共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The increased expiration of ethane and pentane by mice treated with hepatotoxic doses of acetaminophen suggests the possibility of oxidant mechanisms associated with the necrosis. However, studies in rats are not consistent with oxidant stress mechanisms causing the damage, because acetaminophen given to rats does not increase GSSG efflux, a sensitive index of intrahepatic oxidant stress. To compare the extent of oxidant stress generated by acetaminophen in mice versus rats, hepatic content and biliary efflux of GSSG and GSH in mice have been examined. Bile was collected from anesthetized male ICR mice before and after intraperitoneal administration of acetaminophen (325 mg/kg, 2.15 mmol/kg), t-butyl hydroperoxide (TBHP) (1.5 mmol/kg), diethyl maleate (400 mg/kg, 2.33 mmol/kg, in corn oil) or saline (control) and GSH and GSSG were measured by the enzymatic recycling method of Tietze. An increase in biliary GSSG efflux was produced by t-butyl hydroperoxide, but not by the other agents. Biliary GSH/GSSG ratios decreased in acetaminophen-treated animals, presumably reflecting the marked depletion of hepatic GSH, since a similar decrease was observed with non-hepatotoxic doses of diethyl maleate. The failure of acetaminophen to increase the hepatic content or biliary efflux of GSSG in ICR mice is not consistent with the view that oxidant stress mechanisms cause the damage, despite the increases in alkanes expired after acetaminophen administration in this specific animal model. 相似文献
5.
Ito Y Abril ER Bethea NW McCuskey RS 《American journal of physiology. Gastrointestinal and liver physiology》2004,286(1):G60-G67
Nitric oxide (NO) is suggested to play a role in liver injury elicited by acetaminophen (APAP). Hepatic microcirculatory dysfunction also is reported to contribute to the development of the injury. As a result, the role of NO in hepatic microcirculatory alterations in response to APAP was examined in mice by in vivo microscopy. A selective inducible NO synthase (iNOS) inhibitor,l-N6-(1-iminoethyl)-lysine (L-NIL), or a nonselective NOS inhibitor, NG-nitro-l-arginine methyl ester (L-NAME), was intraperitoneally administered to animals 10 min before APAP gavage. L-NIL suppressed raised alanine aminotransferase (ALT) values 6 h after APAP, whereas L-NAME increased those 1.7-fold. Increased ALT levels were associated with hepatic expression of iNOS. L-NIL, but not L-NAME, reduced the expression. APAP caused a reduction (20%) in the numbers of perfused sinusoids. L-NIL restored the sinusoidal perfusion, but L-NAME was ineffective. APAP increased the area occupied by infiltrated erythrocytes into the extrasinusoidal space. L-NIL tended to minimize this infiltration, whereas L-NAME further enhanced it. APAP caused an increase (1.5-fold) in Kupffer cell phagocytic activity. This activity in response to APAP was blunted by L-NIL, whereas L-NAME further elevated it. L-NIL suppressed APAP-induced decreases in hepatic glutathione levels. These results suggest that NO derived from iNOS contributes to APAP-induced parenchymal cell injury and hepatic microcirculatory disturbances. L-NIL exerts preventive effects on the liver injury partly by inhibiting APAP bioactivation. In contrast, NO derived from constitutive isoforms of NOS exerts a protective role in liver microcirculation against APAP intoxication and thereby minimizes liver injury. 相似文献
6.
7.
Rimoldi OJ Finarelli GS Brenner RR 《Biochemical and biophysical research communications》2001,283(2):323-326
It has been recognized that rat liver microsomal Delta6 desaturation activity is defective in experimental diabetes, a fact that may be reverted by means of insulin treatment. In the present study, we used streptozotocin-induced diabetic rats in order to determine the regulatory role of insulin on the expression of hepatic Delta6 desaturase gene. The abundance of hepatic Delta6 desaturase mRNA in the diabetic rats is sevenfold lower than in the control. Insulin administration to diabetic rats induces Delta6 desaturase mRNA eightfold within 24 h. The effect of insulin on the Delta6 desaturase mRNA was inhibited 70% with dibutyryl-cAMP and theophylline administration and 90% by cycloheximide administration. Therefore, our data demonstrate that the activity of hepatic Delta6 desaturase in response to insulin is, at least in part, regulated by pretranslational events that require the synthesis of an unknown protein(s). 相似文献
8.
