首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human basophils were obtained from three donors with myelogenous leukemia. Proteoglycans were labeled by using [35S]sulfate as precursor and were extracted in 1 M NaCl with protease inhibitors to preserve their native structure. [35S]proteoglycans filtered on Sepharose 4B with an average m.w. similar to that of a rat heparin proteoglycan that has an estimated m.w. of 750,000. The [35S]glycosaminoglycan side chains filtered with an average m.w. slightly smaller than a 60,000-m.w. glycosaminoglycan marker. The [35S]glycosaminoglycans were resistant to heparinase and susceptible to degradation by chondroitin AC lyase and chondroitin ABC lyase. The intact [35S]glycosaminoglycans chromatographed on DEAE Sepharose as a single peak eluting just before an internal heparin marker. These findings indicate that the [35S]glycosaminoglycans were made up only of chondroitin sulfates. No heparin was identified. The chondroitin sulfate disaccharides that resulted from the action of chondroitin ABC lyase on the basophil glycosaminoglycans consisted of 92% delta Di-4S, 6% delta Di-6S, and 2% disulfated disaccharides. The [35S]chondroitin sulfate proteoglycans were susceptible to cleavage with proteases and could be shown to be released intact from basophils during degranulation initiated by the calcium ionophore A23187. The basophil proteoglycans and glycosaminoglycans were capable of binding histamine in water, but not in phosphate-buffered saline, and had no anticoagulant activity.  相似文献   

2.
Proteoglycans were extracted from nuclease-digested sonicates of 10(9) rat basophilic leukemia (RBL-1) cells by the addition of 0.1% Zwittergent 3-12 and 4 M guanidine hydrochloride and were purified by sequential CsCl density gradient ultracentrifugation, DE52 ion exchange chromatography, and Sepharose CL-6B gel filtration chromatography under dissociative conditions. Between 0.3 and 0.8 mg of purified proteoglycan was obtained from approximately 1 g initial dry weight of cells with a purification of 200-800-fold. The purified proteoglycans had a hydrodynamic size range of Mr 100,000-150,000 and were resistant to degradation by a molar excess of trypsin, alpha-chymotrypsin, Pronase, papain, chymopapain, collagenase, and elastase. Amino acid analysis of the peptide core revealed a preponderance of Gly (35.4%), Ser (22.5%), and Ala (9.5%). Approximately 70% of the glycosaminoglycan side chains of RBL-1 proteoglycans were digested by chondroitinase ABC and 27% were hydrolyzed by treatment with nitrous acid. Sephadex G-200 chromatography of glycosaminoglycans liberated from the intact molecule by beta-elimination demonstrated that both the nitrous acid-resistant (chondroitin sulfate) and the chondroitinase ABC-resistant (heparin/heparan sulfate) glycosaminoglycans were of approximately Mr 12,000. Analysis of the chondroitin sulfate disaccharides in different preparations by amino-cyano high performance liquid chromatography revealed that 9-29% were the unusual disulfated disaccharide chondroitin sulfate di-B (IdUA-2-SO4----GalNAc-4-SO4); the remainder were the monosulfated disaccharide GlcUA----GalNAc-4-SO4. Subpopulations of proteoglycans in one preparation were separated by anion exchange high performance liquid chromatography and were found to contain chondroitin sulfate glycosaminoglycans whose disulfated disaccharides ranged from 9-49%. However, no segregation of subpopulations without both chondroitin sulfate di-B and heparin/heparan sulfate glycosaminoglycans was achieved, suggesting that RBL-1 proteoglycans might be hybrids containing both classes of glycosaminoglycans. Sepharose CL-6B chromatography of RBL-1 proteoglycans digested with chondroitinase ABC revealed that less than 7% of the molecules in the digest chromatographed with the hydrodynamic size of undigested proteoglycans, suggesting that at most 7% of the proteoglycans lack chondroitin sulfate glycosaminoglycans.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The cell-associated proteoglycans synthesized by three dog mastocytoma cell lines were isolated and their structural features compared. The lines were propagated as subcutaneous tumors in athymic mice for over 25 generations. In primary cell culture, all three lines incorporated [35S]sulfate into high molecular weight proteoglycans which were heterogeneous in size and glycosaminoglycan content. Two lines, BR and G, synthesized both a heparin proteoglycan (HPG) and a chondroitin sulfate proteoglycan (ChSPG) in different proportions. The third line, C2, synthesized predominantly a ChSPG with little or no detectable heparin. Gel filtration of the 35S-labeled HPG and ChSPG from the BR line on Sepharose CL-4B in dissociative conditions (4 M guanidine, Triton X-100) yielded a major polydisperse peak (Kav = 0.22) accounting for 70% of 35S activity. Under aggregating conditions (0.1 M sodium acetate) on Sepharose CL-4B, the BR proteoglycans eluted in the excluded volume. Proteoglycans from lines G and C2 also eluted in the void volume under nondissociative conditions, however the C2 line yielded additional fractions of smaller hydrodynamic size (Kav = 0.81) suggesting the presence of intracellular proteoglycan cleavage products or incompletely processed proteoglycans. As assessed by dissociative chromatography on Sepharose CL-4B, proteoglycans from the BR line were resistant to proteinase cleavage under conditions which degraded a rat chondrosarcoma proteoglycan. For all lines, glycosaminoglycans released by pronase/alkaline-borohydride had molecular weights ranging from 20,000 to 50,000 on gel filtration. For line BR, 75% of 35S-labeled glycosaminoglycans were degraded to oligosaccharides by nitrous acid, and the remaining 25% were degraded by chondroitinase ABC. Corresponding percentages for line G were 89% and 11%, and for line C2, 2% and 98%. Paper chromatography of the chondroitinase digestion products from lines BR and C2 showed products corresponding to unsaturated standards delta Di-diSB and delta Di-diSE, derived from the disaccharides IdoUA-2-SO4----GalNAc-4-SO4 and GlcUA----GalNAc-4,6-diSO4 respectively, in addition to smaller amounts of monosulfated disaccharides. Glycans from lines C2 and BR contained small quantities of a trisulfated disaccharide which was degraded to delta Di-diSB upon incubation with chondro-6-sulfatase. The results demonstrate the simultaneous presence of heparin and polysulfated chondroitin sulfate in dog mast cells of clonal origin.  相似文献   

