首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During ventricular fibrillation (VF), electrical activation waves are fragmented, and the heart cannot contract in synchrony. It has been proposed that VF waves emanate from stable periodic sources (often called "mother rotors"). The objective of the present study was to determine if stable rotors are consistently present on the epicardial surface of hearts comparable in size to human hearts. Using new optical mapping technology, we imaged VF from nearly the entire ventricular surface of six isolated swine hearts. Using newly developed pattern analysis algorithms, we identified and tracked VF wave fronts and phase singularities (PS; the pivot point of a reentrant wave front). We introduce the notion of a compound rotor in which the rotor's central PS can change and describe an algorithm for automatically identifying such patterns. This prevents rotor lifetimes from being inappropriately abbreviated by wave front fragmentation and collision events near the PS. We found that stable epicardial rotors were not consistently present during VF: only 1 of 17 VF episodes contained a compound rotor that lasted for the entire mapped interval of 4 s. However, shorter-lived rotors were common; 12.2 (SD 3.3) compound rotors with lifetime >200 ms were visible on the epicardium at any given instant. We conclude that epicardial mother rotors do not drive VF in this experimental model; if mother rotors do exist, they are intramural or septal. This paucity of persistent rotors suggests that individual rotors will eventually terminate by themselves and therefore that the continual formation of new rotors is critical for VF maintenance.  相似文献   

2.
Because congestive heart failure (CHF) promotes ventricular fibrillation (VF), we compared VF in seven dogs with CHF induced by combined myocardial infarction and rapid ventricular pacing to VF in six normal dogs. A noncontact, multielectrode array balloon catheter provided full-surface real-time left ventricular (LV) endocardial electrograms and a dynamic color-coded display of endocardial activation projected onto a three-dimensional model of the LV. Fast Fourier transform (FFT) analysis of virtual electrograms showed no difference in peak or centroid frequency in CHF dogs compared with normals. The average number of simultaneous noncontiguous wavefronts present during VF was higher in normals (2.4 +/- 1.0 at 10 s of VF) than in CHF dogs (1.3 +/- 1.0, P < 0.005) and decreased in both over time. The wavefront "turnover" rate, estimated using FFT of the noncontiguous wavefront data, did not differ between normals and CHF and did not change over 5 min of VF. Thus the fundamental frequency characteristics of VF are unaltered by CHF, but dilated abnormal ventricles sustain fewer active wavefronts than do normal ventricles.  相似文献   

3.
Ventricular fibrillation (VF) is an important cause of sudden cardiac death and cardiovascular mortality in patients with cardiomyopathy. Although it was generally believed that chaotic reentrant wavefronts underlie VF in humans, there is emerging evidence of spatiotemporal organization during early VF. The mechanism of this organization of electrical activity in early VF is unknown in myopathic hearts. We studied early VF in vivo, intraoperatively in five cardiomyopathic patients. Simultaneous electrograms were obtained from the epicardium and endocardium in left ventricular cardiomyopathy and from the endocardium in right ventricular myopathy. The Hilbert transform was used to derive the phase of the electrograms. Rotors were identified by isolating phase singularity points. Rotors were present in all of the myopathic hearts studied during VF and cumulatively lasted a mean of 3.2 +/- 2.0 s of the 7.0 +/- 4.0 s of the VF segments analyzed. For each surface mapped, 3.6 +/- 2.9 rotors were identified for the duration mapped. The average number of cycles completed by these rotors was 4.9 +/- 4.9. The longest rotor lasted 10.2 +/- 6.2 rotations and lasted 2.0 +/- 1.2 s. The rotors on the endocardium had a cycle length of 192 +/- 33 ms compared with 220 +/- 15 ms on the epicardium (P=0.08). There is centrifugal activation of electrical activity from these rotors, and they give rise to domains that activate at faster rates with evidence of conduction block at the border with slower domains. These rotors frequently localized to border regions of myocardium with bipolar electrogram amplitude of <0.5 mV. The organization of electrical activity during early VF in myopathic human hearts is characterized by wavefronts emanating from a few rotors.  相似文献   