低氧作为青藏高原最为特殊的环境因素之一,对高原动物的适应进化产生了深刻的影响。持续的低氧暴露会损伤肝脏功能,引起动物机体代谢紊乱,但连续低氧处理对子代肝脏的影响仍缺乏相关研究。本研究将成年小鼠转移至高原低氧环境(海拔3 220 m)饲养并繁殖,以常氧条件下饲养小鼠为对照,统计低氧处理小鼠(低氧第0代)及其子代(低氧第1~5代)生长数据,发现长期低氧暴露导致小鼠肝脏比重增加,肝细胞肿胀,肝索间红细胞浸润,并且子一代小鼠肝小叶出现脂肪变性。血液生化指标显示,相比于对照组(常氧第0代),低氧第0代和低氧第1代的谷丙转氨酶和谷草转氨酶水平显著上升(P <0.05);血清白蛋白、球蛋白、总胆红素和总胆固醇水平在低氧第0代中下降,低氧第1代中上升(P <0.05)。空腹注射葡萄糖和胰岛素后低氧组小鼠的葡萄糖耐受能力和胰岛素敏感性显著减弱(P <0.05)。常氧第0代、低氧第0代及低氧第1代肝脏RNA-seq分析发现,低氧第0代和低氧第1代共有的459个差异基因显著富集在MAPK、细胞凋亡、脂质代谢和内质网等信号通路。本研究发现低氧胁迫对子代小鼠肝脏具有重要影响,此结果对肝脏低氧生... 相似文献
9.
10.
11.
Xue-Liang Dang Long-Fei Yang Lei Shi Long-Fei Li Ping He Jie Chen Bei-Jie Zheng Peng Yang Ai-Dong Wen 《Experimental biology and medicine (Maywood, N.J.)》2021,246(10):1219
Overdose of acetaminophen (APAP) is responsible for the most cases of acute liver failure worldwide. Hepatic mitochondrial damage mediated by neuronal nitric oxide synthase- (nNOS) induced liver protein tyrosine nitration plays a critical role in the pathophysiology of APAP hepatotoxicity. It has been reported that pre-treatment or co-treatment with glycyrrhizin can protect against hepatotoxicity through prevention of hepatocellular apoptosis. However, the majority of APAP-induced acute liver failure cases are people intentionally taking the drug to commit suicide. Any preventive treatment is of little value in practice. In addition, the hepatocellular damage induced by APAP is considered to be oncotic necrosis rather than apoptosis. In the present study, our aim is to investigate if glycyrrhizin can be used therapeutically and the underlying mechanisms of APAP hepatotoxicity protection. Hepatic damage was induced by 300 mg/kg APAP in balb/c mice, followed with administration of 40, 80, or 160 mg/kg glycyrrhizin 90 min later. Mice were euthanized and harvested at 6 h post-APAP. Compared with model controls, glycyrrhizin post-treatment attenuated hepatic mitochondrial and hepatocellular damages, as indicated by decreased serum glutamate dehydrogenase, alanine aminotransferase, and aspartate aminotransferase activities as well as ameliorated mitochondrial swollen, distortion, and hepatocellular necrosis. Notably, 80 mg/kg glycyrrhizin inhibited hepatic nNOS activity and its mRNA and protein expression levels by 16.9, 14.9, and 28.3%, respectively. These results were consistent with the decreased liver nitric oxide content and liver protein tyrosine nitration indicated by 3-nitrotyrosine staining. Moreover, glycyrrhizin did not affect the APAP metabolic activation, and the survival rate of ALF mice was increased by glycyrrhizin. The present study indicates that post-treatment with glycyrrhizin can dose-dependently attenuate hepatic mitochondrial damage and inhibit the up-regulation of hepatic nNOS induced by APAP. Glycyrrhizin shows promise as drug for the treatment of APAP hepatotoxicity. 相似文献
12.
