首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The endoplasmic reticulum and Golgi apparatus play key roles in regulating the folding, assembly, and transport of newly synthesized proteins along the secretory pathway. We find that the divalent cation manganese disrupts the Golgi apparatus and endoplasmic reticulum (ER). The Golgi apparatus is fragmented into smaller dispersed structures upon manganese treatment. Golgi residents, such as TGN46, beta1,4-galactosyltransferase, giantin, and GM130, are still segregated and partitioned correctly into smaller stacked fragments in manganese-treated cells. The mesh-like ER network is substantially affected and peripheral ER elements are collapsed. These effects are consistent with manganese-mediated inhibition of motor proteins that link membrane organelles along the secretory pathway to the cytoskeleton. This divalent cation thus represents a new tool for studying protein secretion and membrane dynamics along the secretory pathway.  相似文献   

2.
Procollagen assembly occurs within the endoplasmic reticulum, where the C-propeptide domains of three polypeptide alpha-chains fold individually, and then interact and trimerise to initiate folding of the triple helical region. This highly complex folding and assembly pathway requires the co-ordinated action of a large number of endoplasmic reticulum-resident enzymes and molecular chaperones. Disease-causing mutations in the procollagens disturb folding and assembly and lead to prolonged interactions with molecular chaperones, retention in the endoplasmic reticulum, and intracellular degradation. This review focuses predominantly on prolyl 1-hydroxylase, an essential collagen modifying enzyme, and HSP47, a collagen-specific binding protein, and their proposed roles as molecular chaperones involved in fibrillar procollagen folding and assembly, quality control, and secretion.  相似文献   

3.
Most principles of protein folding emerged from refolding studies in vitro on small, soluble proteins, because large ones tend to misfold and aggregate. We developed a folding assay allowing the study of large proteins in detergent such that the extent of cellular assistance required for proper folding can be determined. We identified a critical step in the in vivo folding pathway of influenza virus hemagglutinin (HA). Only the formation of the first few disulfides in the top domain of HA required the intact endoplasmic reticulum. After that, HA proceeded to fold efficiently in a very dilute solution, despite its size and complexity. This study paves the way for detailed structural analyses during the folding of complex proteins.  相似文献   

4.
Protein folding in the living cell begins cotranslationally. To analyze how it is influenced by the ribosome and by the translocon complex during translocation into the endoplasmic reticulum, we expressed a mutant influenza hemagglutinin (a type I membrane glycoprotein) with a C-terminal extension. Analysis of the nascent chains by two-dimensional SDS-PAGE showed that ribosome attachment as such had little effect on ectodomain folding or trimer assembly. However, as long as the chains were ribosome bound and inside the translocon complex, formation of disulfides was partially suppressed, trimerization was inhibited, and the protein protected against aggregation.  相似文献   

5.
We report that endoplasmic reticulum alpha-glucosidase inhibitors have antiviral effects on dengue (DEN) virus. We found that glucosidase inhibition strongly affects productive folding pathways of the envelope glycoproteins prM (the intracellular glycosylated precursor of M [membrane protein]) and E (envelope protein): the proper folding of prM bearing unprocessed N-linked oligosaccharide is inefficient, and this causes delayed formation of prME heterodimer. The complexes formed between incompletely folded prM and E appear to be unstable, leading to a nonproductive pathway. Inhibition of alpha-glucosidase-mediated N-linked oligosaccharide trimming may thus prevent the assembly of DEN virus by affecting the early stages of envelope glycoprotein processing.  相似文献   

6.
The vast majority of newly synthesized acetylcholinesterase (AChE) molecules do not assemble into catalytically active oligomeric forms and are rapidly degraded intracellularly by the endoplasmic reticulum-associated protein degradation pathway. We have previously shown that AChE in skeletal muscle is regulated in part post-translationally by the availability of the noncatalytic subunit collagen Q, and others have shown that expression of a 17-amino acid N-terminal proline-rich attachment domain of collagen Q is sufficient to promote AChE tetramerization in cells producing AChE. In this study we show that muscle cells, or cell lines expressing AChE catalytic subunits, incubated with synthetic proline-rich attachment domain peptides containing the endoplasmic reticulum retrieval sequence KDEL take up and retrogradely transport them to the endoplasmic reticulum network where they induce assembly of AChE tetramers. The peptides act to enhance AChE folding thereby rescuing them from reticulum degradation. This enhanced folding efficiency occurs in the presence of inhibitors of protein synthesis and in turn increases total cell-associated AChE activity and active tetramer secretion. Pulse-chase studies of isotopically labeled AChE molecules show that the enzyme is rescued from intracellular degradation. These studies provide a mechanistic explanation for the large scale intracellular degradation of AChE previously observed and indicate that simple peptides alone can increase the production and secretion of this critical synaptic enzyme in muscle tissue.  相似文献   

