首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 462 毫秒
1.
卢丽丽  肖敏  赵晗 《微生物学报》2007,34(4):0769-0772
微生物糖苷酶的酸碱功能氨基酸突变酶能催化硫代糖苷的合成,这类酶被称为硫代糖苷酶。目前发展的硫代糖苷酶有β-硫代葡糖苷酶、β-硫代甘露糖苷酶、β-硫代半乳糖苷酶、α-硫代木糖苷酶和α-硫代葡糖苷酶,来源于细菌和古细菌,能合成多种硫代糖苷。最近,硫代糖苷酶被应用于糖蛋白的糖基化修饰,首次人工合成硫代糖蛋白。微生物糖苷酶合成功能的新延伸,对糖生物学、生物技术和制药业的发展将有着重要意义。  相似文献   

2.
卢丽丽  肖敏  赵晗 《微生物学通报》2007,34(4):0769-0772
微生物糖苷酶的酸碱功能氨基酸突变酶能催化硫代糖苷的合成,这类酶被称为硫代糖苷酶。目前发展的硫代糖苷酶有β-硫代葡糖苷酶、β-硫代甘露糖苷酶、β-硫代半乳糖苷酶、α-硫代木糖苷酶和α-硫代葡糖苷酶,来源于细菌和古细菌,能合成多种硫代糖苷。最近,硫代糖苷酶被应用于糖蛋白的糖基化修饰,首次人工合成硫代糖蛋白。微生物糖苷酶合成功能的新延伸,对糖生物学、生物技术和制药业的发展将有着重要意义。  相似文献   

3.
山葵作为一种食用保健植物,富含异硫氰酸酯类、腈类、硫氰酸酯类、环腈类和恶唑烷酮类等多种生物活性成分,特别是其组织中的硫葡糖苷经内源性芥子苷酶水解产生的异硫氰酸酯类具抗血栓、抗骨质疏松、抗癌、抗病毒、抗氧化、辅助降血糖等多种保健作用。文章综述了国内外山葵生物活性成分及其保健作用的研究进展,并对其应用前景进行了展望。  相似文献   

4.
黑芥子酶研究进展   总被引:3,自引:0,他引:3  
杨文杰 《生物学通报》1999,34(11):18-19
黑芥子酶又称黑芥子硫苷酸酶,广泛存在于自然界。它能催化硫代葡萄糖苷水解成为葡萄糖和不稳定的中间物配基,此配基易重排形成异硫氰化合物,硫氰化合物,腈,口恶唑烷硫酮等有毒物质。当植物受到昆虫,哺乳动物或病源伤害时,黑芥子酶与硫代葡萄糖苷混合,释放有毒的水解产物。因此认为黑芥子酶-硫代葡萄糖苷系统是植物重要的防御系统。另一方面,黑芥子酶催化硫代葡萄糖苷所生成的有毒物质,在一定程度上也影响了十字花科油料及蔬菜作物的品质,因此,引起了对黑芥子酶及硫代葡萄糖苷研究的重视。本文仅对黑芥子酶的研究概况作一综述。1 黑芥子酶的…  相似文献   

5.
植物中硫代葡萄糖苷生物代谢的分子机制   总被引:11,自引:0,他引:11  
硫代葡萄糖苷是十字花科植物中重要的次生代谢物。它在内源芥子酶作用下水解为具有不同生理功能的活性物质。现从分子水平综述硫代葡萄糖苷生物合成、降解反应及其代谢调控的研究进展,为提高植物抗病性和改善营养品质等方面研究提供一定的理论依据。  相似文献   

