首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
The response of clonal growth and ramet morphology to water depth (from 60 to 260 cm) and sediment type (sand versus organic clay) was investigated for the stoloniferous submersed macrophyte Vallisneria natans in an outdoor pond experiment. Results showed that water depth significantly affected clonal growth of V. natans in terms of clone weight, number of ramets, number of generations, clonal radius and stolon length. V. natans showed an optimal clonal growth at water depths of 110–160 cm, but at greater depths clonal growth was severely retarded. A high allometric effect was exhibited in ramet morphology. Along the sequentially produced ramet generations, ramet weight and plant height decreased while stolon length and the root:leaf weight ratio increased. When using ramet generations as covariate, sediment type rather than water depth more strongly affected the ramet characteristics. For plants grown in clay, ramet weight, ramet height and stolon length were greater, and plants exhibited lower root:leaf weight ratio. These data suggest that water depth and sediment type have differential effects on clonal growth of V. natans: Water depth appears primarily to affect numerical increase in ramets and spatial spread, whereas sediment type mainly affects biomass accumulation and biomass allocation. Handling editor: S. M. Thomaz  相似文献   

2.
Substrate vibratory information receptors are extensively studied in insects and spiders, however for water surface dwelling species little data is available. We studied the vibration receptive organs in tarsi of the water strider Aquarius paludum, using light, transmission and scanning electron microscopes, and recorded the neural activity of the organs in response to vibrational stimuli, which were afterwards analysed with a custom made spike sorting program.We found that the tarsal chordotonal organ has one set of three scoloparia: one in the tarsomere I and two in the tarsomere II, all of which consisted of a few scolopidia. The chordotonal organ clearly responded to vibratory stimulation. Furthermore, we found that a pair of large subapical emergent dorsal setae, which had been deemed mechanosensory by previous authors, are not so. In turn, four ventral subapical trichobothria that are in direct contact with the water surface during locomotion, proved to be mechanosensory. The anatomical and ultrastructural observations support these electro-physiological results.  相似文献   

3.
The Life cycle of maize stem borer, Chilo partellus (Swinhoe) was studied in in vitro conditions. Development of stem borer undergoes following stages like egg, larvae, pupa and moth. The egg incubation period ranged from 3 to 6 days, larval stage was observed in five instars. The mean value of I, II, III, IV and V instars showed 3.8 ± 0.16, 5.2 ± 0.02, 6.1 ± 0.06, 7.35 ± 1.5, and 10.12 ± 0.29 days, respectively and complete larvae period ranged from 42 to 49 days. Pupae stage was observed in 8–9 days. The pre-mating and mating period was found at 9.10 ± 1.20 and 5.14 ± 1.08 h while egg laying period in 4.1 ± 1.32 days respectively. Fecundity rate of stem borer is from 262 to 657 eggs. The life span of adult male (3-7) and female (3-8) days was observed with a mean of 6.30 ± 0.85 and 5.10 ± 0.69 days respectively. Life cycle of stem borer gets completed in 47 to 51 days. Development of quality insects in required quantities at different developmental stages and their timely supply plays an inevitable role particularly for insect-breeding resistant programs. Hence to meet these challenges we had tried to standardize an artificial diet with cost effective to rear Chilo partellus under in vitro conditions.  相似文献   