4.
Proteoglycans isolated under associative conditions in the presence of protease inhibitors from human nucleus pulposus contained 17% aggregate and 83% non-aggregating monomer (Kav = 0.5 on Sepharose CL-2B). Isolated aggregate after reduction and alkylation was resolved into two components (Kav = 0.15 and 0.43) on Sepharose CL-2B. Labeled proteoglycans isolated from parallel samples pulsed with [35S]sulfate and chased for up to 18 h were present largely as aggregated material (up to 78%). Reduction and alkylation of the labeled samples gave a labeled proteoglycan monomer with Kav = 0.15. Both the labeled and unlabeled chondroitin sulfate chains had the same distribution on Sepharose CL-6B and equivalent molecular weights (Mr = 2.0 x 10(3)). After chondroitinase ABC digestion, the unlabeled keratan sulfate-protein core was polydisperse with a Kav = 0.38 on Sepharose CL-4B while the labeled keratan sulfate-protein core had a Kav = 0.05. This indicates that the newly synthesized proteoglycan had a large core protein and suggests that the proteoglycans present in nucleus pulposus are originally synthesized as large molecular weight, aggregating proteoglycans.  相似文献   

5.
Proteoglycans synthesized in cultured mast cells derived from horse serum-immunized lymph node cells were analyzed. Treatment of the 35S-proteoglycans extracted from these cells with either chondroitinase ABC or AC resulted in 95% +/- 7% and 84% +/- 7%, respectively (mean +/- S.E., n = 3), of the radioactivity associated with disaccharides eluting in the included volume of PD-10. The 35S-proteoglycans were not hydrolyzed by nitrous acid elimination treatment. The chondroitinase ABC-generated disaccharides were analyzed by aminocyano high performance liquid chromatography. 35S-Disaccharides eluted in a major peak at a retention time of 8.1 min, corresponding to the disaccharide of chondroitin 4-sulfate proteoglycan (delta Di-4S), and a second peak at 12 min, corresponding to the disaccharide of chondroitin sulfate D proteoglycan (delta Di-diSD). Further treatment with chondro-4-sulfatase did not affect the retention time of the disaccharide corresponding to delta Di-diSD whereas this peak disappeared after the digested proteoglycan was treated either by chondro-6-sulfatase or by both sulfatases. Therefore, this disaccharide was identified as chondroitin sulfate D. Quantification of the radiolabeled disaccharides showed that delta Di-diSD contributed 20% +/- 2% (n = 3) of the total sulfated disaccharides of the chondroitin sulfate of these cultured cells. The role of fibroblasts in inducing the shift of chondroitin sulfate D into heparin proteoglycan in these mast cells was also investigated by using three types of monolayers: mouse embryonic skin fibroblasts (MESF), rat embryonic skin fibroblasts (RESF), and 3T3 fibroblasts. 35S-Proteoglycans that were extracted from the lymph node-derived mast cells cultured for 30 days on MESF and on 3T3 fibroblast monolayers were 93% +/- 4% and 30% +/- 7% (n = 3) susceptible to nitrous acid elimination, respectively. No degradation by nitrous acid was observed in 35S-proteoglycans extracted from cells cultured on RESF monolayer. Since the MESF was found to be the most potent monolayer in the induction of heparin synthesis, the kinetics of changes in the synthesis of proteoglycan types were determined in lymph node-derived mast cells cultured on MESF for up to 30 days. It was found that the synthesis of chondroitin sulfate gradually declined whereas that of heparin starting between 4 and 7 days after plating gradually increased. From the 17th day on, only the synthesis of heparin was detected.  相似文献   