6.
过氧化物酶是一类广泛存在于生物中的氧化还原酶,被认为参与植物花青素的代谢.本实验利用RNAi技术,干扰萝卜过氧化物酶基因Rsprx1表达. 结果表明, RNAi干扰载体的萝卜植株中过氧化物酶基因(Rsprx1)表达被抑制,过氧化物酶活性显著降低,过氧化物酶同工酶条带减少|而花青素含量在处理第9 d达到最大值|花青苷种类和含量有较大变化: 天竺葵素-3-阿魏酰葡糖苷-5-丙二酰基葡糖苷、天竺葵素-3-ρ-香豆酰二葡糖苷-5-丙二酰基葡糖苷、天竺葵素-3-阿魏酰二葡糖苷-5-丙二酰基葡糖苷和天竺葵素-3-二ρ-香豆酰二葡糖苷5-丙二酰基葡糖苷含量升高; 天竺葵素-3-二葡糖苷-5-葡糖苷、天竺葵素-3-葡糖苷-5-葡糖苷和天竺葵素-3-酰化二葡糖苷-5-葡糖苷含量降低|花青素合成相关基因(Chs、Chi、Dfr、F3h和Ldox)及转录因子(Tt8)的mRNA表达水平在RNAi处理后早期有明显上调.这些结果均表明,萝卜过氧化物酶Rsprx1参与花青素的合成代谢.  相似文献   

7.
近年来,氟代糖应用于糖苷酶反应研究,显示出越来越重要的作用。氟代糖可以作为糖苷酶及其突变酶的水解底物研究酶学性质;氟代糖抑制剂可以标记糖苷酶催化中心,鉴定亲核体氨基酸。尤为重要的是,氟代糖可作为糖苷酶的糖基供体来合成糖类。糖苷酶突变后,可生成糖苷合成酶和硫代糖苷合成酶,可以用与正常底物构型相反的氟代糖作为糖基供体高效合成糖类,收率一般为60%~90%,有的可达100%。糖苷酶及其突变酶以氟代糖为底物高效合成糖类的研究,必将促进生物学、糖生物学和纳米生物材料的发展。  相似文献   

8.
王晨  李家儒 《生物资源》2021,(2):101-109
β-葡萄糖苷酶是一种糖苷水解酶,广泛存在于动物、植物和微生物中。β-葡萄糖苷酶能够水解非还原性末端糖基,在植物细胞壁代谢、植物激素激活以及逆境防御等方面发挥着重要作用。β-葡萄糖苷酶依据其氨基酸序列可以分为GH1、GH3、GH5、GH7、GH9、GH12、GH35、GH116等8个家族;但是,目前仅对GH1和GH3有较深入的研究,其他家族的功能依旧不清楚。综述了近年来植物中β-葡萄糖苷酶的结构、理化性质、底物特异性、催化机制以及糖苷水解酶家族在植物中的功能等方面的研究进展,总结了植物中β-葡萄糖苷酶研究中存在的问题,并指出今后的研究方向。  相似文献   

9.
由于缺乏转化标记限制了植物遗传工程的进展。这种转化标记是指编码可选择特征如卡那霉素抗性、可检测产物如β-葡糖苷酸酶或可见标记如荧光素酶的基因。因为生化标记或当前采用的可见标记需要加入底物或辅助因子,所以限制了它们在活体植物组织中的应用。 美国农业部的R.P.Nieds已将绿色荧光蛋白(GFP)基因导入柑桔细胞。在无外加底物或辅助因子条件下用蓝光或近紫外光照射,转基因细胞呈现鲜绿色。该基因以前是由哥伦比亚大学、Rutgers大学及Woods Hole海洋研究所的M.Chalfie及同事从荧光水母分离出来的,后经威斯康星州立大学的Niedz  相似文献   

10.
通过内源和外源芥子酶酶解硫代葡萄糖苷产生的葡萄糖的测定,间接测出西兰花中β-硫代葡萄糖苷总量,并对测定的影响因素进行了研究,与吡啶滴定法对比实验表明,该法准确可靠,操作简便。  相似文献   

11.
Secondary metabolites are important in plant defence against pests and diseases. Similarly, insects can use plant secondary metabolites in defence and, in some cases, synthesize their own products. The paper describes how two specialist brassica feeders, Brevicoryne brassicae (cabbage aphid) and Lipaphis erysimi (turnip aphid) can sequester glucosinolates (thioglucosides) from their host plants, yet avoid the generation of toxic degradation products by compartmentalizing myrosinase (thioglucosidase) into crystalline microbodies. We propose that death, or damage, to the insect by predators or disease causes disruption of compartmentalized myrosinase, which results in the release of isothiocyanate that acts as a synergist for the alarm pheromone E-beta-farnesene.  相似文献   