4.
5.
6.
We tested the hypothesis that sildenafil, singly or in combination with nitric oxide (NO) donors, promotes ventricular tachycardia (VT) and ventricular fibrillation (VF). Vulnerability to VT/VF was tested by rapid pacing in eight isolated normal swine right ventricles (RV). The endocardial activation was optically mapped, and the dynamic action potential duration (APD) restitution curves were constructed with metal microelectrodes. At baseline, no VT/VF could be induced. Sildenafil (0.2 microg/ml) or NO donor singly or in combination did not alter VT/VF vulnerability. However, when 2 microg/ml sildenafil was combined with NO donors, the incidence of VT and VF rose significantly (P < 0.01). VT with a single periodic wavefront was induced in five of eight RVs, and VF with multiple wavefronts was induced in all eight RVs. The sildenafil-NO donor pro-VT/VF combination significantly increased the maximum slope of the APD restitution curve and the amplitude of the APD alternans. The pro-VT/VF effects of sildenafil were reversible after drug-free Tyrode solution perfusion. We conclude that a sildenafil (2 microg/ml) and NO donor combination increases VT/VF vulnerability in the normal RV by a mechanism compatible with the restitution hypothesis.  相似文献   

7.
Abstract Prediction of countershock success from ventricular fibrillation (VF) ECG is a major challenge in critical care medicine. Recent findings indicate that stable, high frequency mother rotors are one possible mechanism maintaining VF. A computer model study was performed to investigate how epicardiac sources are reflected in the ECG. In the cardiac tissues of two computer models - a model with cubic geometry and a simplified torso model with a left ventricle - a mother rotor was induced by increasing the potassium rectifier current. On the epicardium, the dominant frequency (DF) map revealed a constant DF of 23 Hz (cubic model) and 24.4 Hz (torso model) in the region of the mother rotor, respectively. A sharp drop of frequency (3-18 Hz in the cubic model and 12.4-18 Hz in the torso model) occurred in the surrounding epicardial tissue of chaotic fibrillatory conduction. While no organized pattern was observable on the body surface of the cubic model, the mother rotor frequency can be identified in the anterior surface of the torso model because of the chosen position of the mother rotor in the ventricle (shortest distance to the body surface). Nevertheless, the DFs were damped on the body surfaces of both models (4.6-8.5 Hz in the cubic model and 14.4-16.4 Hz in the torso model). Thus, it was shown in this computer model study that wave propagation transforms the spatial low pass filtering of the thorax into a temporal low pass. In contrast to the resistive-capacitive low pass filter formed by the tissue, this spatial-temporal low pass filter becomes effective at low frequencies (tens of Hertz). This effect damps the high frequency components arising from the heart and it hampers a direct observation of rapid, organized sources of VF in the ECGs, when in an emergency case an artifact-free recording is not possible.  相似文献   

8.
Mitosis in the early syncytial Drosophila embryo is highly correlated in space and time, as manifested in mitotic wavefronts that propagate across the embryo. In this paper we investigate the idea that the embryo can be considered a mechanically-excitable medium, and that mitotic wavefronts can be understood as nonlinear wavefronts that propagate through this medium. We study the wavefronts via both image analysis of confocal microscopy videos and theoretical models. We find that the mitotic waves travel across the embryo at a well-defined speed that decreases with replication cycle. We find two markers of the wavefront in each cycle, corresponding to the onsets of metaphase and anaphase. Each of these onsets is followed by displacements of the nuclei that obey the same wavefront pattern. To understand the mitotic wavefronts theoretically we analyze wavefront propagation in excitable media. We study two classes of models, one with biochemical signaling and one with mechanical signaling. We find that the dependence of wavefront speed on cycle number is most naturally explained by mechanical signaling, and that the entire process suggests a scenario in which biochemical and mechanical signaling are coupled.  相似文献   

9.