6.
Kidneys were perfused with [35S]sulfate at 4 h in vitro to radiolabel sulfated proteoglycans. Glomeruli were isolated from the labeled kidneys, and purified fractions of glomerular basement membrane (GBM) were prepared therefrom. Proteoglycans were extracted from GBM fractions by use of 4 M guanidine-HCl at 4 degrees C in the presence of protease inhibitors. The efficiency of extraction was approximately 55% based on 35S radioactivity. The extracted proteoglycans were characterized by gel-filtration chromatography (before and after degradative treatments) and by their behavior in dissociative CsCl gradients. A single peak of proteoglycans with an Mr of 130,000 (based on cartilage proteoglycan standards) was obtained on Sepharose CL-4B or CL-6B. Approximately 85% of the total proteoglycans were susceptible to nitrous acid oxidation (which degrades heparan sulfates), and approximately 15% were susceptible to digestion with chondroitinase ABC (degrades chondroitin-4 and -6 sulfates and dermatan sulfate). The released glycosaminoglycan (GAG) chains had an Mr of approximately 26,000. Density gradient centrifugation resulted in the partial separation of the extracted proteoglycans into two types with different densities: a heparan sulfate proteoglycan that was enriched in the heavier fraction (p greater than 1.43 g/ml), and a chondroitin sulfate proteoglycan that was concentrated in the lighter fractions (p less than 1.41). The results indicate that two types of proteoglycans are synthesized and incorporated into the GBM that are similar in size and consist of four to five GAG chains (based on cartilage proteoglycan standards). The chromatographic behavior of the extracted proteoglycans and the derived GAG, together with the fact that the two types of proteoglycans can be partially separated into the density gradient, suggest that the heparan sulfate and chondroitin sulfate(s) are located on different core proteins.  相似文献   

7.
35S-labelled chondroitin sulfate proteoglycans isolated from conditioned media of cultured human monocytes (day 1in vitro) and monocyte-derived macrophages (day 6in vitro) were chromatographed on columns of immobilized fibronectin and collagen, respectively. The elution profiles prior to and after alkali treatment were compared with those of standards chondroitin 4-sulfate and chondroitin sulfate E and heparin. The day 635S-proteoglycans have a higher sulfate density than the day 1 species, but this difference did not affect the elution profiles after chromatography on collagen-Sepharose, whereas the day 6 proteoglycans bound more firmly than the day 1 fraction to fibronectin-Sepharose. The elution patterns obtained for these distinct proteoglycans closely resembled those of heparin and oversulfated chondroitin sulfate E standards, and clearly demonstrated the importance of sulfate density both for the affinity to fibronectin and collagen. Neither day 1 nor day 635S-proteoglycans were found to interact with hyaluronate.Abbreviations used CSPG chondroitin sulfate proteoglycan - GAG glycosaminoglycan - CS chondroitin sulfate - CS-E chondroitin 4,6 disulfate - MDM monocyte-derived macrophages  相似文献   