12.
The aphid myrosinase gene has been elucidated using Rapid Amplification of cDNA Ends-PCR. Sequencing has shown that aphid myrosinase has significant sequence similarity (35%) to plant myrosinases and other members of glycosyl hydrolase family 1 (GHF1). The residues acting as proton donor and nucleophile, in the hydrolysis of glucosinolates by aphid myrosinase, are identified as Glu 167 and Glu 374 respectively. The equivalent residues in plant myrosinase are Gln 187 and Glu 409 and for the cyanogenic beta-glucosidase Glu 183 and Glu 397. Thus it would appear that the absence of a proton donor is not necessary for the hydrolysis of glucosinolates as was thought to be the case for the plant myrosinases. Aphid myrosinase appears to be more similar to animal beta-O-glucosidases than to plant myrosinases, as assessed by sequence similarity and phylogenetic techniques. These results strongly suggest that myrosinase activity has twice arisen from beta-O-glucosidases in plants and animals. Comparison of aphid myrosinase with plant myrosinase has highlighted Lys 173 and Arg 312 as possibly playing a crucial role in the hydrolysis of glucosinolates by aphid myrosinase.  相似文献   

13.
Glucosinolates are anionic thioglucosides that have become one of the most frequently studied groups of defensive metabolites in plants. When tissue damage occurs, the thioglucoside linkage is hydrolyzed by enzymes known as myrosinases, resulting in the formation of a variety of products that are active against herbivores and pathogens. In an effort to learn more about the molecular genetic and biochemical regulation of glucosinolate hydrolysis product formation, we analyzed leaf samples of 122 Arabidopsis ecotypes. A distinct polymorphism was observed with all ecotypes producing primarily isothiocyanates or primarily nitriles. The ecotypes Columbia (Col) and Landsberg erecta (Ler) differed in their hydrolysis products; therefore, the Col x Ler recombinant inbred lines were used for mapping the genes controlling this polymorphism. The major quantitative trait locus (QTL) affecting nitrile versus isothiocyanate formation was found very close to a gene encoding a homolog of a Brassica napus epithiospecifier protein (ESP), which causes the formation of epithionitriles instead of isothiocyanates during glucosinolate hydrolysis in the seeds of certain Brassicaceae. The heterologously expressed Arabidopsis ESP was able to convert glucosinolates both to epithionitriles and to simple nitriles in the presence of myrosinase, and thus it was more versatile than previously described ESPs. The role of ESP in plant defense is uncertain, because the generalist herbivore Trichoplusia ni (the cabbage looper) was found to feed more readily on nitrile-producing than on isothiocyanate-producing Arabidopsis. However, isothiocyanates are frequently used as recognition cues by specialist herbivores, and so the formation of nitriles instead of isothiocyanates may allow Arabidopsis to be less apparent to specialists.  相似文献   

14.
15.
In Brassica napus three different gene families with different temporal and tissue-specific expression and distribution patterns encode myrosinases (thioglucoside glucohydrolases, EC 3.2.3.1). Myrosinases encoded by the MA gene family are found as free and soluble dimers, while myrosinases encoded by the MB and MC gene families are mainly found in large insoluble complexes associated with myrosinase-binding proteins and myrosinase-associated proteins. These large complexes impede purification and characterization of MB and MC myrosinases from the plant. We used Pichia pastoris to express and secrete functional recombinant MYR1 myrosinase from B. napus to allow further characterization of myrosinase belonging to the MB gene family. The purified recombinant myrosinase hydrolyzes sinigrin with a K(m) of 1.0 mM; the specific activity and calculated k(cat)/K(m) were 175 U/mg and 1.9 x 10(5) s(-1) M(-1), respectively. A novel in-gel staining method for myrosinase activity is presented.  相似文献   