7.
U Tatu  I Braakman    A Helenius 《The EMBO journal》1993,12(5):2151-2157
Using influenza hemagglutinin (HA0) and vesicular stomatitis virus G protein as model proteins, we have analyzed the effects of dithiothreitol (DTT) on conformational maturation and transport of glycoproteins in the secretory pathway of living cells. While DTT caused reduction of folding intermediates and misfolded proteins in the endoplasmic reticulum (ER), it did not affect molecules that had already acquired a mature trimeric conformation, whether present in the ER or elsewhere. The conversion to DTT resistance was therefore a pre-Golgi event. Reduction of folding intermediates was dependent on the intactness of the ER and on metabolic energy, suggesting cooperativity between DTT and ER folding factors. DTT did not inhibit most cellular functions, including ATP synthesis and protein transport within the secretory pathway. The results established DTT as an effective tool for analyzing the folding and compartmental distribution of proteins with disulfide bonds.  相似文献   

8.
Exportable proteins that have significant defects in nascent polypeptide folding or subunit assembly are frequently retained in the endoplasmic reticulum and subject to endoplasmic reticulum-associated degradation by the ubiquitin-proteasome system. In addition to this, however, there is growing evidence for post-endoplasmic reticulum quality control mechanisms in which mutant or non-native exportable proteins may undergo anterograde transport to the Golgi complex and post-Golgi compartments before intracellular disposal. In some instances, these proteins may undergo retrograde transport back to the endoplasmic reticulum with re-targeting to the endoplasmic reticulum-associated degradation pathway; in other typical cases, they are targeted into the endosomal system for degradation by vacuolar/lysosomal proteases. Such quality control targeting is likely to involve recognition of features more commonly expressed in mutant proteins, but may also be expressed by wild-type proteins, especially in cells with perturbation of local environments that are essential for normal protein trafficking and stability in the secretory pathway and at the cell surface .  相似文献   

9.
Binding of BiP to an assembly-defective protein in plant cells   总被引:5,自引:1,他引:4  
The binding protein (BiP) has been implicated as a mediator of protein folding and assembly in the endoplasmic reticulum of mammalian cells and has often been found in stable association with structurally defective proteins. To acquire information on the activity of BiP in plant cells, we have expressed in tobacco protoplasts the wild type form and an assembly-defective form of bean phaseolin. Phaseolin (PHSL) is a soluble, trimeric, storage glycoprotein co-translationally inserted into the lumen of the endoplasmic reticulum and then transported along the secretory pathway to the protein storage vacuoles. We have previously shown that a PHSL mutant in which the last 59 amino acids have been deleted (Δ363PHSL) is unable to form trimers and is retained in a pre-Golgi compartment when synthesized in Xenopus oocytes. When transiently expressed in tobacco leaf protoplasts, wild-type PHSL is correctly glycosylated and assembles efficiently and rapidly into trimers. Δ363PHSL is also correctly glycosylated but does not trimerize. Tobacco BiP and Δ363PHSL are co-immunoselected using either anti-PHSL or anti-BiP antibodies. Under the same conditions, co-immunoselection of BiP with wild-type PHSL is not detectable. The BiP bound to Δ363PHSL can be released by treatment of the complex with ATP, indicating that the binding is related to the proposed function of BiP in protein folding and assembly in the endoplasmic reticulum. These data indicate that BiP stably binds structurally defective proteins in plant cells.  相似文献   