Background

Rotors are postulated to maintain cardiac fibrillation. Despite the importance of bipolar electrograms in clinical electrophysiology, few data exist on the properties of bipolar electrograms at rotor sites. The pivot of a spiral wave is characterized by relative uncertainty of wavefront propagation direction compared to the periphery. The bipolar electrograms used in electrophysiology recording encode information on both direction and timing of approaching wavefronts.

Objective

To test the hypothesis that bipolar electrograms from the pivot of rotors have higher Shannon entropy (ShEn) than electrograms recorded at the periphery due to the spatial dynamics of spiral waves.

Methods and Results

We studied spiral wave propagation in 2-dimensional sheets constructed using a simple cell automaton (FitzHugh-Nagumo), atrial (Courtemanche-Ramirez-Nattel) and ventricular (Luo-Rudy) myocyte cell models and in a geometric model spiral wave. In each system, bipolar electrogram recordings were simulated, and Shannon entropy maps constructed as a measure of electrogram information content. ShEn was consistently highest in the pivoting region associated with the phase singularity of the spiral wave. This property was consistently preserved across; (i) variation of model system (ii) alterations in bipolar electrode spacing, (iii) alternative bipolar electrode orientation (iv) bipolar electrogram filtering and (v) in the presence of rotor meander. Directional activation plots demonstrated that the origin of high ShEn at the pivot was the directional diversity of wavefront propagation observed in this location.

Conclusions

The pivot of the rotor is consistently associated with high Shannon entropy of bipolar electrograms despite differences in action potential model, bipolar electrode spacing, signal filtering and rotor meander. Maximum ShEn is co-located with the pivot for rotors observed in the bipolar electrogram recording mode, and may be an intrinsic property of spiral wave dynamic behaviour.  相似文献   

10.
Art Winfree's scientific legacy has been particularly important to our laboratory whose major goal is to understand the mechanisms of ventricular fibrillation (VF). Here, we take an integrative approach to review recent studies on the manner in which nonlinear electrical waves organize to result in VF. We describe the contribution of specific potassium channel proteins and of the myocardial fiber structure to such organization. The discussion centers on data derived from a model of stable VF in the Langendorff-perfused guinea pig heart that demonstrates distinct patterns of organization in the left (LV) and right (RV) ventricles. Analysis of optical mapping data reveals that VF excitation frequencies are distributed throughout the ventricles in clearly demarcated domains. The highest frequency domains are found on the anterior wall of the LV at a location where sustained reentrant activity is present. The optical data suggest that a high frequency rotor that remains stationary in the LV is the mechanism that sustains VF in this model. Computer simulations predict that the inward rectifying potassium current (IK1) is an essential determinant of rotor stability and frequency, and patch-clamp results strongly suggest that the outward component of IK1 of cells in the LV is significantly larger than in the RV. Additional computer simulations and analytical procedures predict that the filaments of the reentrant activity (scroll waves) adopt a non-random configuration depending on fiber organization within the ventricular wall. Using the minimal principle we have concluded that filaments align with the trajectory of least resistance (i.e. the geodesic) between their endpoints. Overall, the data discussed have opened new and potentially exciting avenues of research on the possible role played by inward rectifier channels in the mechanism of VF, as well as the organization of its reentrant sources in three-dimensional cardiac muscle. Such an integrative approach may lead us toward an understanding of the molecular and structural basis of VF and hopefully to new preventative approaches.  相似文献   

11.
Acute regional ischemia in the heart can lead to cardiac arrhythmias such as ventricular fibrillation (VF), which in turn compromise cardiac output and result in secondary global cardiac ischemia. The secondary ischemia may influence the underlying arrhythmia mechanism. A recent clinical study documents the effect of global cardiac ischaemia on the mechanisms of VF. During 150 seconds of global ischemia the dominant frequency of activation decreased, while after reperfusion it increased rapidly. At the same time the complexity of epicardial excitation, measured as the number of epicardical phase singularity points, remained approximately constant during ischemia. Here we perform numerical studies based on these clinical data and propose explanations for the observed dynamics of the period and complexity of activation patterns. In particular, we study the effects on ischemia in pseudo-1D and 2D cardiac tissue models as well as in an anatomically accurate model of human heart ventricles. We demonstrate that the fall of dominant frequency in VF during secondary ischemia can be explained by an increase in extracellular potassium, while the increase during reperfusion is consistent with washout of potassium and continued activation of the ATP-dependent potassium channels. We also suggest that memory effects are responsible for the observed complexity dynamics. In addition, we present unpublished clinical results of individual patient recordings and propose a way of estimating extracellular potassium and activation of ATP-dependent potassium channels from these measurements.  相似文献   