Effects of leptin gene expression in mice in vivo by electroporation and hydrodynamics-based gene delivery 总被引:3,自引:0,他引:3
Xiang L Murai A Sugahara K Yasui A Muramatsu T 《Biochemical and biophysical research communications》2003,307(3):440-445
In vivo electroporation and hydrodynamics-based gene delivery were utilized to test the effect of leptin gene transfer on food intake, and body and fat weights of mice. Gene transfer of pVRmob by electroporation caused a significant reduction in body weight compared with the control counterpart (p<0.05), although a lesser effect was found in food intake, and the weights of interscapular brown and epididymal fat by electroporation. As might be expected, the hydrodynamics-based transfection method significantly reduced body weight over 1 week post-transfection (p<0.05). Furthermore, epididymal fat was decreased by 50% at 1 week after gene transfer (p<0.001). These results suggest that both electroporation and hydrodynamics-based gene delivery may be effective approaches for systemic delivery of recombinant leptin to the central nervous system, and that the efficiency of gene transfer in hydrodynamics-based gene delivery was markedly higher than that in electroporation at least within the first week after transfection. 相似文献
13.
14.
15.
目的:明确在转基因小鼠体内,βLCR对β地中海贫血基因表达的影响。方法:将完整人β-IVSⅡ-654地中海贫血基因,与串连了人βLCR的β-IVSⅡ-654地中海贫血基因分别经显微注射法制作转基因小鼠;荧光定量RT-PCR法检测β-IVSⅡ-654地贫基因在转基因小鼠体内的表达;采用统计分析比较2类转基因鼠中外源基因的表达量。结果:成功建立2类整合了人β-IVSⅡ-654地贫基因的转基因小鼠模型。荧光定量RT-PCR分析结果表明,在整合了串连人βLCR的β-IVSⅡ-654地贫基因的小鼠体内,外源基因mRNA的表达量远高于仅整合β-IVSⅡ-654地贫基因的小鼠(统计分析P值 )。结论:βLCR核心片段的存在可以使β-珠蛋白基因家族(包括β-地贫基因)在转基因小鼠体内获得高效表达的必要条件。 相似文献
16.
A K Roy B Chatterjee K V Rao C V Murty F H Sarkar D Majumdar 《Journal of steroid biochemistry》1987,27(4-6):1129-1134
Androgen-dependent synthesis of alpha 2u globulin in the rat liver has been used in our laboratory as a model for studying the effect of sex hormones on hepatic gene expression. alpha 2u Globulin is a group of low molecular weight (Mr approximately 18,000) male specific urinary proteins synthesized and secreted by hepatocytes. In the male rat hepatic synthesis of alpha 2u globulin begins at puberty (approximately 40 days), reaches a peak level (approximately 20 mg/day) at about 75 days and declines during old age. Androgens can induce alpha 2u globulin in ovariectomized female rats in vivo and in the liver perfusion system in vitro. However, both prepubertal and senescent (greater than 800 days) male rats not only do not produce alpha 2u globulin but are also refractory to androgen administration. alpha 2u Globulin is coded by a multigene family comprising about 20-30 gene copies per haploid genome. All of these gene copies seem to express translationally active mRNAs giving rise to individual isoforms of alpha 2u globulin. Appearance and disappearance of the cytoplasmic androgen-binding protein (CAB) correlates with the androgen responsiveness of hepatocytes. Photoaffinity labeling of the hepatic cytosol shows that the biologically active binding protein, found in the cytosol of the mature male rat liver, has a molecular weight of 31 kDa. A molecular transition of the 31-kDa CAB to a biologically inactive 29-kDa form may be the basis of hepatic androgen insensitivity during prepuberty and senescence. 相似文献
17.
Acetaminophen (APAP) with or without ascorbyl stearate (AS) or ascorbyl palmitate (AP) was administered by gavage to male Swiss-Webster mice at a dose of 600 mg/kg for each chemical. The biochemical markers of hepatotoxicity, serum transaminases (serum glutamate pyruvate transaminase [SGPT], serum glutamate oxaloacetic transaminase [SGOT]) and serum isocitrate dehydrogenase (SICD) activities were monitored after APAP and APAP + AP or AS dosing. There were significant reductions in serum transaminase and SICD activities in the APAP- + ascorbate ester-treated animals as compared to APAP-positive controls. Oral coadministration of APAP with AP or AS did not prevent the initial hepatic GSH depletion (15 min-4 hr postdosing). However, hepatic GSH content began to rise in the APAP + AS or AP-treated animals at 4 hr and reached control values within 12 hr postdosing. Urinary mercapturate conjugates were also significantly higher in the APAP + AP or AS-treated animals as compared to APAP alone when measured over a 60-min postdosing period. Plasma sulfobromophthalein (BSP) retention was approximately eight times higher in APAP-treated animals as compared to the APAP + ascorbate ester treatments indicating maintenance of hepatic excretory functions in presence of AP or AS. Prior depletion of hepatic GSH by diethyl maleate (DEM) did not alter hepatoprotective effects of AP or AS in the presence of APAP. Hepatic ascorbate levels also peaked at 4 hours after APAP + AP or AS treatments. The possible role of L-ascorbic acid esters in GSH regeneration following co-administration of a hepatotoxic dose and APAP is discussed. 相似文献
18.