8.
Confluent adult and fetal human glomerular epithelial cells were incubated for 24 h in the presence of [3H]-amino acids and [35S]sulfate. Two heparan-35SO4 proteoglycans were released into the culture medium. These 35S-labeled proteoglycans eluted as a single peak from anion exchange chromatographic columns, but were separable by gel filtration on Sepharose CL-6B columns. The larger heparan-35SO4 proteoglycan eluted with the column void volume and at a Kav of 0.26 from Sepharose CL-4B columns. The most abundant medium heparan-35SO4 proteoglycan was a high buoyant density proteoglycan similar in hydrodynamic size (Sepharose CL-6B Kav 0.23) to those previously described in glomerular basement membranes and isolated glomeruli. Heparan-35SO4 chains from both proteoglycans were 36 kDa. A smaller proportion of Sepharose CL-6B excluded dermatan-35SO4 proteoglycan was also synthesized by these cells. The predominant protein cores of both medium heparan-35SO4 proteoglycans were approximately 230 and 180 kDa. A hybrid chondroitin/dermatan-heparan-35SO4 proteoglycan with an 80-kDa protein core copurified with the smaller medium heparan-35SO4 proteoglycan. This 35S-labeled proteoglycan appeared as a diffuse, chondroitinase ABC sensitive 155-kDa fluorographic band in sodium dodecyl sulfate-polyacrylamide gels after the Sepharose CL-6B Kav 0.23 35S-labeled proteoglycan fraction was digested with heparitinase. The heparitinase generated heparan sulfate proteoglycan protein cores and the 155-kDa hybrid proteoglycan fragment had molecular weights similar to those previously identified in rat glomerular basement membrane and glomeruli using antibodies against a basement membrane tumor proteoglycan precursor (Klein et al. J. Cell Biol. 106, 963-970, 1988). Thus, human glomerular epithelial cells in culture are capable of synthesizing, processing, and releasing heparan sulfate proteoglycans which are similar to those synthesized in vivo and found in the glomerular basement membrane. These proteoglycans may belong to a family of related basement membrane proteoglycans.  相似文献   

9.
Human glomerular epithelial cell proteoglycans   总被引:5,自引:0,他引:5  
Proteoglycans synthesized by cultures of human glomerular epithelial cells have been isolated and characterized. Three types of heparan sulfate were detected. Heparan sulfate proteoglycan I (HSPG-I; Kav 6B 0.04) was found in the cell layer and medium and accounted for 12% of the total proteoglycans synthesized. HSPG-II (Kav 6B 0.25) accounted for 18% of the proteoglycans and was located in the medium and cell layer. A third population (9% of the proteoglycan population), heparan sulfate glycosaminoglycan (HS-GAG; Kav 6B 0.4-0.8), had properties consistent with single glycosaminoglycan chains or their fragments and was found only in the cell layer. HSPG-I and HSPG-II from the cell layer had hydrophobic properties; they were released from the cell layer by mild trypsin treatment. HS-GAG lacked these properties, consisted of low-molecular-mass heparan sulfate oligosaccharides, and were intracellular. HSPG-I and -II released to the medium lacked hydrophobic properties. The cells also produced three distinct types of chondroitin sulfates. The major species, chondroitin sulfate proteoglycan I (CSPG-I) eluted in the excluded volume of a Sepharose CL-6B column, accounted for 30% of the proteoglycans detected, and was found in both the cell layer and medium. Cell layer CSPG-I bound to octyl-Sepharose. It was released from the cell layer by mild trypsin treatment. CSPG-II (Kav 6B 0.1-0.23) accounted for 10% of the total 35S-labeled macromolecules and was found predominantly in the culture medium. A small amount of CS-GAG (Kav 6B 0.25-0.6) is present in the cell extract and like HS-GAG is intracellular. Pulse-chase experiments indicated that HSPG-I and -II and CSPG-I and -II are lost from the cell layer either by direct release into the medium or by internalization where they are metabolized to single glycosaminoglycan chains and subsequently to inorganic sulfate.  相似文献   