12.
Colliding spherical calcium waves in enzymatically isolated rat cardiac myocytes develop new wavefronts propagating perpendicular to the original direction. When investigated by confocal laser scanning microscopy (CLSM), using the fluorescent Ca2+ indicator fluo-3 AM, "cusp"-like structures become visible that are favorably approximated by double parabolae. The time-dependent position of the vertices is used to determine propagation velocity and negative curvature of the wavefront in the region of collision. It is evident that negatively curved waves propagate faster than positively curved, single waves. Considering two perfectly equal expanding circular waves, we demonstrated that the collision of calcium waves is due to an autocatalytic process (calcium-induced calcium release), and not to a simple phenomenon of interference. Following the spatiotemporal organization in simpler chemical systems maintained under conditions far from the thermodynamic equilibrium (Belousov-Zhabotinskii reaction), the dependence of the normal velocity on the curvature of the spreading wavefront is given by a linear relation. The so-called velocity-curvature relationship makes clear that the velocity is enhanced by curvature toward the direction of forward propagation and decreased by curvature away from the direction of forward propagation (with an influence of the diffusion coefficient). Experimentally obtained velocity data of both negatively and positively curved calcium waves were approximated by orthogonal weighted regression. The negative slope of the straight line resulted in an effective diffusion coefficient of 1.2 x 10(-4) mm2/s. From the so-called critical radius, which must be exceeded to initiate a traveling calcium wave, a critical volume (with enhanced [Ca2+]i) of approximately 12 microm3 was calculated. This is almost identical to the volume that is occupied by a single calcium spark.  相似文献   

13.
It has been shown in the literature that myocytes isolated from the ventricular walls at various intramural depths have different action potential durations (APDs). When these myocytes are embedded in the ventricular wall, their inhomogeneous properties affect the sequence of repolarization and the actual distribution of the APDs in the entire wall. In this article, we implement a mathematical model to simulate the combined effect of (a) the non-homogeneous intrinsic membrane properties (in particular the non-homogeneous APDs) and (b) the electrotonic currents that modulate the APDs when the myocytes are embedded in the ventricular myocardium. In particular, we study the effect of (a) and (b) on the excitation and repolarization sequences and on the distribution of APDs in the ventricles. We implement a Monodomain tissue representation that includes orthotropic anisotropy, transmural fiber rotation and homogeneous or heterogeneous transmural intrinsic membrane properties, modeled according to the phase I Luo-Rudy membrane ionic model. Three-dimensional simulations are performed in a cartesian slab with a parallel finite element solver employing structured isoparametric trilinear finite elements in space and a semi-implicit adaptive method in time. Simulations of excitation and repolarization sequences elicited by epicardial or endocardial pacing show that in a homogeneous slab the repolarization pathways approximately follow the activation sequence. Conversely, in the heterogeneous cases considered in this study, we observed two repolarization wavefronts that started from the epi and the endocardial faces respectively and collided in the thickness of the wall and in one case an additional repolarization wave starting from an intramural site. Introducing the heterogeneities along the transmural epi-endocardial direction affected both the repolarization sequence and the APD dispersion, but these effects were clearly discernible only in transmural planes. By contrast, in planes parallel to epi- and endocardium the APD distribution remained remarkably similar to that observed in the homogeneous model. Therefore, the patterns of the repolarization sequence and APD dispersion on the epicardial surface (or any other intramural surface parallel to it) do not reveal the uniform transmural heterogeneity.  相似文献   