10.
J W Yewdell  A Yellen  T B?chi 《Cell》1988,52(6):843-852
We used monoclonal antibodies that recognize monomeric and/or trimeric forms of the influenza virus hemagglutinin (HA) to study biosynthesis of this integral membrane protein in influenza virus-infected cells. We find the following: First, the globular head of the HA folds into its mature conformation in the endoplasmic reticulum prior to the assembly of HA monomers into trimers. Second, trimerization begins within 1 to 2 min following synthesis, with a half-time of approximately 5 min. Third, trimerization occurs only after the HA has been transported from the endoplasmic reticulum. Fourth, newly formed trimers are sensitive to acid-induced conformational alterations associated with viral fusion activity.  相似文献   

11.
I am investigating the role of protein folding in the transport of influenza virus hemagglutinin (HA), a membrane-bound protein, along the exocytotic pathway. From a previous work (Gething, M.-J., McCammon, K., and Sambrook, J. (1986) Cell 46, 939-950), it has been shown that a subset of alterations of the COOH-terminal sequences of the HA molecule inhibit folding and impede its transport to the cell surface. Current studies establish that the integrity of the NH2-terminal sequences of the HA is essential for assembly and transport of the molecule. Mutants lacking just 1 or 2 amino acids immediately COOH-terminal to the signal cleavage site are translocated and core glycosylated, but also incorrectly folded. The mutant molecules are not terminally glycosylated and are thus confined inside the cells. A hypothesis will be presented to explain why sequences at opposite ends of the HA molecule are essential for the assembly of native structures and why correct folding is necessary for transport along the exocytotic pathway of mammalian cells.  相似文献   

12.
For proteins that traverse the secretory pathway, folding commences cotranslationally upon translocation into the endoplasmic reticulum. In this study, we have comprehensively analyzed the earliest maturation steps of the model glycoprotein influenza hemagglutinin (HA). These steps include cleavage of the signal sequence, glycosylation, binding by the chaperones calnexin and calreticulin, and the oxidoreductase ERp57, and oxidation. Our results show that the molecular choreography of the nascent HA chain is largely directed by multiple glycans that are strategically placed to elicit the binding of lectin chaperones. These chaperones are recruited to specific nascent chain locations to regulate and facilitate glycoprotein folding, thereby suggesting that the positioning of N-linked glycans in critical regions has evolved to optimize the folding process in the cell.  相似文献   

13.
Cho DY  Yang GH  Ryu CJ  Hong HJ 《Journal of virology》2003,77(4):2784-2788
The proper folding and assembly of viral envelope proteins are mediated by host chaperones. In this study, we demonstrated that an endoplasmic reticulum luminal chaperone GRP78/BiP bound specifically to the pre-S1 domain of the L protein in vitro and in vivo where complete viral particles were secreted, suggesting that GRP78/BiP plays an essential role in the proper folding of the L protein and/or assembly of viral envelope proteins.  相似文献   

14.
Manipulating the amyloid-beta aggregation pathway with chemical chaperones.   总被引:3,自引:0,他引:3  
Amyloid-beta (Abeta) assembly into fibrillar structures is a defining characteristic of Alzheimer's disease that is initiated by a conformational transition from random coil to beta-sheet and a nucleation-dependent aggregation process. We have investigated the role of organic osmolytes as chemical chaperones in the amyloid pathway using glycerol to mimic the effects of naturally occurring molecules. Osmolytes such as the naturally occurring trimethylamine N-oxide and glycerol correct folding defects by preferentially hydrating partially denatured proteins and entropically stabilize native conformations and polymeric states. Trimethylamine N-oxide and glycerol were found to rapidly accelerate the Abeta random coil-to-beta-sheet conformational change necessary for fiber formation. This was accompanied by an immediate conversion of amorphous unstructured aggregates into uniform globular and possibly nucleating structures. Osmolyte-facilitated changes in Abeta hydration also affected the final stages of amyloid formation and mediated transition from the protofibrils to mature fibers that are observed in vivo. These findings suggest that hydration forces can be used to control fibril assembly and may have implications for the accumulation of Abeta within intracellular compartments such as the endoplasmic reticulum and in vitro modeling of the amyloid pathway.  相似文献   

15.
The endoplasmic reticulum (ER) is dedicated to import, folding and assembly of all proteins that travel along or reside in the secretory pathway of eukaryotic cells. Folding in the ER is special. For instance, newly synthesized proteins are N-glycosylated and by default form disulfide bonds in the ER, but not elsewhere in the cell. In this review, we discuss which features distinguish the ER as an efficient folding factory, how the ER monitors its output and how it disposes of folding failures.  相似文献   