10.
Proteoglycans from three cloned, granulated lymphocyte cell lines with natural killer (NK) function (NKB61A2, HY-3, H-1) and one mast cell line (PT-18) were labeled with [35S]sulfate. [35S]proteoglycans were extracted in 1 M NaCl with protease inhibitors to preserve their native structure and were separated from unincorporated [35S]sulfate by Sephadex G-25 chromatography. [35S]proteoglycans from all four cell lines were chromatographed over Sepharose 4B and were found to have a similar range of m.w. The [35S]glycosaminoglycans from each cell line were then separated from parent proteoglycans by treatment with 0.5 M NaOH. The [35S]glycosaminoglycans from the three lymphocyte cell lines exhibited a similar m.w. as assessed by Sepharose 4B gel filtration, whereas the [35S]glycosaminoglycans from the mast cell line chromatographed as a smaller m.w. molecule. [35S )glycosaminoglycan charge characteristics were evaluated with DEAE C1-6B ion exchange chromatography. The consistency of the elution patterns was determined by using [35S]glycosaminoglycans obtained from radiolabelings of each cell line separated by 6 mo in culture. Each NK lymphocyte cell line reproducibly produced two distinct [35S]glycosaminoglycan chains that eluted in two regions well before the commercial heparin marker. The proportions of each chain were dependent upon the specific cell line. The mast cell line produced a single [35S]glycosaminoglycan chain, which eluted overlapping the internal commercial heparin marker, consistent with its higher charge characteristics. [35S]glycosaminoglycans from all cell lines were identified as chondroitin sulfates with the use of specific polysaccharidases. The NK lymphocyte glycosaminoglycans contained chondroitin 4-sulfate disaccharides. The mast cell glycosaminoglycans contained oversulfated disaccharides and chondroitin 4-sulfate disaccharides. Thus, each granulated NK lymphocyte cell line produced chondroitin sulfate glycosaminoglycans that were characteristic of that cell line and of different composition and less charge than those produced by cultured mast cells. These findings demonstrate that glycosaminoglycan profiles are useful biochemical markers in the characterization of diverse granulated cell lines including NK lymphocytes and mast cells.  相似文献   

11.
The predominant [3H]diisopropyl fluorophosphate (DFP)-binding proteins that are released from the secretory granules of activated mouse bone marrow-derived mast cells (BMMC) are demonstrated to have an isoelectric point of approximately 9.1 and to be complexed to proteoglycans. Upon Sepharose CL-2B chromatography of the supernatants of calcium ionophore-activated BMMC, 67-78% of the total exocytosed [3H]DFP-binding proteins co-eluted in the excluded volume of the column as a greater than 1 X 10(7) Mr complex bound to 4-7% of the total exocytosed proteoglycans. The remainder of the exocytosed proteoglycans, which filtered in the included volume of the gel filtration column with a Kav of 0.66, contained chondroitin sulfate E glycosaminoglycans. After dissociation of the large Mr complexes of [3H]DFP-binding proteins-proteoglycans with 5 M NaCl and removal of the proteins via phenyl-Sepharose chromatography, the proteoglycans filtered from the Sepharose CL-2B column as a single peak with a Kav of 0.66. The susceptibility of 24-59% and 36-76% of the glycosaminoglycans in the large Mr complex to degradation by nitrous acid and chondroitinase ABC, respectively, indicated the presence of proteoglycans that contained heparin and chondroitin sulfate glycosaminoglycans. Disaccharide analysis revealed that the chondroitin sulfate in the high Mr complex was chondroitin sulfate E. Following chondroitinase ABC treatment of the large Mr complex, the residual heparin proteoglycans filtered on Sepharose CL-4B under dissociative conditions with the same Kav as the original, untreated proteoglycans. Thus, the protein-proteoglycan complexes that are exocytosed from activated mouse BMMC contain approximately equal amounts of proteoglycans of comparable size that bear either predominantly heparin or predominantly chondroitin sulfate E glycosaminoglycans. The demonstration of these secreted complexes indicates that the intragranular protease-resistant heparin and chondroitin sulfate E proteoglycans in the T cell factor-dependent BMMC bind serine proteases throughout the activation-secretion response.  相似文献   