Seung-Min Lee Alexandre Loguinov Robert E. Fleming Christopher D. Vulpe 《Genes & nutrition》2015,10(1)
Hereditary hemochromatosis is an iron overload disorder most commonly caused by a defect in the HFE gene. While the genetic defect is highly prevalent, the majority of individuals do not develop clinically significant iron overload, suggesting the importance of genetic modifiers. Murine hfe knockout models have demonstrated that strain background has a strong effect on the severity of iron loading. We noted that hepatic iron loading in hfe−/− mice occurs primarily over the first postnatal weeks (loading phase) followed by a timeframe of relatively static iron concentrations (plateau phase). We thus evaluated the effects of background strain and of age on hepatic gene expression in Hfe knockout mice (hfe−/−). Hepatic gene expression profiles were examined using cDNA microarrays in 4- and 8-week-old hfe−/− and wild-type mice on two different genetic backgrounds, C57BL/6J (C57) and AKR/J (AKR). Genes differentially regulated in all hfe−/− mice groups, compared with wild-type mice, including those involved in cell survival, stress and damage responses and lipid metabolism. AKR strain-specific changes in lipid metabolism genes and C57 strain-specific changes in cell adhesion and extracellular matrix protein genes were detected in hfe−/− mice. Mouse strain and age are each significantly associated with hepatic gene expression profiles in hfe−/− mice. These affects may underlie or reflect differences in iron loading in these mice.
Electronic supplementary material
The online version of this article (doi:10.1007/s12263-014-0443-1) contains supplementary material, which is available to authorized users. 相似文献19.
Nonalcoholic fatty liver disease (NAFLD) is highly prevalent and associated with considerable morbidities. Unfortunately, there is no currently available drug established to treat NAFLD. It was recently reported that intraperitoneal administration of taurine-conjugated ursodeoxycholic acid (TUDCA) improved hepatic steatosis in ob/ob mice. We hereby examined the effect of oral TUDCA treatment on hepatic steatosis and associated changes in hepatic gene expression in ob/ob mice. We administered TUDCA to ob/ob mice at a dose of 500 mg/kg twice a day by gastric gavage for 3 weeks. Body weight, glucose homeostasis, endoplasmic reticulum (ER) stress, and hepatic gene expression were examined in comparison with control ob/ob mice and normal littermate C57BL/6J mice. Compared to the control ob/ob mice, TUDCA treated ob/ob mice revealed markedly reduced liver fat stained by oil red O (44.2±5.8% vs. 21.1±10.4%, P<0.05), whereas there was no difference in body weight, oral glucose tolerance, insulin sensitivity, and ER stress. Microarray analysis of hepatic gene expression demonstrated that oral TUDCA treatment mainly decreased the expression of genes involved in de novo lipogenesis among the components of lipid homeostasis. At pathway levels, oral TUDCA altered the genes regulating amino acid, carbohydrate, and drug metabolism in addition to lipid metabolism. In summary, oral TUDCA treatment decreased hepatic steatosis in ob/ob mice by cooperative regulation of multiple metabolic pathways, particularly by reducing the expression of genes known to regulate de novo lipogenesis. 相似文献
20.
Neurofilament gene expression in transgenic mice 总被引:3,自引:0,他引:3
1. DNA fragments that include the human neurofilament NF-L gene was found to be correctly expressed in the majority of neurons in transgenic mice. 2. The NF-L transgene product, which is detectable in situ with a species-specific monoclonal antibody, provides a powerful genotype marking system applicable to developmental and regeneration studies of the mammalian nervous system. 3. The proximal 5'-flanking region of the NF-L gene is sufficient to direct expression of a heterologous gene in the mouse nervous system. 相似文献