4.
We experimentally determined the effects of water depth on seed germination and seedling growth and morphology, and we documented the transition from submerged to emergent plants in the white water lily, Nymphaea odorata. Seeds of N. odorata were germinated at 30, 60, and 90 cm water depth in outdoor mesocosms and percent germination and morphology measured after a month. The presence of self-seeded seedlings in pots at the same 3 water levels was also recorded over two years. To examine juvenile growth, seeds planted in soil were placed at the same mesocosm depths; germination and growth were monitored for three months, when the plants were harvested for morphological and biomass measurements. N. odorata germinated equally well in 30, 60 and 90 cm water; seedlings grew as submerged aquatics. After one month, seedlings in 90 cm water had less biomass than those in 30 cm (1.1 vs. 3.3 mg and 1.0 vs. 1.8 mg for different seed sources, respectively) and allocated relatively more biomass to shoots (97.5 vs. 67.8% and 73.1 vs. 58.0%, respectively). Seedlings in 60 cm water were intermediate. After 3 months of submerged growth, plant biomass remained less in 90 vs. 60 and 30 cm water (22.5 vs. 36.4 and 33.3 mg, respectively). Plants in 90 and 60 cm water had greater biomass allocation to shoots than plants in 30 cm water (85.7 and 72.6% vs. 64.4%, respectively) and produced larger laminae on longer petioles (lamina length = 33.3 vs. 25.2 mm in 90 vs. 30 cm; petiole length = 99.0 vs. 36.0 mm, respectively). After about 3 months, submerged plants produced floating leaves that had 39% shorter laminae but 267% to 1988% longer petioles than submerged leaves on the same plant. Lamina length to width allometric relations of submerged leaves were >1 at all water levels, distinguishing them from the equal allometry of adult floating leaves. The switch from production of submerged to emergent leaves resembles submergence-escape growth in other aquatics, but because the seedlings have been submerged throughout their life, submergence itself cannot be the stimulus to produce emergent leaves in these totally immersed plants. Our data show that N. odorata plants can establish from seeds in up to 90 cm water and that seedlings grow as submerged aquatics until they switch abruptly to production of floating leaves.  相似文献   

5.
Scleractinian corals have adapted to live in habitats were the level of ultraviolet radiation (UVR, 280–400 nm) is extremely high. The putative photoprotective molecules called mycosporine-like amino acids (MAAs) contained in the corals' tissues absorb UVR and release it harmlessly as heat. MAA concentration in corals is quite plastic and correlates well with UVR dose, but other ecological factors such as water motion may influence MAA production as well. In this study, the effects of ambient UVR and water motion on MAA concentration and several physiological parameters of the reef coral Porites compressa Dana were investigated in a two by two factorial transplantation experiment. Replicate branches from nine morphologically distinct colonies were transplanted from the windward side of Coconut Island (Kaneohe Bay, HI) to a control area on the windward side (ambient water motion) and to an area on the leeward side (low water motion). The transplanted corals were placed under UV-opaque (UVO) or UV-transparent (UVT) filters fixed to the reef. Initially and at 3 and 6 weeks, coral branches were weighed to determine calcification rate and tissues were extracted in methanol for photosynthetic pigment and MAA analysis via high performance liquid chromatography (HPLC). UVR was a significant factor determining MAA concentration. When UVR was screened from the corals' environment, total MAA concentration decreased by 33% over 6 weeks. However, UVR-exposed corals moved to low water motion also decreased MAA levels, while UVR-exposed corals moved to the control area retained initial levels. Photosynthetic pigments and calcification rate were also significantly reduced in corals moved to low water motion. There was no UVR effect on photosynthetic pigments or calcification rate. This study provides evidence that water motion is important for the maintenance of MAAs. However, there were interesting colony-specific patterns in MAA composition and response to the UVR treatment; some colonies had high total concentrations of MAAs in all treatments, while others displayed a pronounced UVR effect. Also, each genotype seemed to have its own signature MAA composition. These findings indicate a genetic (host, zooxanthellae or both) component to UVR resistance in this population of P. compressa.  相似文献   

6.
The invasion of Myriophyllum spicatum into Lake Nasser, and its impact on submerged macrophyte communities are quantitatively documented. Samples of macrophytes, water and hydrosoil were collected from 17 sites, in October and November 2002. The average dry weight standing crop of each species per grapnel haul was determined at each depth zone (sampling site). Twenty-one environmental variables were measured (12 water and 9 hydrosoil variables). Canonical correspondence analysis (CCA) was used to determine species–environment relationships. Comparing these relationships of the present study with those detected in 1988–1990 indicated significant changes in water and hydrosoil characteristics. These changes are also implicated in the submerged macrophyte communities. M. spicatum has replaced the originally dominant submerged macrophyte Najas marina subsp. armata. The study indicated that the invasion of M. spicatum depends not only on its attributes, but also on the physico-chemical characteristics of Lake Nasser.  相似文献   