12.
A short-term incubation system was used to study proteoglycan synthesis during the early stages of medullary bone formation in estrogen-treated male Japanese quail. The proteoglycans were separated by chromatography on a DEAE Bio-Gel A column eluted with a 400-ml 0-1 M NaCl gradient. The profile from uninjected control birds showed a single peak, whereas profiles from estrogen-treated birds showed development of another peak. Incorporation of [35S]sulfate into the estrogen-induced proteoglycan increased most dramatically between 25 and 37 h after hormone treatment. The estrogen-induced proteoglycan has a Kav = 0.65 on Sepharose CL-4B, an average buoyant density of 1.50 g/ml, and contains keratan sulfate as its constituent glycosaminoglycan. The second proteoglycan has a Kav = 0.52 on Sepharose CL-4B, an average buoyant density of greater than or equal to 1.7 g/ml, and has chondroitin sulfate as it major glycosaminoglycan. It may also contain some heparin or heparan sulfate. The results support the usefulness of the incubation system for studying the dynamics of bone matrix production.  相似文献   

13.
Proteoglycans may be implicated in the process of aggregation of acetylcholine receptors in the basal lamina of skeletal muscle and possibly in the mechanism of reinnervation at the neuromuscular junction. In order to further deduce the role of such proteoglycans, we have sought to isolate them and define their molecular structures. In this study, proteoglycans were extracted from rabbit skeletal muscle by using 4 M guanidine hydrochloride and were purified by sequential cesium chloride density gradient ultracentrifugation, DEAE-cellulose ion-exchange chromatography, and Sepharose CL-6B and CL-2B gel filtration under dissociative conditions. A chondroitin sulfate proteoglycan which constituted about 44% of the total hexuronic acid content of the muscle tissue was isolated. This proteoglycan was found to have an apparent molecular weight [by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)] of 95,000, consistent with its small hydrodynamic size (Kav = 0.8 on Sepharose CL-2B), and to consist of peptide and glycosaminoglycan in a weight ratio of 1.0/0.8. The average molecular weight of its core protein-oligosaccharide remnants is 50,000, as estimated by SDS-PAGE of the chondroitinase ABC digested proteoglycan. Alkaline NaB3H4 treatment of the intact proteoglycan released chondroitin sulfate chains with an average molecular weight of 21,000. Pronase digestion of the intact proteoglycan generated glycosaminoglycan-peptides with an average of two chondroitin sulfate chains per peptide. These two saccharide units account for the total glycosaminoglycans per molecule and appear to be closely spaced on the core protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Characterization of proteoglycans from adult bovine tendon   总被引:9,自引:0,他引:9  
Proteoglycans were extracted in good yield from the proximal, fibrous portion of adult bovine tendon with 4 m guanidine HCl. They comprise less than 1% of the dry weight of the tissue. Using CsCl density gradient centrifugation, gel chromatography, and ion exchange chromatography, two populations of proteoglycans were separated and purified from other tissue proteins. One was a large, chondroitin sulfate proteoglycan with high buoyant density in CsCl. This component appeared to be composed of two or three subpopulations as detected by agarose/polyacrylamide electrophoresis, although they could not be effectively separated from one another for individual characterization. As a group, the large proteoglycans eluted from Sepharose CL-2B with Kav from 0.1-0.5 and their core protein had Mr greater than 200,000 with high contents of glutamic acid, serine, and glycine. The glycosaminoglycan chains had a weight average Mr of 17,000 and more than 98% of the uronic acid was glucuronic acid. This group comprised only 12% of the total proteoglycan of the tissue. The other 88% of the proteoglycans appeared to represent one group of small molecules that eluted from Sepharose CL-2B at Kav = 0.70. They demonstrated buoyant densities in a CsCl gradient ranging from greater than or equal to 1.51 to 1.30 g/ml. Their core protein had an apparent Mr = 48,000 following removal of the glycosaminoglycan chains by digestion with chondroitinase ABC. This core protein had a particularly high content of aspartic acid/asparagine and leucine. The glycosaminoglycan chains had a weight average Mr of 37,000 and were dermatan sulfate containing 73% iduronic acid. Those molecules found at highest buoyant density appeared to have additional glycosaminoglycan chains that were shorter. Proteoglycans were also extracted from the pressure-bearing distal region of this tendon, where contents of proteoglycan per wet weight of tissue were 3-fold higher and as much as 50% of this was as large as the large proteoglycans from the proximal tissue. Preparations of large proteoglycans from both tendon regions contained molecules capable of interacting with hyaluronic acid.  相似文献   