14.
Abstract Current understanding of atrial fibrillation is based on the co-existence of multiple re-entrant waves propagating randomly throughout the tissue. However, recent experimental results indicate that in many cases one or a small number of periodic, high-frequency re-entrant sources (mother rotors) can drive the arrhythmia. Owing to the high activation rate, mother rotors seem to be located in regions of shortened action potential duration. In this study a computer model of cardiac propagation was applied to investigate mechanisms leading to the formation and maintenance of such mother rotors. For this purpose, a region of short action potential duration was generated by varying the acetylcholine concentration across the tissue. A mother rotor initiated in the center of this region drifts away, and the activation terminates. If an additional heterogeneity such as a bundle is included into the model, a further drift mechanism directed to the bundle is observed and the rotor can be stabilized. Therefore, bundle insertions may play an important role in the maintenance of mother rotors. The influence of the driving rotor on the activation pattern was studied in a three-dimensional model of rectangular shape and a monolayer model of anatomically correct atrial geometry.  相似文献   

15.
Advanced age alone appears to be a risk factor for increased susceptibility to cardiac arrhythmias. We previously observed in the aged rat heart that sinus rhythm ventricular activation is delayed and characterized by abnormal epicardial patterns although conduction velocity is normal. While these findings relate to an advanced stage of aging, it is not yet known when and how ventricular electrical impairment originates and which is the underlying substrate. To address these points, we performed continuous telemetry ECG recordings in freely moving rats over a six-month period to monitor ECG waveform changes, heart rate variability and the incidence of cardiac arrhythmias. At the end of the study, we performed in-vivo multiple lead epicardial recordings and histopathology of cardiac tissue. We found that the duration of ECG waves and intervals gradually increased and heart rate variability gradually decreased with age. Moreover, the incidence of cardiac arrhythmias gradually increased, with atrial arrhythmias exceeding ventricular arrhythmias. Epicardial multiple lead recordings confirmed abnormalities in ventricular activation patterns, likely attributable to distal conducting system dysfunctions. Microscopic analysis of aged heart specimens revealed multifocal connective tissue deposition and perinuclear myocytolysis in the atria. Our results demonstrate that aging gradually modifies the terminal part of the specialized cardiac conducting system, creating a substrate for increased arrhythmogenesis. These findings may open new therapeutic options in the management of cardiac arrhythmias in the elderly population.  相似文献   

16.
Body surface and ventricular epicardial potential distributions during the electrocardiographic QRST interval were studied in pikes with the aid of potential mapping. The earliest epicardial activation was observed at the posterior base near the atrioventricular orifice. The areas of the earliest repolarization were found at the apex and the posterior base, whereas the area of the latest repolarization was detected at the anterior base. In the initial period of the QRS, the minimum was developed in the middle third of the right lateral body surface, and the maximum in the middle third of the ventral body surface. The body surface potential distribution during the ST-Twas characterized by the clear-cut negative potential zone in the cranial ventral area with the rest of the body surface having positive potentials, a pattern being largely unchanged throughout the period of the T-wave. The ventricular epicardial repolarization sequence differed from the activation sequence. The ventricular epicardial depolarization and repolarization sequences as well as epicardial potential distributions are expressed in the cardiac electric field on the body surface during the QRS and ST-T complexes.  相似文献   

17.
Two major mechanisms have been postulated for the arrhythmogenic tendency observed in Brugada Syndrome (BrS): delays in conduction or increased heterogeneities in repolarization. We use a contact mapping system to directly investigate the interacting roles of these two mechanisms in arrhythmogenesis using a genetic murine model for BrS for the first time. Electrograms were obtained from a multielectrode recording array placed against the left ventricle and right ventricle (RV) of spontaneously beating Langendorff-perfused wild type (WT) and Scn5a+/- mouse hearts. Scn5a+/- hearts showed activation waves arriving at the epicardial surface consistent with slowed conduction, which was exacerbated in the presence of flecainide. Lines of conduction block across the RV resulting from premature ventricular beats led to the formation of reentrant circuits and polymorphic ventricular tachycardia. WT hearts showed an inverse relationship between activation times and activation recovery intervals measured at the epicardial surface, which resulted in synchronicity of repolarization times. In contrast, Scn5a+/- hearts, despite having smaller mean activation recovery intervals, demonstrated a greater heterogeneity compared with WT. Isochronal maps showed that their normal activation recovery interval gradients at the epicardial surface were disrupted, leading to heterogeneity in repolarization times. We thus directly demonstrate the initiation of arrhythmia in the RV of Scn5a+/- hearts. This occurs as a result of the combination of repolarization heterogeneities leading to lines of conduction block and unidirectional conduction, with conduction slowing allowing the formation of reentrant circuits. The repolarization heterogeneities may also be responsible for the changing pattern of block, leading to the polymorphic character of the resulting ventricular tachycardia.  相似文献   