16.
The myrosinase (thioglucoside glucohydrolase) gene family in Brassicaceae   总被引:7,自引:0,他引:7  
The glucosinolate hydrolyzing enzymes myrosinase (thioglucoside glucohydrolase, EC 3.2.3.1) are encoded by a multigene family consisting of two subgroups. The first two nuclear genes representing each of these two subgroups of the new gene family, Myr1.Bn1 and Myr2.Bn1, from Brassica napus have been cloned and sequenced. Based on conserved regions in cDNA of three species, PCR (polymerase chain reaction) primers were made, and used to amplify and characterize the structure of the myrosinase genes in seven species of Brassiceae. Southern hybridization analysis of PCR products and genomic DNA indicates that myrosinase is encoded by at least 14 genes in B. napus, with similar numbers in the other species of Brassicaceae investigated. The Myr1 gene cloned from B. napus has a 19 amino acid signal peptide and consists of 11 exons of sizes ranging from 54 to 256 bp and 10 introns of sizes from 75 to 229 bp. The Myr2 gene has a 20 amino acid signal peptide and consists of 12 exons ranging in size from 35 to 262 bp and 11 introns of sizes from 81 to 131 bp. The exons from the two genes have 83% homology at the amino acid level. The intron-exon splice sites are of GT..AG consensus type. The signal peptides and presence of sites for N-linked glycosylation, suggest transport and glycosylation through the ER-Golgi complex. The differences between the two genes are discussed on the basis of their predicted expression at different developmental stages in the plant. Both genes show homology to a conserved motif representing the glycosyl hydrolase family of enzymes.  相似文献   

17.
The aphid Brevicoryne brassicae is a specialist feeding on Brassicaceae plants. The insect has an intricate defence system involving a beta-D-thioglucosidase (myrosinase) that hydrolyses glucosinolates sequestered from the host plant into volatile isothiocyanates. These isothiocyanates act synergistically with the pheromone E-beta-farnesene to form an alarm system when the aphid is predated. In order to investigate the enzymatic characteristics of the aphid myrosinase and its three-dimensional structure, milligram amounts of pure recombinant aphid myrosinase were obtained from Echerichia coli. The recombinant enzyme had similar physiochemical properties to the native enzyme. The global structure is very similar to Sinapis alba myrosinase and plant beta-O-glucosidases. Aphid myrosinase has two catalytic glutamic acid residues positioned as in plant beta-O-glucosidases, and it is not obvious why this unusual enzyme hydrolyses glucosinolates, the common substrates of plant myrosinases which are normally not hydrolyzed by plant beta-O-glucosidases. The only residue specific for aphid myrosinase in proximity of the glycosidic linkage is Tyr180 which may have a catalytic role. The aglycon binding site differs strongly from plant myrosinase, whereas due to the presence of Trp424 in the glucose binding site, this part of the active site is more similar to plant beta-O-glucosidases, as plant myrosinases carry a phenylalanine residue at this position.  相似文献   

18.
In order to obtain fungous myrosinase, Aspergillus sydowi IFO 4284 was cultured on a medium containing mustard seed extract for 2 weeks. Myrosinase in the broth was purified about 150 fold by precipitation with ammonium sulfate and chromatography on DEAE-cellulose and DEAE-Sephadex. Comparison of thioglucosidase and sulfatase activities of the myrosinase preparation using pH-activity, pH-stability and temperature-stability curves revealed no differences from each other. The chromatograms of the two activities on DEAE-Sephadex showed good agreement. Consequently, the myrosinase produced by Aspergillus sydowi was concluded to be a single β-thioglucosidase, not a mixture of thioglucosidase and sulfatase.

The effects of various reagents on Aspergillus sydowi myrosinase were studied.

The enzymatic activity was stimulated by cobalt (II), zinc (II) and magnesium ions and inhibited by mercury (II), iron (II) and copper (II) ions. However, metal-complexing agents, SH reagents and diisopropylfluorophosphate showed no effects on enzymatic activity. In contrast to plant myrosinase, this enzyme was neither activated nor inhibited by any concentrations of l-ascorbate. Glucose and salicin were competitive inhibitors for the enzyme. High concentrations of sodium chloride inhibited the enzyme.