15.
Two chondroitin sulfate containing proteoglycans, amounting to approximately 6% of the tissue proteoglycans, were isolated from the skin of the squid. They were almost completely extracted by 4 M guanidine hydrochloride in the presence of proteinase inhibitors, and then they were separated by DEAE-Sephacel chromatography and isolated by further chromatography on Sepharose CL-4B. Each proteoglycan contained two types of chondroitin sulfates that differed in their sulfation patterns. One proteoglycan (molecular mass (M(r)) 5.6 x 10(5)) contained, on the average, four chondroitins (M(r) 8.4 x 10(4)) and five chondroitin sulfates (M(r) 3.4 x 10(4)), whereas the other proteoglycan (M(r) 5.2 x 10(5)) contained three chondroitin sulfates (M(r) 1.1 x 10(5)) and five oversulfated chondroitin sulfates (M(r) 4.3 x 10(4)). The glycosaminoglycans were released from the proteoglycans by treatment with alkaline borohydride, separated from the oligosaccharides by chromatography on Bio-Gel P-30, and isolated by chromatography on DEAE-Sephacel and Sepharose CL-6B. Chondroitin sulfates were degraded by chondroitinase AC to an extent of 70% and consisted of significant amounts of disaccharides sulfated at C-4 of the galactosamine, disulfated disaccharides, and small amounts of nonsulfated disaccharides, as well as disaccharides that bore sulfates at C-6. Oversulfated chondroitin sulfate was degraded by chondroitinase AC to only 40% and contained appreciable amounts of disulfated and trisulfated disaccharides. The glycosaminoglycans also contained neutral monosaccharides; glucose was the predominant neutral sugar. A part of the oligosaccharides of both proteoglycans was of identical structure to that of chondroitin sulfate.  相似文献   

16.
35SO42- - and [3H]-leucine-labelled proteoglycans were isolated from the medium of a fibroblast culture, from an EDTA extract of the monolayer, and from consecutive dithiothreitol and guanidine hydrochloride extracts of the cells. Proteoglycans of different sizes were isolated from the extracts by gel chromatography on Sepharose 4B. In the medium and the EDTA extract the largest proteoglycans contained only 35S-labelled galactosaminoglycan, whereas all other fractions contained in addition heparan [35S-labelled galactosaminoglycan, whereas all other fractions contained in addition heparin [35S]sulphate. The galactosaminoglycan-containing proteoglycans of the various extracts were separated into a larger component, containing chondroitin sulphate-like side chains, and a smaller component, containing dermatan sulphate. The larger proteoglycan of the medium showed reversible association-dissociation behaviour when chromatographed on Sepharose CL2B in phosphate-buffered saline and 4M-guanidine hydrochloride respectively. This property remained after removal of extraneous proteins by CsCl-density-gradient centrifugation in guanidine hydrochloride. The association was markedly increased by the addition of high-molecular-weight hyaluronic acid.  相似文献   