7.
Seasonal development of phytoplankton was compared over two years in two eutrophic, morphologically altered lakes. During study, the water level in Lake Tomaszne were periodically regulated whereas in Lake Mytycze, the water level manipulation was not performed. We assumed that the supply with fertile waters and subsequent discharge can be reflected in seasonal changes of phytoplankton taxa composition and biomass, especially of toxigenic cyanobacteria. In Lake Tomaszne, the development of toxigenic Nostocales (Aphanizomenon gracile and Dolichospermum planctonicum) was supported by the entrance of water from a canal (due to supply of water containing NH4+-N). After water discharge, the replacement of Nostocales by the toxigenic Planktothrix agardhii was associated with low light conditions and a supply of phosphates from the bottom sediments. In Lake Mytycze, microalgae (Chlorococcales) were predominant throughout the study period. The rapid growth of toxigenic cyanobacteria (A. gracile, Planktolyngbya limnetica and Microcystis spp.) occurred only at extremely low water levels. In Lake Tomaszne, the lake with periodic water level regulation, the high cyanobacteria/cyanotoxin risk and decline of its ecological status were more conspicuous than in Lake Mytycze, the lake with natural water level changes.  相似文献   

8.
Water temperature and dietary protein level play an important role in influencing the growth and insulin-like growth factor I (IGF-I) in Nile tilapia juveniles. The combined effect of temperature (20–34 °C) and dietary protein level (25–50%) on the specific growth rate (SGR), feed efficiency (FE), serum IGF-I level and hepatic IGF-I mRNA level was examined under laboratory conditions by employing central composite design and response surface method. Results showed that the linear effects of temperature and dietary protein level on the SGR, FE, serum IGF-I and hepatic IGF-I mRNA level were significant (P<0.05); the quadratic effects of temperature and dietary protein level on the FE and serum IGF-I were significant (P<0.05). The interaction of temperature and dietary protein level on the FE, serum IGF-I and hepatic IGF-I mRNA level all proved significant (P<0.05). The optimal temperature/dietary protein level combination was determined, i.e., 29.9 °C/40.3%, at which the greatest SGR (2.748%/d) and FE (0.775) were simultaneously arrived. Both SGR and FE were linearly correlated with serum IGF-I or hepatic IGF-I mRNA level. These results suggested that optimum combination of temperature and dietary protein level would enhance tilapia growth efficiency and IGF-I would regulate growth and FE.  相似文献   

9.
Greenhouse experiments were conducted to assess the effect of salinisation of soil on emergence, growth, water content, proline content and mineral accumulation of seedlings of Delonix regia (Hook.) Raf. (Fabaceae). Sodium chloride (NaCl) was added to the soil and salinity was maintained at 0.3, 1.9, 3.9, 6.0 and 7.9 dS m?1. A negative relationship between seedling emergence and salt concentration was obtained. Salinity caused reduction in water content and water potential of tissues (leaves, stems, tap roots and lateral roots) that resulted in internal water deficit to plants. Consequently, shoot and root elongation, leaf expansion and dry matter accumulation in leaves, stems, tap roots and lateral root tissues of seedlings significantly decreased in response to increasing concentration of salt. Proline content in tissues was very low. There were no effective mechanisms to control net uptake of Na on root plasma membrane and subsequently its transport to shoot tissues. Potassium content significantly decreased in tissues in response to salinisation of soil. This tree species is a moderate salt-tolerant glycophytic plant. Nitrogen and calcium content in tissues significantly decreased as soil salinity increased. Phosphors content in tissues exhibited a declining trend with increase in soil salinity. Changes in tissues and whole-plant accumulation pattern of other elements tested, as well as possible mechanisms for avoidance of Na toxicity in this tree species in response to salinisation, are discussed.  相似文献   