18.
Cardiac resynchronization therapy has been most typically achieved by biventricular stimulation. However, left ventricular (LV) free-wall pacing appears equally effective in acute and chronic clinical studies. Recent data suggest electrical synchrony measured epicardially is not required to yield effective mechanical synchronization, whereas endocardial mapping data suggest synchrony (fusion with intrinsic conduction) is important. To better understand this disparity, we simultaneously mapped both endocardial and epicardial electrical activation during LV free-wall pacing at varying atrioventricular delays (AV delay 0-150 ms) in six normal dogs with the use of a 64-electrode LV endocardial basket and a 128-electrode epicardial sock. The transition from dyssynchronous LV-paced activation to synchronous RA-paced activation was studied by constructing activation time maps for both endo- and epicardial surfaces as a function of increasing AV delay. The AV delay at the transition from dyssynchronous to synchronous activation was defined as the transition delay (AVt). AVt was variable among experiments, in the range of 44-93 ms on the epicardium and 47-105 ms on the endocardium. Differences in endo- and epicardial AVt were smaller (-17 to +12 ms) and not significant on average (-5.0 +/- 5.2 ms). In no instance was the transition to synchrony complete on one surface without substantial concurrent transition on the other surface. We conclude that both epicardial and endocardial synchrony due to fusion of native with ventricular stimulation occur nearly concurrently. Assessment of electrical epicardial delay, as often used clinically during cardiac resynchronization therapy lead placement, should provide adequate assessment of stimulation delay for inner wall layers as well.  相似文献   

19.
Two points of early activation were shown on the surface of the frog Rana temporaria ventricle using optical mapping technique. These points are located on the left and right ventricular surface at equal distance from apex and base of the ventricle. The excitation approaches to epicardial ventricular surface at these points, and then it spreads all over the surface. Such pattern of epicardial activation is also shown in mammals where it is related to conduction system functioning. Thus, the precursor of conduction system seems to exist in the frog ventricle, too.  相似文献   

20.
The vulnerability of the infarcted hearts to ventricular fibrillation (VF) was tested in in situ canine hearts during nicotine infusion. The activation pattern was mapped with 477 bipolar electrodes in open-chest anesthetized dogs (n = 8) 5-6 wk after permanent occlusion of the left anterior descending coronary artery. Nicotine (129 +/- 76 ng/ml) lengthened (P < 0.01) the pacing cycle length at which VF was induced from 171 +/- 8.9 to 210 +/- 14. 7 ms. Nicotine selectively amplified the magnitude of conduction time and monophasic action potential (MAP) amplitude and duration (MAPA and MAPD, respectively) alternans in the epicardial border zone (EBZ) but not in the normal zone. With critical reduction of the MAPA and MAPD in the EBZ, conduction block occurred across the long axis of the EBZ cells. Block led immediately to reentry formation in the EBZ with a mean period of 105 +/- 10 ms, which, after one to two rotations, degenerated to VF. Nicotine widened the range of diastolic intervals over which the dynamic MAPD restitution curve had a slope >1. We conclude that nicotine facilitates conduction block, reentry, and VF in hearts with healed myocardial infarction by increasing the magnitude of depolarization and repolarization alternans consistent with the restitution hypothesis of vulnerability to VF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号