From the inhibition modes of sugars and β-glucosides and from that of sodium chloride against the enzyme, a similarity of the enzyme to β-glucosidases was shown.

β-Glucosidase activity of fungous myrosinase was confirmed using p-nitrophenyl β-glucoside as a substrate. This activity was revealed to be due to the myrosinase itself, Experimental results indicated a resemblance of fungous myrosinase to β-glucosidases similar to plant myrosinase. The relationship between fungous and plant myrosinases to the β-glucosidases are discussed from the view of the substrate specificity of these enzymes. The conclusions are that distinction between plant and fungous myrosinases and the β-glucosidases are not as strict as previously thought, and the myrosinases should be considered β-glucosidases highly specialized for the hydrolysis of mustard oil glucoside.  相似文献   

19.
Myrosinases are thioglucosidases that hydrolyze the natural plant products glucosinolates. We have expressed the myrosinase MYR1 from Brassica napus in Saccharomyces cerevisiae. The recombinant myrosinase was enzymatically active which shows that the MYR1, which in the plant is complex bound with myrosinase-binding proteins and myrosinase-associated proteins, is functional in its free form. Characterization of the recombinant MYR1 with respect to pH optimum, substrate specificity, activation by ascorbic acid, and inhibitors showed similar characteristics as previously observed for other plant myrosinases. The indolizidine alkaloid castanospermine, an inhibitor of O-glycosidases, inhibited the hydrolysis of p-hydroxybenzylglucosinolate with a K(i) value of 0.3 microM and 2-deoxy-2-fluoroglucotropaeolin, a specific inhibitor of thioglucosidases, inhibited the enzyme with a K(i) value of 1 mM. The expression of the myrosinase in yeast was transient and the growth of the yeast cells was significantly reduced during the period of expression of the myrosinase. Immunoblot analysis showed that the highest level of expression of MYR1 was obtained 24 h after induction with galactose. The amount of myrosinase protein correlated with the level of enzyme activity. The transient expression of myrosinase indicates that myrosinase is toxic to the cells. This is the first report on successful heterologous expression of a myrosinase and provides an important tool for, e.g., further characterization of myrosinase by site-directed mutagenesis and for studying the interaction between myrosinase and myrosinase-binding proteins, myrosinase-associated proteins, and epithiospecifier proteins.  相似文献   

20.
The glucosinolates are a large group of sulphur-containing glucosides found in brassica vegetables. After physical damage to the plant tissue, glucosinolates are broken down, by the endogenous enzyme myrosinase, releasing glucose and a complex variety of biologically active products. The most important and extensively studied of these compounds are the isothiocyanates. Glucosinolates can be degraded or leached from vegetable tissue during food processing, but thermal inactivation of myrosinase preserves some intact glucosinolates in cooked vegetables. Once ingested, any remaining intact glucosinolates may be broken down by plant myrosinase in the small intestine, or by bacterial myrosinase in the colon. Isothiocyanates are absorbed from the small bowel and colon, and the metabolites are detectable in human urine 2–3 h after consumption of brassica vegetables. Isothiocyanates are potent inducers of Phase II enzymes in vitro, and they have been shown to increase the metabolism and detoxification of chemical carcinogens in vitro and in animal models. Some of these compounds also inhibit mitosis and stimulate apoptosis in human tumour cells, in vitro and in vivo. This second effect raises the possibility that in addition to blocking DNA damage, isothiocyanates may selectively inhibit the growth of tumour cells even after initiation by chemical carcinogens. Epidemiological evidence supports the possibility that glucosinolate breakdown products derived from brassica vegetables may protect against human cancers, especially those of the gastrointestinal tract and lung. To define and exploit these potentially anticarcinogenic effects it is important to understand and manipulate glucosinolate chemistry and metabolism across the whole food-chain, from production and processing to consumption. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号