16.
Proteins that are exported from the cell, or targeted to the cell surface or other organelles, are synthesised and assembled in the endoplasmic reticulum and then delivered to their destinations. Point mutations - the most common cause of human genetic diseases - can inhibit folding and assembly of the protein in the endoplasmic reticulum. The unstable or partially folded mutant protein does not undergo trafficking and is usually rapidly degraded. A potential therapy for protein misfolding is to correct defective protein folding and trafficking using pharmacological chaperones. Pharmacological chaperones are substrates or modulators that appear to function by directly binding to the partially folded biosynthetic intermediate to stabilise the protein and allow it to complete the folding process to yield a functional protein. Initial clinical studies with pharmacological chaperones have successfully reduced clinical symptoms of disease. Therefore, pharmacological chaperones show great promise as a new class of therapeutic agents that can be specifically tailored for a particular genetic disease.  相似文献   

17.
《Fungal Biology Reviews》2014,28(2-3):29-35
The gateway to the secretory pathway is the endoplasmic reticulum (ER), an organelle that is responsible for the accurate folding, post-translational modification and final assembly of up to a third of the cellular proteome. When secretion levels are high, errors in protein biogenesis can lead to the accumulation of abnormally folded proteins, which threaten ER homeostasis. The unfolded protein response (UPR) is an adaptive signaling pathway that counters a buildup in misfolded and unfolded proteins by increasing the expression of genes that support ER protein folding capacity. Fungi, like other eukaryotic cells that are specialized for secretion, rely upon the UPR to buffer ER stress caused by fluctuations in secretory demand. However, emerging evidence is also implicating the UPR as a central regulator of fungal pathogenesis. In this review, we discuss how diverse fungal pathogens have adapted ER stress response pathways to support the expression of virulence-related traits that are necessary in the host environment.  相似文献   

18.
Quality control of protein folding represents a fundamental cellular activity. Early steps of protein N-glycosylation involving the removal of three glucose and some specific mannose residues in the endoplasmic reticulum have been recognized as being of importance for protein quality control. Specific oligosaccharide structures resulting from the oligosaccharide processing may represent a glycocode promoting productive protein folding, whereas others may represent glyco-codes for routing not correctly folded proteins for dislocation from the endoplasmic reticulum to the cytosol and subsequent degradation. Although quality control of protein folding is essential for the proper functioning of cells, it is also the basis for protein folding disorders since the recognition and elimination of non-native conformers can result either in loss-of-function or pathological-gain-of-function. The machinery for protein folding control represents a prime example of an intricate interactome present in a single organelle, the endoplasmic reticulum. Here, current views of mechanisms for the recognition and retention leading to productive protein folding or the eventual elimination of misfolded glycoproteins in yeast and mammalian cells are reviewed.  相似文献   

19.
The process of protein secretion is intimately linked to the rate and potential of proper folding and assembly of secretory proteins. The efficiency of protein folding is communicated to the cytoplasm via several signal transduction pathways. This regulates the rate of polypeptide chain synthesis and induction of genes encoding functions that reduce protein-folding load on the endoplasmic reticulum (ER). This review summarizes recent insights into the mechanisms that couple protein translation with protein folding in the ER.  相似文献   

20.
The contribution of each of the seven asparagine-linked oligosaccharide side chains on the hemagglutinin of the A/Aichi/68 (X31) strain of influenza virus was assessed with respect to its effect on the folding, intracellular transport, and biological activities of the molecule. Twenty mutant influenza virus hemagglutinins were constructed and expressed, each of which had one or more of the seven glycosylation sites removed. Investigations of these mutant hemagglutinins indicated that (i) no individual oligosaccharide side chain is necessary or sufficient for the folding, intracellular transport, or function of the molecule, (ii) at least five oligosaccharide side chains are required for the X31 hemagglutinin molecule to move along the exocytic pathway to the plasma membrane, and (iii) mutant hemagglutinins having less than five oligosaccharide side chains form intracellular aggregates and are retained in the endoplasmic reticulum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号