17.
Turnover of proteoglycans in cultures of bovine articular cartilage   总被引:8,自引:0,他引:8  
Proteoglycans in cultures of adult bovine articular cartilage labeled with [35S]sulfate after 5 days in culture and maintained in medium containing 20% fetal calf X serum had longer half-lives (average 11 days) compared with those of the same tissue maintained in medium alone (average 6 days). The half-lives of proteoglycans in cultures of calf cartilage labeled after 5 days in culture and maintained in medium with serum were considerably longer (average 21 days) compared to adult cartilage. If 0.5 mM cycloheximide was added to the medium of cultures of adult cartilage, or the tissue was maintained at 4 degrees C after labeling, the half-lives of the proteoglycans were greater, 24 and greater than 300 days, respectively. Analyses of the radiolabeled proteoglycans remaining in the matrix of the tissue immediately after labeling the tissue and at various times in culture revealed two main populations of proteoglycans; a large species eluting with Kav of 0.21-0.24 on Sepharose CL-2B, of high bouyant density and able to form aggregates with hyaluronate, and a small species eluting with a Kav of 0.63-0.70 on Sepharose CL-2B, of low buoyant density, containing only chondroitin sulfate chains, and unable to form aggregates with hyaluronate. The larger proteoglycan had shorter half-lives than the smaller proteoglycan; in cartilage maintained with serum, the half-lives were 9.8 and 14.5 days, respectively. Labeling cartilage with both [3H]leucine and [35S]sulfate showed the small proteoglycan to be a separate synthetic product. The size distribution of 35S-labeled proteoglycans lost into the medium was shown to be polydisperse on Sepharose CL-2B, the majority eluting with a Kav of 0.27 to 0.35, of high buoyant density, and unable to aggregate with hyaluronate. The size distribution of glycosaminoglycans from 35S-labeled proteoglycans appearing in the medium did not differ from that associated with labeled proteoglycans remaining in the matrix.  相似文献   

18.
The proteoglycans synthesized by primary chick skeletal muscle during in vitro myogenesis were compared with those of muscle-specific fibroblasts. Cultures of skeletal muscle cells and muscle fibroblasts were separately labeled using [35S] sulfate as a precursor. The proteoglycans of the cell layer and medium were separately extracted and isolated by ion-exchange chromatography on DEAE-Sephacel followed by gel filtration chromatography on Sepharose CL-2B. Two cell layer-associated proteoglycans synthesized both by skeletal muscle cells and muscle fibroblasts were identified. The first, a high molecular weight proteoglycan, eluted from Sepharose CL-2B with a Kav of 0.07 and contained exclusively chondroitin sulfate chains with an average molecular weight greater than 50,000. The second, a relatively smaller proteoglycan, eluted from Sepharose CL-2B with a Kav of 0.61 and contained primarily heparan sulfate chains with an average molecular weight of 16,000. Two labeled proteoglycans were also found in the medium of both skeletal muscle and muscle fibroblasts. A high molecular weight proteoglycan was found with virtually identical properties to that of the high molecular weight chondroitin sulfate proteoglycan of the cell layer. A second, smaller proteoglycan had a similar monomer size (Kav of 0.63) to the cell layer heparan sulfate proteoglycan, but differed from it in that this molecule contained primarily chondroitin sulfate chains with an average molecular weight of 32,000. Studies on the distribution of these proteoglycans in muscle cells during in vitro myogenesis demonstrated that a parallel increase in the relative amounts of the smaller proteoglycans occurred in both the cell layer and medium compared to the large chondroitin sulfate proteoglycan in each compartment. In contrast, muscle-derived fibroblasts displayed a constant ratio of the small proteoglycans of the cell layer and medium fractions, compared to the larger chondroitin sulfate proteoglycan of the respective fraction as a function of cell density. Our results support the concept that proteoglycan synthesis is under developmental regulation during skeletal myogenesis.  相似文献   

19.
Proteoglycans were extracted with 4 M guanidine–HCl from the zone of maturing chondrocytes, the site of endochondral ossification of growing antlers of wapiti (Cervus elaphus). Proteoglycans were isolated by DEAE-Sephacel chromatography and separated by Sepharose CL-4B chromatography into three fractions. Fraction I contained a high molecular mass (>1000 kDa) chondroitin sulfate proteoglycan capable of interacting with hyaluronic acid. Its amino acid composition resembled that of the cartilage proteoglycan, aggrecan. Fraction II contained proteoglycans with intermediate molecular weight which were recognized by monoclonal antibodies specific to chondroitin sulfate and keratan sulfate. Fraction III contained a low molecular mass (<160 kDa) proteoglycan, decorin, with a glucuronate-rich glycosaminoglycan chain.  相似文献   

20.
1. Two proteoglycans isolated from the femurs of quail actively producing medullary bone were separated using DEAE Bio-Gel A. 2. The first to elute in the gradient was a keratan sulfate proteoglycan with an average buoyant density of 1.53 g/ml and a Kav = 0.57 on Sepharose CL-4B. 3. The second proteoglycan to elute contained chondroitin 4-sulfate. 4. Apparently only the keratan sulfate proteoglycan is associated with the new medullary bone matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号