10.
We assayed the interaction on the availability of plant nutrient and species of host plant on the performance of two species of Pieris butterfly. The results indicated that constant application of different levels of fertilizers to the four different host plants resulted to an increase in their content of plant nutrients. The chemical analysis showed that the added nutrients increased foliar nitrogen and water contents, but there was no effect on the level of glucosinolates. Larvae that fed on highly-nutritious foliage increased their growth rates and showed a shorter development period. The results of feeding trials revealed that the 4th-instar larvae, which had fed on host plants with higher levels of fertilization had a shorter duration of development, less consumption rate, higher growth rate and food processing efficiency. To summarize, this research revealed that both the availability of plant nutrient and species of host plant can strongly influence the physiology and foliar chemistry of host plants. Moreover, the changes of phytochemical in the host plants may play an important role in affecting the performance (growth and food utilization efficiency) of both species of Pieris butterflies.  相似文献   

11.
Mouthparts of unfed larvae Piona carnea (Koch, 1836) (Acariformes: Pionidae) were studied on whole-mount preparations, semi-thin sections and with TEM and SEM methods. The mouth apparatus is incorporated within the pseudotagma, gnathosoma, composed of the infracapitulum and of the chelicerae resting on the roof of the latter. The gnathosoma inclines to the long axis of the body and is inserted at its base into the idiosoma by the circumcapitular fold. The basal cheliceral segments are long and fused. An anterior projection, the proposed fused fixed digits, protrudes from the distal end of the basal cheliceral segment forward between the movable digits. The movable digits are always found in protruded position, strongly curved upward and show a groove on their inner sides. The ventral wall of the infracapitulum is made of the mentum posterior and the malapophyses anterior to the palp articulation. The malapophyses are squeezed between the large palps and envelope the distal portion of the chelicerae from the sides. The ventral portion of the fused malapophyses are provided with a characteristic ventral cuticular fork of unknown function. Each malapophysis terminates by a flexible lateral lip provided by several rigid jags looking posterad. The palps face downward and backward, and bear on the tibia the large curved palpal claws turned laterad. The palp femur bears on the ventral aspect a characteristic wide spade-like projection provided with its own muscles originating on the dorsal wall of the femur. The labrum is a thick cuticular arrow-like structure protruding forward into the preoral cavity, whereas the cervix is a thin weakly sclerotized plate. The particular labral valve projects forward from the dorsal basis of the labrum into the preoral cavity. The labrum and the cervix are provided by their own small labral and cervical muscles originating on the cervical apodemes. The pharynx is totally separated from the ventral wall of the infracapitulum and is devoid of ventral dilators. The dorsal pharyngeal dilators originate on the thick and sclerotized capitular apodeme and, posteriorly, on the paired cuticular branches, capitular apodemes, which end freely in the body cavity and are combined with the common salivary duct. The short sigmoid pieces serve for origin of the levator muscles of the chelicerae. Retraction of the gnathosoma and the chelicerae is mediated by several sets of muscles originating on the dorsal plate.  相似文献   

12.
An optode device for net-photosynthesis measurements, based on oxygen-depending quenching of fluorescence from O2-specific sensors, and PAM fluorometry have been used to study diurnal courses of net-photosynthesis and the Fv/Fm ratio of the submerged plant Lagarosiphon major. Plants were pre-cultivated and studied in large mesocosm flow-through outdoor tanks under 50% and 80% shade cloth, respectively. Growth under the different shade cloths resulted in similar light compensation points (∼20 μmol photons m−2 s−1), but strongly different light saturation levels, with about 150 μmol m−2 s−1 for plants grown under 80% shade cloth and about 350 μmol m−2 s−1 for plants grown under 50% shade cloth. Plants under both growth conditions showed a transient reduction of the maximum Fv/Fm value in the afternoon (down to 70% of the morning control values under 80% shade cloth and down to 85% under 50% shade cloth), which was not accompanied by a reduction of the net photosynthetic rate. This indicated that the fluorescence parameter Fv/Fm must not be a reliable indicator of the rate of photosynthesis under all conditions. The new photo-optical device became evidenced as a valuable tool not only for laboratory experiments, but also for field studies of gas exchange of submerged plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号