nisin, and the ruminal bacterium, Streptococcus bovis, became highly nisin-resistant. A variety of ruminal bacteria produce bacteriocins, and bacteriocin production has, in some cases, been correlated with changes in ruminal ecology. Some ruminal bacteriocins are as potent as nisin in vitro, and resistance can be circumvented. Based on these results, ruminal bacteriocins may provide an alternative to antibiotics in cattle rations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号